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Counting partitions by genus.

A compendium of results
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Abstract

This article is devoted to the enumeration of set partitions, according to their length, number
of parts, cyclic type, and genus. Genus dependent Bell, Stirling numbers, and Faà di Bruno
coefficients are introduced. Besides attempting to summarize what is already known on the
subject, we obtain new generic results (in particular for partitions into two parts, for arbitrary
genus), and present computer generated new data extending the number of terms known for
sequences or families of such coefficients; this also allows us to propose new conjectures.

Keywords: set-partitions.
Mathematics Subject Classification: 05A18, 60Cxx, 05A15.

ar
X

iv
:2

30
5.

01
10

0v
2 

 [
m

at
h.

C
O

] 
 2

3 
Ju

n 
20

23



Introduction

This is the second paper in a series devoted to the combinatorics of set partitions and their enumer-
ation according to their genus. In a previous paper [20], functional equations were written between
generating functions (G.F.) of partitions, enabling one to count partitions in genus 0, 1 and 2. In
the present paper, which is completely independent, our goal is different. We wish to collect as
much data as possible on that combinatorics. Accordingly, our paper gathers classical and known
results as well as new data, obtained by computer “brute force” calculations and a few exact new
results. In many cases, these data suggest conjectures and extrapolations, that we mark with the

sign
?
“ .

This endeavor has benefited in a tremendous way from the existence of the On Line Encyclopedia
of Sequences [16]. Several unexpected connections and identifications have been made possible
thanks to this irreplaceable and unique source 1.

Our paper is organized as follows. In section 1, we recall some basic definitions: total numbers
of partitions are given by Bell numbers, and by Stirling numbers when the number of parts is fixed.
The key notion of genus is also recalled. In Sect. 2, the Bell numbers are refined by fixing the genus
of partitions, and by including partitions with or without singletons. Explicit expressions for their
G.F. are given in genus 0 to 3, and the general form conjectured in higher genus. The same steps
are repeated in Sect. 4 for the Stirling numbers, with again exact or conjectured results for their
counting and G.F.
The rest of the paper is devoted to the counting of partitions of given cyclic type. In Sect. 5, we
review three families of partitions for which this counting is generically known: the famous non-
crossing partitions (i.e., of genus 0); the partitions into pairs, i.e., of type r2ks, and arbitrary genus;
and the partitions into two parts, for which we obtain a result in arbitrary genus, which is new, to
the best of our knowledge. Section 6 gathers data on various types of partitions for which we have
only partial results and conjectures: types rpks for varying p or k and three-part partitions. Finally
Tables in Appendix contain the numbers of partitions of the set t1, ¨ ¨ ¨ , nu of arbitrary genus up
to n “ 15.

It is our hope that these results will inspire some readers, lead to new results . . . and become
soon obsolete!

1 Bell, Stirling, and Faà di Bruno numbers

1.1 Equivalence relations on a set with n elements

Any equivalence relation on a set is specified, and conversely, by a partition α of this set (or
set-partition, for short).

The number of equivalence relations on a set with n elements is given by the Bell numbers,
which obey the recurrence:

Bn`1 “

n
ÿ

p“0

ˆ

n

p

˙

Bp, with B1 “ 1 , (1)

hence

Bn “
1

e

8
ÿ

ℓ“0

ℓn

ℓ!
, OEIS sequence A000110 . (2)

1Sometimes we shall refer to some OEIS sequence because it is known to count the partitions under study, but
sometimes it only means that the sequence is recognized as one present in OEIS, but not necessarily recognized as
relevant for the chosen context.
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The exponential generating function of the Bell numbers is

Bpxq “

8
ÿ

n“0

Bn

n!
xn “ ee

x´1 . (3)

1.2 Equivalence relations on a set with n elements, with k equivalence classes

One may impose that the equivalence relations have a given number, say k, of equivalence classes,
i.e., that the partition has k parts.

The number of such relations is given by the Stirling number of the second kind, Sn,k, which
obeys the recurrence relation:

Sn,k “ k Sn´1,k ` Sn´1,k´1, n ą 1, with S1,k “ 0, k ą 1, and S1,1 “ 1 . (4)

Explicit form

Sn,k “
1

k!

k
ÿ

s“0

p´1qk´s

ˆ

k

s

˙

sn , (5)

OEIS sequence A008277.
The exponential generating function of the Stirling numbers Sn,k is

Spx, yq “ ey pex´1q . (6)

Sum rule:

Bn “

n
ÿ

k“0

Sn,k . (7)

1.3 Set with n elements, with k equivalence classes of specified cardinalities

One may further impose that the chosen equivalences classes have specified cardinalities.
The set of cardinalities of the classes of the equivalence relation defined by the set-partition α

determines a partition rαs $ n of the integer n, called the type of the partition. It is usual to denote
this integer partition as follows: rαs “ r1α1 , ¨ ¨ ¨ , nαns. It can be represented as a Ferrers diagram
or as a Young diagram. The number of equivalence relations on a set with n elements having
equivalent classes with cardinalities specified by rαs will be denoted by Cn,rαs. These numbers are
sometimes called the Faà di Bruno coefficients.

Cn,rαs “
n!

śn
ℓ“1 αℓ!pℓ!qαℓ

. (8)

Sum rule: Calling |α| “
ř

ℓ αℓ the number of parts of the integer partition rαs, we have
obviously

ÿ

rαs

|α|“k

Cn,rαs “ Sn,k . (9)

1.4 Genus of partitions on a cyclically ordered set

If the underlying set of n elements is totally ordered (for definiteness one may take t1, 2, 3, . . . , nu),
or if it is cyclically ordered, one may introduce a new structure, finer than the ones already con-
sidered, by determining the genus of set partitions (a non-negative integer). With α a partition
of t1, 2, 3, . . . , nu, we associate a permutation τ of Sn: its cycles are the parts of α, whose ele-
ments are in increasing order. We also consider the cyclic permutation σ :“ p1, 2, . . . , nq. Then
following [?,?, 12], the genus gpαq is defined by

n ` 2 ´ 2g “ #cypτq ` #cypσq ` #cypσ ˝ τ´1q (10)
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or in the present case,
´2g “ |α| ´ 1 ´ n ` #cypσ ˝ τ´1q (11)

since here #cypσq “ 1 and #cypτq “
ř

αℓ “ |α|. As is well known and recalled in [20], Eq. (10)
is just Euler’s formula for the genus of the associated map, with f :“ #cypσ ˝ τ´1q the number of
faces of that map. Since f is a positive integer, and denoting k “ |α| the number of parts of the
integer partition rαs, we have

g “
n ´ k ` 1 ´ f

2
ď

pn ´ kq

2
. (12)

Also note that one-part partitions (k “ 1) have necessarily genus 0. Hence for g ą 0, k ě 2 and

n ě 2g ` k ě 2g ` 2 . (13)

Remark. Assuming the existence of an order on the underlying set is not really a restriction
since one can always choose one. Each family of set-partitions (or of equivalence relations) previ-
ously considered will be itself decomposed according to the genus, and we shall introduce notations

B
pgq
n , S

pgq

n,k and C
pgq

n,rαs
, with

ř

g B
pgq
n “ Bn,

ř

g S
pgq

n,k “ Sn,k and
ř

g C
pgq

n,rαs
“ Cn,rαs.

1.5 Partitions with no singletons

If a set partition has no singleton, its associated equivalence relation is such that no element is
isolated. Equivalently, each part of the partition contains at least 2 elements. By adding the
constraint that the families of partitions considered previously should have no singleton one can
define “associated”2 Bell numbers pBn, and “associated” Stirling numbers (of the second kind) pSn,k.
Obviously,

n
ÿ

k“1

pSn,k “ pBn . (14)

Since the notation Cn,rαs already incorporates the partition type, there is no “hat” version of the
Faà di Bruno coefficients: either rαs contains singletons, or it does not.
One obtains the following (almost) obvious identities :

Associated Bell numbers pBn. See OEIS A000296.

Bn “ pBn ` pBn`1 (15)

pBn “

n´2
ÿ

j“0

p´1qj Bn´1´j . (16)

Their exponential generating function is

pBpxq “ ee
x´x´1 . (17)

Associated Stirling numbers of the second kind pSn,k . See OEIS A008299 (see also A134991
where they are called Ward numbers).

pSn,k “

k
ÿ

ℓ“0

p´1qℓ
ˆ

n

ℓ

˙

Sn´ℓ,k´ℓ (18)

2More generally one could introduce s-associated Bell or Stirling numbers by imposing that each part contains at
least s elements but in the present paper we consider only the case s “ 2. See [2]
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Conversely,

Sn,k “

k´1
ÿ

ℓ“0

ˆ

n

ℓ

˙

pSn´ℓ,k´ℓ (19)

Their exponential generating function is

pSpx, yq “ ey pex´x´1q . (20)

They can be expressed in terms of the second-order Eulerian numbers Ep2q by

pSn,k “

n´k
ÿ

ℓ“0

ˆ

ℓ

n ´ 2k

˙

E
p2q

n´k,n´k´ℓ (21)

The Ep2q’s can themselves be expressed in terms of Stirling numbers of the second kind by

E
p2q

n,k “

k
ÿ

j“0

p´1qk´j

ˆ

2n ` 1

k ´ j

˙

Sn`j,j (22)

From (21) and (22) one can recover (18).

Notice that

Cn,r1r, α1s “

ˆ

n

r

˙

Cn´r,rα1s , (23)

where α1 has no singleton.
One can also impose a genus restriction on the partitions without singletons, and as singletons

do not affect the genus, one is therefore led to consider numbers pB
pgq
n and pS

pgq

n,k with, of course
ř

g
pB

pgq
n “ pBn and

ř

g
pS

pgq

n,k “ pSn,k. Moreover

C
pgq

n,r1r, α1s
“

ˆ

n

r

˙

C
pgq

n´r,rα1s
. (24)

We shall return to these sequences in the next section.

2 Genus dependent Bell numbers B
pgq
n

2.1 Unconstrained partitions: basic numbers B
pgq
n

Genus 0. Known as Catalan numbers. See OEIS A000108.

Bp0q
n “ Cn :“

1

pn ` 1q!

p2nq!

n!
(25)

“ t1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ¨ ¨ ¨ u

Ordinary G.F. is Bp0qpxq “
1 ´

?
1 ´ 4x

2x
. (26)

Genus 1. See OEIS A002802.

Bp1q
n “

1

24 3

1

p2n ´ 3qp2n ´ 1q

1

pn ´ 4q!

p2nq!

n!
, (27)

Ordinary G.F. is Bp1qpxq “
x4

p1 ´ 4xq5{2
, see [6] . (28)
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Genus 2. The first terms are listed in OEIS A297179 (the formula below seems to be new).

Bp2q
n “

1

29 32 5

`

5n3 ´ 39n2 ` 88n ´ 84
˘

p2n ´ 7qp2n ´ 5qp2n ´ 3qp2n ´ 1q

1

pn ´ 6q!

p2nq!

n!
, (29)

Ordinary G.F. is Bp2qpxq “
x6

`

1 ` 6x ´ 19x2 ` 21x3
˘

p1 ´ 4xq11{2
, see [6] . (30)

Genus 3. We conjecture that

Bp3q
n

?
“

1

213 34 5 7

`

35n6 ´ 819n5 ` 7589n4 ´ 36009n3 ` 93464n2 ´ 129060n ` 95040
˘

p2n ´ 11qp2n ´ 9qp2n ´ 7qp2n ´ 5qp2n ´ 3qp2n ´ 1q

1

pn ´ 8q!

p2nq!

n!
,

(31)

Ordinary G.F. is Bp3qpxq
?
“

x8
`

1 ` 60x ´ 66x2 ´ 130x3 ` 1065x4 ´ 2262x5 ` 1738x6
˘

p1 ´ 4xq17{2
. (32)

This suggests for any g ą 0 the following Ansatz for the ordinary G.F.

Bpgqpxq
?
“

x2g`2P pgqpxq

p1 ´ 4xqp6g´1q{2
(33)

with an overall power of x dictated by (13) and a polynomial P pgq of degree 3pg ´ 1q.
We shall see in the sequel a repeated appearance of formulae of that type, in particular with the
universal “critical exponent” p6g ´ 1q{2 in the denominator.

For genus g ě 4, we have incomplete results that corroborate this Ansatz:

Genus 4. The formula below is conjectured, and one should compute B
p4q
n for n “ 16, 17, 18, 19

to determine all the coefficients ai

Bp4q
n “ t1, 352, 19261, 541541, 10571561, 162718556u for n “ 10, ¨ ¨ ¨ 15 . (34)

Ordinary G.F. should be

Bp4qpxq
?
“

x10
`

1 ` 306x ` 4035x2 ´ 16669x3 ` 63735x4 ´ 136164x5 ` a6x
6 ` a7x

7 ` a8x
8 ` a9x

9
˘

p1 ´ 4xq23{2

Similarly, we propose for g “ 5, 6

Bp5qpxq
?
“

x12p1 ` 1320x ` 75068x2 ` 218300x3 ` ¨ ¨ ¨ q

p1 ´ 4xq29{2

Bp6qpxq
?
“

x14p1 ` 5406x ` ¨ ¨ ¨ q

p1 ´ 4xq35{2
. (35)

The first non trivial coefficient in the numerator of Bpgqpxq, g ą 0, appears to be always divisible
by 6: 6t1, 10, 51, 220, 901, . . .u, for g “ 2, 3, ¨ ¨ ¨ , and we conjecture that this sequence is given by

pdpgq ` 8g ` 2qp6g ´ 2q!

Cpgqp3g ´ 1q!
´ 2p6g ´ 1q

in terms of Cpgq: C “ 12, 30240, 518918400, 28158588057600, 3497296636753920000, . . .,
and dpgq: d “ 0, 10, 68, 318, 1336, 5426, . . ., given by

Cpgq “ 3 ˆ 22g´1 p2gq!

g!

p6g ´ 5q!!

p2g ´ 3q!!
“ 12p2g ´ 1q

p6g ´ 5q!

p3g ´ 3q!
(36)

dpgq “
1

3
p41`g ´ 1 ´ 3p6g ´ 1qq . (37)

Warning. The sequence B
p0q
n , shifted in such a way that it starts with 1 for n “ 1, (resp. B

p1q
n ,

shifted in such a way that it starts with 1 for n “ 3) gives also the number of rooted bicolored
unicellular maps of genus 0 (resp. of genus 1) on n edges. However this coincidence fails at genus
2 and above. Rooted bicolored unicellular maps are studied by Goupil et al. [8].
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2.2 Partitions with no singletons: associated numbers pB
pgq
n

For all g one has the recurrence

pBpgq
n “ Bpgq

n ´

n
ÿ

s“1

ˆ

n

s

˙

pB
pgq

n´s with
pBpgq
n “ 0 forn ă 2g ` 2, and pB

pgq

2g`2 “ 1 . (38)

Genus 0. See OEIA A005043 (Riordan numbers).

pBp0q
n “

n
ÿ

j“0

p´1qj
ˆ

n

j

˙ˆ

j

tj{2u

˙

. Ordinary G.F. is
2

1 ` x `
a

p1 ´ 3xqp1 ` xq
“

1 ´

b

1´3x
1`x

2x
,

(39)
0, 1, 1, 3, 6, 15, 36, 91, 232, 603, 1585, 4213, 11298, 30537, 83097, 227475, ¨ ¨ ¨

For genus g ą 0, we have again a general Ansatz for the ordinary G.F. of pB
pgq
n

pBpgqpxq
?
“

x2pg`1qp1 ` xqg´1
pP pgqpxq

∆pxq
p6g´1q

2

(40)

where ∆pxq “ p1 ´ 3xqp1 ` xq is the discriminant of the algebraic equation satisfied by pBp0qpxq,
namely pBp0qpxq “ 1 ` px pBp0qpxqq2{p1 ´ x pBp0qpxqq, see [20], and pP pgq is a polynomial of degree
3pg ´ 1q, see below.

Genus 1. See OEIS A245551.

pBp1q
n “

n´4
ÿ

ℓ“0

p´1qn´ℓ 3ℓ´2

2n´4

p2ℓ ` 3q!!p2n ´ 2ℓ ´ 5q!!

ℓ!p´ℓ ` n ´ 4q!
, G.F. pBp1qpxqwith pP p1qpxq “ 1 , (41)

0, 0, 0, 1, 5, 25, 105, 420, 1596, 5880, 21120, 74415, 258115, 883883, 2994355, 10051860, ¨ ¨ ¨

Genus 2.

pBp2q
n “ 0, 0, 0, 0, 0, 1, 21, 203, 1512, 9513, 53592, 278355, 1359072, 6318312, 28227199, 122005884, ¨ ¨ ¨

G.F. pBp2qpxqwith pP p2qpxq “ p1 ` 9x ´ 4x2 ` 9x3q , see [20] . (42)

Genus 3.

pBp3q
n “ 0, 0, 0, 0, 0, 0, 0, 1, 85, 1725, 21615, 208230, 1685112, 12028588, 78029380, 469278810, ¨ ¨ ¨

G.F. pBp3qpxqwith pP p3qpxq
?
“ p1 ` 66x ` 249x2 ` 226x3 ` 894x4 ´ 480x5 ` 406x6q . (43)

Genus 4.

pBp4q
n “ 0, 0, 0, 0, 0, 0, 0, 1, 341, 15103, 318318, 4615611, 52720668, ¨ ¨ ¨

G.F. pBp4qpxqwithP p4qpxq
?
“ 1 ` 315x ` 6519x2 ` 20228x3 ` 65718x4 ` 95247x5 ` ¨ ¨ ¨

with 4 terms missing.
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3 Genus dependent Stirling numbers S
pgq

n,k

3.1 Partitions with k parts : the numbers S
pgq

n,k

Genus 0. Known as the Narayana numbers. See OEIS A001263.

S
p0q

n,k “
1

n

ˆ

n

k

˙ ˆ

n

k ´ 1

˙

“
1

k

ˆ

n ´ 1

k ´ 1

˙ ˆ

n

k ´ 1

˙

. (44)

Their two-variable G.F. reads

Sp0qpx, yq “
1 ` x ´ xy ´

a

p1 ` x ´ xyq2 ´ 4x

2x
. (45)

Genus 1. Conjectured by Yip [19], proved by Cori and Hetyei [5].

S
p1q

n,k “
1

6

ˆ

n

2

˙ ˆ

n ´ 2

k ´ 2

˙ ˆ

n ´ 2

k

˙

“
1

6

ˆ

k

2

˙ ˆ

n

k

˙ ˆ

n ´ 2

k

˙

, (46)

G.F. Sp1qpx, yq “
x4y2

pp1 ` x ´ xyq2 ´ 4xq5{2
. (47)

Genus 2. Obtained by Cori-Hetyei. See OEIS A297178.

S
p2q

n,k “8γrn ´ 10, k ´ 6s ´ 4γrn ´ 10, k ´ 5s ´ 15γrn ´ 10, k ´ 4s ` 10γrn ´ 10, k ´ 3s ` γrn ´ 10, k ´ 2s

´ 4γrn ´ 9, k ´ 5s ` 39γrn ´ 9, k ´ 4s ´ 10γrn ´ 9, k ´ 3s ´ 4γrn ´ 9, k ´ 2s ´ 15γrn ´ 8, k ´ 4s

´ 10γrn ´ 8, k ´ 3s ` 6γrn ´ 8, k ´ 2s ´ 4γrn ´ 7, k ´ 2s ` 10γrn ´ 7, k ´ 3s ` γrn ´ 6, k ´ 2s

(48)

where

γpn, kq “

`

n`10
5

˘`

n`5
k

˘`

n`5
n´k

˘

`

10
5

˘ . (49)

The result for S
p2q

n,k may be simplified in the form

S
p2q

n,k “
1

30240
χp2q ˚

´ Γpn ´ tqΓpn ´ t ` 5q

Γpk ´ s ´ 1qΓpk ´ s ` 4qΓpn ´ k ` s ´ t ´ 3qΓpn ´ k ` s ´ t ` 2q

¯

0ďtď4
0ďsďt

(50)

with a triangular array of constants χp2q given by

χp2q
pt, sq “

1
´4 10
6 ´10 ´15

´4 ´10 39 ´4
1 10 ´15 ´4 8

(51)

and the ˚ product means a summation over 0 ď s ď t ď 4 of the product of the two factors.
Then the G.F. reads

Sp2qpx, yq “
x6y2 pp2qpx, yq

pp1 ` x ´ xyq2 ´ 4xq11{2
(52)

pp2qpx, yq “
ÿ

0ďtď4
0ďsďt

χp2qpt, sqxtys

“ 1 ´ xp4 ´ 10yq ` x2p6 ´ 10y ´ 15y2q ´ x3p4 ` 10y ´ 39y2 ` 4y3q

`x4p1 ` 10y ´ 15y2 ´ 4y3 ` 8y4q (53)
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as first derived by Cori and Hetyei [6].

Observations and conjectures.
For k “ 2, we have an expression that follows from an exact formula for the two-part partitions of
arbitrary genus, see below Sect. 4.3 :

S
pgq

n,2 “

ˆ

n

2g ` 2

˙

“
1

`

2g`2
g`1

˘

ˆ

n

g ` 1

˙ˆ

n ´ g ´ 1

g ` 1

˙

, (54)

All known data for k “ 3 and n ď 15, g ď 6 are consistent with

S
pgq

n,3
?
“

4g`1 ´ 1

3

pn ´ g ´ 1q

g ` 2

ˆ

n

2g ` 3

˙

“
4g`1 ´ 1

3
`

2g`3
g`1

˘

ˆ

n

g ` 2

˙ˆ

n ´ g ´ 1

g ` 2

˙

. (55)

In particular

S
p2q

n,3
?
“

21

4

ˆ

n

7

˙

pn ´ 3q “
3

5

ˆ

n

4

˙ˆ

n ´ 3

4

˙

and S
p3q

n,3
?
“ 17pn ´ 4q

ˆ

n

9

˙

. (56)

Also at given g, for the lowest n “ 2g ` 3, S
pgq

2g`3,3 “ 4g`1´1
3 , OEIS A002450.

Observation: The result obtained in (50) for S
p2q

n,k can be generalized in terms of an expression

that encodes all (presently) known results for S
pgq

n,k, g ě 1.
This expression is as follows

S
pgq

n,k
?
“ 1

Cpgq
χpgq ˚

´

Γpn´t`g´2qΓpn´t`4g´3q

Γpk´s´1qΓpk´s`3g´2qΓpn´k`s´t´2g`1qΓpn´k`s´t`gq

¯

0ďtď4g´4
0ďsďt

(57)

“ 1
Cpgq

χpgq ˚

´

p3g ´ 1q!
`

n´k`s´t`g´1,
n´k`s´t´2g

˘`

n´t`g´3
k´s´2

˘`

n´t`4g´4
n´k`s´t`g´1

˘

¯

0ďtď4g´4
0ďsďt

(58)

with the integer constant Cpgq given in (36) and coefficients χpgq given for g “ 3, 4 by

χ
p3q

“

1
´8 68
28 ´340 246

´56 612 294 ´980
70 ´340 ´3390 4480 245

´56 ´340 5700 ´3500 ´5530 1464
28 612 ´3390 ´3500 11020 ´1824 ´1208
´8 ´340 294 4480 ´5530 ´1824 2944 ´16
1 68 246 ´980 245 1464 ´1208 ´16 180

χ
p4q

“

1
´12 318
66 ´2862 6831

´220 11130 ´33651 6072
495 ´23850 30123 156660 ´99693

´792 28620 ¨ ¨ ¨ ¨ ¨ ¨

924 ´13356
´792 ´13356
495 28620

´220 ´23850 ¨ ¨ ¨

66 11130 30123
´12 ´2862 ´33651 156660
1 318 6831 6072 ´99693 ¨ ¨ ¨

where the entries of χp3q have been determined from a subset of the existing data, but some of
those of χp4q are still undetermined at this stage.
Observations:
- Each column of the arrays χpgq is symmetric.
- The entries of the first column of χpgq, which is of length 4g ´ 3, are binomial coefficients with
alternated signs p´1qt

`

4pg´1q

t

˘

.
- The second column is the product of the line 4pg ´ 1q of the triangular array OEIS A144431 (a
“sub-Pascal array”) by the coefficient dpgq given above in (37).
- This second column can also be obtained as dpgq times an appropriate line of a matrix defined as
the inverse of the matrix of partial sums of the signed Pascal triangle (see A059260).
- The last pg ´ 1q lines of the array χpgq have a vanishing sum (a justification is given below).
- The last line of the array χpgq is conjectured to be given by (60) (details are given below).
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At genus g, the first non-zero coefficients S
pgq

n,k appear for pn, kq “ p2g ` 2, 2q, and their “experi-

mental” values up to n “ 4p2g ´ 1q, k “ 2p2g ´ 1q can be used to determine the constants χpgq but
one can lower these two integers by making use of the previous observations.

As already mentioned, (58), evaluated at g “ 1, 2 gives back S
p1q

n,k and S
p2q

n,k; moreover its evalua-
tion at g ě 3 is compatible with all presently known “experimental” results, with the Ansatz (55),

and the sum over k of S
p3q

n,k is indeed equal to B
p3q
n . This justifies the following conjectures.

Genus g “ 3 conjecture (weak form). The expression (58), with g “ 3, gives S
p3q

n,k for all n and k.
Genus g conjecture (strong form). The expression (58), together with an appropriate triangular

array of constants χpgq gives S
pgq

n,k for all n, k, g ą 0.

The corresponding Ansatz on the G.F. reads

G.F. Spgqpx, yq
?
“

x2g`2y2 ppgqpx, yq

pp1 ` x ´ xyq2 ´ 4xqp6g´1q{2
(59)

with ppgqpx, yq “
ř

0ďtď4pg´1q

0ďsďt
χpgqpt, sqxtys .

We have Spgqpx, 1q “ Bpgqpxq, ppgqpx, 1q “ P pgqpxq. The latter polynomial being (conjectured)
of degree 3pg ´ 1q in x, this tells us that the last pg ´ 1q lines of the array χpgq have a vanishing
sum.

A further conjecture, in accordance with the existing data, is that the terms of highest degree
in x, viz 4pg ´ 1q, of ppgqpx, yq are of the form

rppgqpx, yqsx4pg´1q “ p1 ´ yq2pg´1q

«

p1 ´ yq4g`1y´2g´3
2g´2
ÿ

j“0

2 s2g`2`j, j`1

p2g ` j ` 2qp2g ` j ` 1q
y´j

ff

`

(60)

where r¨s` is the polynomial part in y of the expression and sp,q are the Stirling numbers of the first
kind. See OEIS A185259 where these polynomials are tabulated. If true, this conjecture determines
the last line of χp4q to be

χp4qp13, sq “ t1, 318, 6831, 6072,´99693, 103950, 196581,´413820, 155628, 146168,´117876, 7776, 8064u .

Particular cases : S
p3q

n,k and S
p4q

n,k for small k. The above general conjecture for S
pgq

n,k leads,
when g “ 3, 4, and small values of k “ 2, 3, 4, to simple enough formulas that are displayed
below. For k “ 2, they follow from (54). One can check that they are compatible with the known

(experimental) values of S
p3q

n,k, up to n “ 15, (see tables the appendix).

Genus 3.

S
p3q

n,2 “

ˆ

n

8

˙

“ p0, 0, 0, 0, 0, 0, 0, 1, 9, 45, 165, 495, 1287, 3003, 6435, . . .q see OEIS A000581

S
p3q

n,3
?
“ 17pn ´ 4q

ˆ

n

9

˙

“ p0, 0, 0, 0, 0, 0, 0, 0, 85, 1020, 6545, 29920, 109395, 340340, 935935, . . .q

S
p3q

n,4
?
“

5

3
p32n2 ´ 288n ` 613q

ˆ

n

10

˙

“ p0, 0, 0, 0, 0, 0, 0, 0, 0, 1555, 24145, 194150, 1085370, 4759755, 17482465, . . .q

Genus 4.

S
p4q

n,2 “

ˆ

n

10

˙

“ p0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 66, 286, 1001, 3003, . . .q see OEIS A001287

S
p4q

n,3
?
“

341

6
pn ´ 5q

ˆ

n

11

˙

“ p0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 341, 4774, 35464, 186186, 775775, . . .q

S
p4q

n,4
?
“

11

2
p65n2 ´ 715n ` 1842q

ˆ

n

12

˙

“ p0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14421, 252538, 2288286, 14369355, . . .q

9



3.2 Partitions with no singletons: associated numbers pS
pgq

n,k

Genus 0. See OEIS A108263.

pS
p0q

n,k “
1

pn ´ k ` 1q

ˆ

n ´ k ´ 1

n ´ 2k

˙ ˆ

n

k

˙

. (61)

Ordinary G.F. is
1 ` x ´

a

p1 ´ xq2 ´ 4x2y

2xpxy ` 1q
. (62)

Genus 1.

pS
p1q

n,k “
1

6

ˆ

k

2

˙ ˆ

n

k

˙ ˆ

n ´ k

k

˙

, (63)

Ordinary G.F. is
x4y2

pp1 ´ xq2 ´ 4x2yq5{2
. (64)

Genus 2 and above. It is conjectured that for generic genus g ą 0, the G.F. has the form

pSpgqpx, yq
?
“

x2g`2y2p̂pgqpx, yq

pp1 ´ xq2 ´ 4x2yqp6g´1q{2
(65)

with p̂pgqpx, yq a polynomial of degree 4pg ´ 1q in x. For instance

p̂p2qpx, yq “ 1`2xp´2`7yq`x2p6´22y`21y2q`x3p´4`2y`7y2q`x4p1`6y´19y2`21y3q , (66)

as derived in [20].

Remark. Note that pp2qpx, 0q “ p̂p2qpx, 0q “ p1´xq4 so that the term of order y2 in Sp2qpx, yq or
pSp2qpx, yq, i.e., the G.F. of genus 2 partitions into two parts with or without singleton is x6{p1´xq7 “
1
2

ř8
n“4

n
3x

n
řn´1

p“1

`

p´1
2

˘`

n´p´1
2

˘

, in agreement with formula (83) below.

By the same token, we may assert that ppgqpx, 0q “ p̂pgqpx, 0q “ p1´xq4pg´1q so that the term of
order y2 in Spgqpx, yq or pSpgqpx, yq is x2g`2{p1 ´ xq2g`3 “ 1

2

ř8
n“2g

n
g`1x

n
řn´1

p“1

`

p´1
g

˘`

n´p´1
g

˘

. This
implies that

pS
p0q

n,2 “ S
p0q

n,2 ´ n “
1

2
npn ´ 3q and pS

pgq

n,2 “ S
pgq

n,2 “

ˆ

n

2g ` 2

˙

for g ą 0 (67)

in agreement with the result (54). These numbers can be recognized as the elements of the array
OEIS A275514.

Particular case n “ 2k.
Since we assume in this section that there are no singletons and since k denotes the number of parts,
the equality n “ 2k implies that each part is of length 2, so that the type is determined: rαs “ r2ks,
and pS2k,k “ C2k,r2ks. Because of this coincidence, we postpone the study of this particular case to

the next section, which is devoted to the study of coefficients C
pgq

n,rαs
.

4 Genus dependent Faà di Bruno coefficients C
pgq

n,rαs
.

Part I. Fully solved cases.

The genus dependent Faà di Bruno coefficients C
pgq

n,rαs
are explicitly known in many specific cases,

for particular types rαs “ r. . . ℓαℓ . . .s and/or for particular values of the genus g, most of them

10



discussed and summarized in section 5. However, to the best of our knowledge, they are generically
known in only three families of cases, two of them are classic – the cases of genus 0, all types; and
the partitions of type r2ps, all g –, and the third one is new, the partitions into two parts, i.e., of
type rp, n ´ ps; all g. We review these three cases in this section. In addition, the G.F. of all types
of partitions are explicitly known for genus 1 and 2, see [20], although the extraction of explicit
formulae for the Faà di Bruno coefficients is arduous.

4.1 The particular case g “ 0

C
p0q

n,rαs
is the number of non crossing partitions (also called planar partitions) of type rαs.

C
p0q

n,rαs
“

n!

pn ` 1 ´
ř

αℓq!
ś

ℓ αℓ!
“

1

n ` 1

ˆ

n ` 1

α1, ¨ ¨ ¨ , αn, n ` 1 ´
ř

αj

˙

(68)

where the symbol p......q denotes a multinomial coefficient. It was first derived by Kreweras [13], and
reappeared later in the context of large random matrices [1] and of free probabilities and their free
(or non crossing) cumulants [15]. One may also collect these expressions into a G.F.

Zp0qpxq “ 1 `
ÿ

ně1

xn
ÿ

rαs$n

C
p0q

n,rαs

n
ź

ℓ“1

καℓ
ℓ (69)

where the κℓ are new indeterminates, from which we may also construct the function W pxq “
ř

ℓě1 κℓx
ℓ. Then, it was shown in [1] that (68) is equivalent to the following functional relation

between Zp0q and W
Zp0qpxq “ 1 ` W pxZp0qpxqq , (70)

see also [7] for a nice graphical interpretation of that identity.
As recalled above, the genus 1 and 2 G.F. have been constructed in [20]. We don’t repeat these

formulae here but we shall use them in the following to substantiate some remarks and conjectures.

4.2 Type rαs “ r2ks. So n “ 2k (k parts of length 2) and g ď k
2
.

If we focus on the terms with rαs “ r2ks, it suffices to specialize the indeterminates κ to κℓ “ κ2δℓ,2.
By a small abuse of notation, we still use Zpgqpxq and W pxq for these specialized G.F.

As already mentioned, C
pgq

2k,r2ks
is known for all g and coincides with pS

pgq

2k,k. This famous case was

first solved by Walsh and Lehman [17,18] by combinatorial methods; then by Harer and Zagier [9],
in the context of the virtual Euler characteristics of the moduli space of curves, by means of matrix
integrals; and by Jackson by a character theoretic approach [11]. It has been the object of an
abundant literature since then, a good review of which is given in [14].

pS
pgq

2k,k “ C
pgq

2k,r2ks
“

p2kq!

pk ` 1q!pk ´ 2gq!

«

ˆ

u{2

tanhu{2

˙k`1
ff

u2g

(71)

where the notation rY suk means the coefficient of uk in expression Y . The first terms are given by
the following table:

g 0 1 2 3 4
k “ 1 1
k “ 2 2 1
k “ 3 5 10
k “ 4 14 70 21
k “ 5 42 420 483
k “ 6 132 2310 6468 1485
k “ 7 429 12012 66066 56628
k “ 8 1430 60060 570570 1169740 225225
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The g “ 0 column is, by (68): C
p0q

2k,r2ks
“ 1

k`1

`

2k
k

˘

“ Ck (Catalan numbers) 3, whose G.F. is

Zp0qpuq “ 1 `

8
ÿ

k“1

C
p0q

2k,r2ks
uk “

1 ´
?
1 ´ 4u

2u
(72)

which satisfies
Zp0puq “ 1 ` upZp0puqq2 . (73)

(This is the equation (70) expressed here for W pxq “ κ2x
2 in the variable u “ κ2x

2.)

The g “ 1 column is p2k´1q!
6pk´2q!pk´1q! “

`

2k´1
3

˘

Ck´2 “
pk`1qkpk´1q

12 Ck, see OEIS A002802.

The k-th row’s sum is, by (8), given by p2k ´ 1q!!, viz t1, 1, 3, 15, 105, 945, ¨ ¨ ¨ u.
More generally,

C
pgq

2k,r2ks
“

1

2g
Ck Rgpkq (74)

with Rgpkq a polynomial of degree 3g in k [9,17] which (for g ą 0) vanishes for k “ ´1, 0, ¨ ¨ ¨ , 2g´1,
and whose form can be made explicit [3, 8]. There are several expressions for the values that it
takes when its argument k is an arbitrary non-negative integer. One of them, in terms of unsigned
Stirling numbers of the first kind cp,q

4, reads as follows [4]:

Rgpkq “

k
ÿ

s“0

ˆ

k

s

˙ k`2´2g
ÿ

j“0

p´1qs`1´j ck´s`1,k`2´2g´j cs`1,j . (75)

As noticed in [9], the numbers C
pgq

2k,r2ks
(called ϵgpkq there) satisfy a recurrence formula

pk ` 1qC
pgq

2k,r2ks
“ 2p2k ´ 1qC

pgq

2pk´1q,r2k´1s
`

1

2
p2k ´ 1qp2k ´ 2qp2k ´ 3qC

pg´1q

2pk´2q,r2k´2s
(76)

or in terms of the polynomials R introduced in Eq. (74),

Rgpkq “ Rgpk ´ 1q `

ˆ

k

2

˙

Rg´1pk ´ 2q . (77)

See also [3] for other recurrences. . .

Proposition 1. The generating function of the C
pgq

2k,r2ks
for g ą 0 is of the form

Zpgqpuq :“
ÿ

k

C
pgq

2k,r2ks
uk “

u2g Qpgqpuq

p1 ´ 4uqp6g´1q{2
, (78)

where Qpgqpuq is a polynomial of degree g ´ 1 in u satisfying Qpgqp0q “
p4gq!

22gp2g`1q!
.

Proof. One finds by explicit calculation that Qp1qpuq “ 1 and then proceeds by induction. Equation
(76) implies that Qpgqpuq satisfies the following recurrence formula

p1´4uqu d
du

Qpgqpuq`

`

2g`1`4upg´1q

˘

Qpgqpuq “
`

3p4g´1
3 q`p192g3´384g2`108g´6qu`p384g3´1536g2`1440g`192qu2`p256g3´1920g2`4736g´3840qu3

˘

Qpg´1qpuq

`

`

48g2´24g`3`p192g2´480g´24qu`p192g2´1152g`1728qu2
˘

up1´4uq d
du

Qpg´1qpuq

`24
`

g`up2g´7q

˘

u2p1´4uq2 d2

du2
Qpg´1qpuq`4u3p1´4uq3 d3

du3
Qpg´1qpuq . (79)

3It therefore coincides with B
p0q

k .
4cp,q is the number of permutations of p elements that have q distincts cycles. They are positive integers such

that sp,q “ p´1q
p´q cp,q where the sp,q, the Stirling numbers of the first kind, obey

ř

pě1 Sn,p sp,q “ δn,q.
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Assume that Qpg´1qpuq is a polynomial of degree pg ´ 2q which satisfies Qpg´1qp0q “
p4pg´1qq!

22pg´1qp2g´1q!
.

The r.h.s. of (79) is a priori of degree g ` 1 but one checks that it is in fact of degree g, making it
possible to find a polynomial solution of degree pg ´ 1q in u for Qpgq. Moreover the equation (79)
for u “ 0 fixes the ratio Qpgqp0q{Qpg´1qp0q in agreement with the values above.

Note that the expression p1 ´ 4uq in the denominator of (78) is –once again– nothing else than the
discriminant of the equation (73) satisfied by Zp0q.
The first Qpgq read

Qp1qpuq “ 1 ; Qp2qpuq “ 21p1 ` uq ; Qp3qpuq “ 11p135 ` 558u ` 158u2q ;

Qp4qpuq “ 11 ˆ 13p1575 ` 13689u ` 18378u2 ` 2339u3q ; (80)

Qp5qpuq “ 3 ˆ 13 ˆ 17 ˆ 19 p4725 ` 67620u ` 201348u2 ` 132356u3 ` 9478u4q ; ¨ ¨ ¨

with Qpgqp0q “ t1, 21, 1485, 225225, . . .u “ C
pgq

4g,r22gs
“ 1

2g C2g Rgp2gq “
p4gq!

22gp2g`1q!
, see A035319.

4.3 Partitions into two parts: type rαs “ rp, n ´ ps.

5

r =1
4

r =0
2

e

1
r =2

(b)

e’

r =2

m  =1

m

m

1

3

2

r =2
3

m
5

m
4

(a)

Figure 1: (a) Partition with n “ 12, p “ 5, f “ 5, s “ 1, g “ 3;

(b) removing of “trivial faces” and doubling the edges to make the faces more visible, f 1 “ 1

We first recall the main lines of the diagrammatic representation of a partition, see for example
[20] for more details. Consider some partition α of the set t1, ¨ ¨ ¨ , nu. We first draw n points on a
circle numbered from 1 to n and distributed clockwise. With each part of length ℓ of α, is associated
a ℓ-valent vertex, in short a ℓ-vertex, whose edges are numbered clockwise by the elements of the
part. The vertices are arranged inside the disc. Edges are then drawn by matching the indices. If
the n points are thought of as forming a single additional n-vertex, this defines a map, which has
|α| ` 1 vertices, n edges and a number f of faces. The Euler characteristics of that map and its
genus match the formulae given in Sect. 1.4 in terms of permutations σ and τ .

For example, Fig 1(a) shows a diagrammatic representation of a partition of t1, ¨ ¨ ¨ , 12u into two
parts α “ pt1, 4, 5, 8, 10u, t2, 3, 6, 7, 9, 11, 12uq. The map has 5 faces and its genus is thus 3. This can
be seen either by applying Eq. (11) with σ “ p1, 2, . . . , 12q, τ “ p1, 4, 5, 8, 10q, p2, 3, 6, 7, 9, 11, 12q,
and by calculating the product σ˝τ´1 “ p1, 11, 10, 9, 8, 6, 4, 2qp3qp5qp7qp12q, whose cyclic parts label
the faces of the associated map, or diagrammatically, as it will be done below.
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Lemma. (i) For the partition of type rαs “ rp, n ´ ps, g ď minpp ´ 1, n ´ p ´ 1q.
(ii) Let s be the number of pairs of edges joining the p-vertex to consecutive points on the circle,
then g “ p ´ s ´ 1.

Proof. Let us make use of the representation examplified in Fig. 1. There n “ 12 and p “ 5. In
general, the diagram is completely determined by choosing p points m1, m2, ¨ ¨ ¨mp out of the n
points on the circle, and attaching to them the edges coming from the p-vertex (in black), while
respecting their cyclic order. These p points on the circle will be called “black points”. A pn ´ pq-
vertex (in blue) is then connected to the n ´ p other (blue) points. Let ri the number of points
between mi and mi`1, i “ 1, 2, ¨ ¨ ¨ , p, (with the convention mp`1 ” m1). Thus

ř

i ri “ n ´ p. Let
us compute a lower bound on the number of faces of the resulting diagram. For each of the s indices
i for which ri “ 0, (i.e., mi`1 “ mi ` 1 ) there is one face attached to the p-vertex (in our example
there is only one such index and the associated face on the figure is grey shaded). For each i for
which ri ě 1, there are ri ´ 1 such “trivial” faces attached to the second vertex (in our example
there are three such, that are the blue shaded ones in Fig. 1). In addition to these s `

ř

ipri ´ 1q

trivial faces, there are f 1 ě 1 other faces (unshaded in Fig. 1), and thus the total number of faces
is

f “
ÿ

i
ri“0

1 `
ÿ

i
riě1

pri ´ 1q ` f 1 “ s `
`

pn ´ pq ´ pp ´ sq
˘

` f 1 “ n ´ 2p ` 2s ` f 1 (81)

hence

g “
n ´ 1 ´ f

2
“ p ´ s ´

f 1 ` 1

2
ď p ´ 1 . (82)

Because of the symmetry between the two vertices, one has as well g ď n ´ p ´ 1, whence the
inequality of the first part of the lemma. Note that this bound on g is in general stronger than the
one tn´2

2 u written in (12).
Clearly the minimum value g “ 0 is reached for f 1 “ 1, s “ p ´ 1, i.e., with the p-vertex being
attached to p consecutive points on the circle.
In fact the previous inequality f 1 ě 1 is an equality. In other words, there is always only one more
face in the argument above and g “ p ´ s ´ 1, which is the second part of the lemma. This is
readily seen once the trivial faces attached to either the p- or the pn´pq-vertex are erased, together
with the appropriate edges and points on the circle. After that removal of all trivial faces, the blue
and black points alternate on the circle. Then we claim that the remaining edges make a circuit
that visits alternately the two vertices and delineates a single face. To see this, pick some edge
e starting from, say, the black vertex, and follow a circuit, keeping the face to your right. The
next vertex to be encountered is the blue one, since otherwise, we would have still a trivial face
attached to the black vertex. Keep going: from the blue vertex we go to a blue point on the circle,
then to its clockwise neighbour which is black, then we return to the original black vertex along
the original edge e (traveled in the opposite way), and leave that vertex along the edge e1, which is
the (anti-clockwise) neighbour of e on the vertex. Iterating these steps, we encounter alternately
the two vertices along successive pairs of neighbouring edges, and when the circuit closes, all edges
have been traveled and only one face has been delineated. See Fig. 1(b) for an illustration of this
general result in a particular case.

Some readers may prefer to see the equality f 1 “ 1 expressed in group theoretical terms. It reads
as follows: Let τ be a permutation of t1, 2, . . . nu defined as the product of two disjoint increasing
cycles, and σ be the circular permutation p1, 2, . . . , nq, then the cyclic decomposition of the product
σ ˝ τ´1 contains only one non-trivial cycle.

Proposition 2. For general n, g and p ě 2, (and n ‰ 2p, otherwise, if n “ 2p, multiply by 1
2)

C
pgq

n,rp,n´ps
“

n

g ` 1

ˆ

p ´ 1

g

˙ˆ

n ´ p ´ 1

g

˙

. (83)
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Note that this result is symmetric under p Ø n ´ p as it should, and that the bound g ď

minpp ´ 1, n ´ p ´ 1q is manifest. An alternative expression is

C
pgq

n,rp,n´ps
“

n

p

ˆ

p

p ´ 1 ´ g

˙ˆ

n ´ p ´ 1

g

˙

. (84)

Proof. Following the lines of Lemma 1, a configuration is completely determined by the choice of
the p points mi on the circle, subject to the condition that there are s pairs of adjacent points.
Thus

C
pgq

n,rp,n´ps
“ #tm1, ¨ ¨ ¨ ,mp P t1, nu |#ti|mi`1 “ mi ` 1u “ su , (85)

where g “ p ´ s ´ 1. This number may be easily computed by a transfer matrix technique 5.
Suppose the black and blue points of the circle are representing two states of a periodic system on
a circle, and assign a weight 1, t, t2u to a transition (i.e., an arc on the circle) between respectively
black-black, black-blue and blue-blue points. The matrix

M “

ˆ

1 t
t t2u

˙

describes the possible transitions between these states. The number C
pgq

n,rp,n´ps
is then the coefficient

of t2pup´1´g in
tn “ trMn . (86)

Let z :“ t2. By virtue of the characteristic equation of M , the numbers tn satisfy the recurrence
relations

tn “ t1tn´1 ` zp1 ´ uqtn´2 (87)

with t0 “ 2 and t1 “ 1 ` zu, whence t2 “ 1 ` 2z ` z2u2, t3 “ 1 ` 3z ` 3z2u ` z3u3. It follows from
(87) that

rtnszpup´1´g “ rtn´1szpup´1´g ` rtn´1szp´1up´2´g ` rtn´2szp´1up´1´g ´ rtn´2szp´1up´2´g (88)

from which all rtnszpup´1´g may be reconstructed for p ď n ´ 1, 0 ď g ď p ´ 1.
Let Dn,p,g :“ n

g`1

`

p´1
g

˘`

n´p´1
g

˘

, one may check that the D’s satisfy the same relation, namely

Dn,p,g “ Dn´1,p,g ` Dn´1,p´1,g ` Dn´2,p´1,g´1 ´ Dn´2,p´1,g , (89)

as well as

D2,1,0 “ rt2szu0 “ 2, D2,1,1 “ rt2szu´1 “ 0, D3,2,0 “ rt3sz2u “ 3, D3,2,1 “ rt3sz2u0 “ 0, D2,1,0 “ rt2szu0 “ 0 .

Thus C
pgq

n,rp,n´ps
is given by that expression Dn,p,g, which completes the proof of Proposition 1.

Remarks
1. The formula (83), originally proposed for p ě 2, extends trivially to all p: from (24), we learn

that C
pgq

n,r1,n´1s
“ nC

pgq

n´1,rn´1s
“ nδg 0, in accordance with the rhs of (83) evaluated at g “ 0.

2. One may check that the expression of C
pgq

n,rp,n´ps
is consistent with the Faà di Bruno coefficient

(8):
řp´1

g“0C
pgq

n,rp,n´ps
“

`

n
p

˘

. Once again, this is trivially true for p “ 1 and, for 2 ď p ă n ´ p, this

is an easy consequence of the celebrated Vandermonde identity, namely:

m
ÿ

k“0

ˆ

n

k

˙ˆ

ℓ

m ´ k

˙

“

ˆ

ℓ ` n

m

˙

. (90)

5We are quite grateful to Philippe Di Francesco for this suggestion
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Here, using (84) together with (90), one finds: n
p

řp´1
g“0

`

p
p´1´g

˘`

n´p´1
g

˘

“ n
p

`

n´1
p´1

˘

“
`

n
p

˘

.

3. Generating function of the C
pgq

rp,n´ps
. One may build a G.F. for the C

pgq

rp,n´ps
adapted to their

symmetry under p Ø n ´ p:

Zpgqpx, vq :“
1

2

8
ÿ

n“0

n´1
ÿ

p“1

C
pgq

rp,n´ps
xnv2p´n (91)

One finds

Zpgqpx, vq “ Zpgqpx, 1{vq “
p2 ´ xpv ` 1{vqqx2g`2

2p1 ´ xvqg`2p1 ´ x{vqg`2
. (92)

In particular, for v “ 1, one recovers the G.F. of the S
pgq

n,2 already encountered in the Remark at

the end of Sect. 3.2,
ř

n S
pgq

n,2x
n “ x2g`2

p1´xq2g`3 .

The previous Proposition is illustrated here by the explicit computation of C
pgq

n,rn´5,5s
for low n

g 0 1 2 3 4

n “ 6 6
n “ 7 7 14
n “ 8 8 32 16
n “ 9 9 54 54 9
n “ 10 5 40 60 20 1
n “ 11 11 110 220 110 11
n “ 12 12 144 360 240 36
n “ 13 13 182 546 455 91
n “ 14 14 224 784 784 196
n “ 15 15 270 1080 1260 378

Case rαs “ rp2s. So n “ 2p (2 parts of length p), and g “
2p´1´f

2 ď p ´ 1.

This is of course a particular case of the type rαs “ rp, n ´ ps considered in this section. Here, the
Faà di Bruno coefficients are the numbers “of ways to put p identical objects into g`1 of altogether
p distinguishable boxes”, see OEIS A103371. Notice that the last writing below is indeed consistent
with (83). One has

C
pgq

2p,rp2s
“

ˆ

p ´ 1

p ´ g ´ 1

˙ˆ

p

p ´ g ´ 1

˙

“

ˆ

p ´ 1

g

˙ˆ

p

g ` 1

˙

“
p

g ` 1

ˆ

p ´ 1

g

˙2

(93)

For small values of p and g these coefficients are gathered with those of the cases rαs “ rpks studied
in section 5.1.
The general formula being given above we only notice that the g “ 0 sequence is just p and that the
g “ 1 sequence defines the pentagonal pyramidal numbers that we shall meet again in section 5.1
—see our comments there. Notice also that the sum over g is

`

2p´1
p

˘

“ t1, 3, 10, 35, 126, 462 ¨ ¨ ¨ u,
see OEIS A001700, and that the penultimate term in each row, t2, 6, 12, 20, 30, . . . u, is equal to

ppp ´ 1q, indeed, for g “ p ´ 2, C
pp´2q

2p,rp2s
“

`

p´1
p´2

˘`

p
p´1

˘

“ ppp ´ 1q.
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5 Genus dependent Faà di Bruno coefficients C
pgq

n,rαs
.

Part II. A compilation of partial results.

5.1 About types rαs “ rpks for given p “ 2, 3, 4, . . . as a function of k

The results for C
pgq

n,rαs
when rαs “ rpks are gathered in Table 1. For given p and k the values are

listed vertically (downward) according to the genus g, for g “ 0, 1, 2, . . .. Here n “ kp, (i.e., k
parts of length p); we have g “ pkpp ´ 1q ` 1 ´ fq{2, therefore g ď kpp ´ 1q{2. These values have
been obtained by an explicit determination of the genus for computer generated set partitions, or
obtained from general theorems.

Table 1. Table of coefficients C
pgq

n,rαs
for n “ k p, rαs “ rpks.

k=1 k=2 k=3 k=4
p=2 1 2, 1 5, 10 14, 70, 21
p=3 1 3, 6, 1 12, 102, 144, 22 55, 1212, 6046, 7163, 924
p=4 1 4, 18, 12, 1 22, 432, 2007, 2604, 710 140, 7236, 108090, 592824, 1180364, 688270, 50701
p=5 1 5, 40, 60, 20, 1 35, 1240, 12060, 41820, 51565, 18540, 866 285, 26800, 809960, ¨ ¨ ¨

p=6 1 6, 75, 200, 150, 30, 1 51, 2850, 47475, 316700, 905415, 1076238, 462375, 47752 506, 75450, 3837575, ¨ ¨ ¨

p=7 1 7, 126, 525, 700, 315, 42, 1 70, 5670, 144270, ¨ ¨ ¨ 819, 177660, 13656006, ¨ ¨ ¨

k=5 k=6 k=7
p=2 42, 420, 483 132, 2310, 6468, 1485 429, 12012, 66066, 56628
p=3 273, 12330, 149674, 576660, 593303, 69160 1428, 114888, 2771028, ¨ ¨ ¨ 7752, 1011486, 42679084, ¨ ¨ ¨

p=4 969, 103680, 3588318, ¨ ¨ ¨ 7084, 1359882, 90800208, ¨ ¨ ¨ 53820, 16846704, 1929948363, ¨ ¨ ¨

p=5 2530, 495200, 34034480, ¨ ¨ ¨ 23751, 8373000, 1097464620, ¨ ¨ ¨ 231880, 133685440, 29830376800, ¨ ¨ ¨

p=6 5481, 1707000, 195525750 ¨ ¨ ¨ 62832, 35331000, 7670848500, ¨ ¨ ¨ 749398, 690413850, 254134018600, ¨ ¨ ¨

p=7 10472, 4755870, 818352528, ¨ ¨ ¨ 141778, 116450460, 37838531178, ¨ ¨ ¨ 1997688, 2691733464, 1479039054696, ¨ ¨ ¨

In this section we describe some generic features of the sequences that are obtained for increasing
values of p, for various choices of rαs “ rpks. The situation where rαs “ rp2s, which is a particular
case of the type rαs “ rp, n ´ ps considered in section 4.3 – a“solved case” – (see eqs. (83) or (84)),
was already discussed at the end of 4.3.

We recall from (8) that:
– the k-th row’s sum (over g) in the Table of rpks is ppkq!{pk!pp!qkq, see OEIS A025035, A025036,
A025037, A025038, A025039, for p “ 3, . . . , 7.

– and from (68) that C
p0q

p.k,rpks
“ 1

pk`1

`

pk`1
k

˘

“ 1
pp´1qk`1

`

pk
k

˘

.

Genus g “ 1: Observations and conjectures.

For k “ 2, it follows from Prop. 1 below that

C
p1q

2p,rp2s
“

ppp ´ 1q2

2
(94)

which are the “pyramidal pentagonal numbers”, t0, 1, 6, 18, 40, 75, 126, 196, 288, 405, ¨ ¨ ¨ u, see OEIS
A002411. Furthermore, we observe that these pyramidal pentagonal numbers factorise the coeffi-

cients C
p1q

pk,rpks

C
p1q

pk,rpks

?
“ C

p1q

2p,rp2s
ϕpp, kq (95)
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ϕpp, kq “

0 1 10 70 420 ¨ ¨ ¨

0 1 17 202 2055 ¨ ¨ ¨

0 1 24 402 5760 ¨ ¨ ¨

0 1 31 670 12380 ¨ ¨ ¨

0 1 38 1006 22760 ¨ ¨ ¨

0 1 45 1410 37745 ¨ ¨ ¨
...

2 ď p ď 7 (96)

in which the third column is an arithmetic series 7p ´ 4, the fourth 34p2 ´ 38 ` 10, etc.
In other words, the above tables are compatible with the following expressions6:

C
p1q

3p,rp3s
“

ppp ´ 1q2

2
p7p ´ 4q ,

C
p1q

4p,rp4s
“

ppp ´ 1q2

2
p34p2 ´ 38p ` 10q ,

C
p1q

5p,rp5s
“

ppp ´ 1q2

2

5

6
p169p3 ´ 279p2 ` 146p ´ 24q , (97)

C
p1q

6p,rp6s
“

ppp ´ 1q2

2
p533p4 ´ 1160p3 `

1813

2
p2 ´

599

2
p ` 35q ,

C
p1q

7p,rp7s
“

ppp ´ 1q2

2

7

120
p32621p5 ´ 87970p4 ` 91335p3 ´ 45410p2 ` 10744p ´ 960q .

The constant terms in the polynomial ϕ appear to be (up to a sign p´1qk) the “tetrahedral (or
triangular pyramidal) numbers”: kpk2 ´ 1q{6, A000292.

Genus g “ 2: Observations and conjectures.

C
p2q

3p,rp3s

?
“

1

8
ppp ´ 1q2pp ´ 2qp27 ´ 55p ` 26p2q ,

C
p2q

4p,rp4s

?
“

1

6
ppq2p ´ 1p287 ´ 1248p ` 1908p2 ´ 1218p3 ` 274p4q , (98)

C
p2q

5p,rp5s

?
“

1

144
ppp ´ 1q2p´30576 ` 194318p ´ 467213p2 ` 532986p3 ´ 288895p4 ` 59500p5q .

In each case, the conjecture has been tested on at least two more values than those used in the
extrapolation.

5.2 Cases rαs “ rn ´ p ´ q, p, qs. Partition of n into k “ 3 parts.

All the data that have been collected in that case, when the genus is 0 or 1, see the Tables in the
Appendix, are consistent with the following Ansätze

C
p0q

n,rn´p´q,p,qs
“ npn ´ 1q (99)

C
p1q

n,rn´p´q,p,qs

?
“ p´5pn ´ 1q2 ` 3pp2 ` q2 ` r2 ´ 1q ` 6pqr ` pr ` pqpr ` qqpp ` qqq

n

2
(100)

where in the last expression, the symmetry in the exchange of p, q and r :“ n ´ p ´ q is manifest;
these expressions have to be multiplied by 1

2 if two of the three integers p, q, n ´ p ´ q are equal,
and by 1

6 if p “ q “ n ´ p ´ q.

6These expressions (eqs 97) were presented as conjectures when the first version of our paper was posted as a
preprint to arXiv but they have been subsequently proved by A. Hock: see our comments in the acknowledgments
section.
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6 Tables

Coefficients C
pgq

n,rαs
for 2 ď n ď 15 and α1 “ 0

Partitions without singletons, ordered by increasing number of parts |α| and then by
lexicographic order on rαs

g 0 1 2 3 4 5
rαs

n “ 2 r2s 1 0 0 0 0 0

n “ 3 r3s 1 0 0 0 0 0

n “ 4 r4s 1 0 0 0 0 0

r22s 2 1 0 0 0 0

n “ 5 r5s 1 0 0 0 0 0

r2, 3s 5 5 0 0 0 0

n “ 6 r6s 1 0 0 0 0 0

r2, 4s 6 9 0 0 0 0
r32s 3 6 1 0 0 0

r23s 5 10 0 0 0 0

n “ 7 r7s 1 0 0 0 0 0

r2, 5s 7 14 0 0 0 0
r3, 4s 7 21 7 0 0 0

r22, 3s 21 70 14 0 0 0

n “ 8 r8s 1 0 0 0 0 0

r2, 6s 8 20 0 0 0 0
r3, 5s 8 32 16 0 0 0
r42s 4 18 12 1 0 0

r22, 4s 28 128 54 0 0 0
r2, 32s 28 152 100 0 0 0

r24s 14 70 21 0 0 0

n “ 9 r9s 1 0 0 0 0 0

r2, 7s 9 27 0 0 0 0
r3, 6s 9 45 30 0 0 0
r4, 5s 9 54 54 9 0 0

r22, 5s 36 207 135 0 0 0
r2, 3, 4s 72 531 603 54 0 0

r33s 12 102 144 22 0 0

r3, 23s 84 630 546 0 0 0

n “ 10 r10s 1 0 0 0 0 0

r2, 8s 10 35 0 0 0 0
r3, 7s 10 60 50 0 0 0
r4, 6s 10 75 100 25 0 0
r52s 5 40 60 20 1 0

r22, 6s 45 310 275 0 0 0
r2, 3, 5s 90 830 1340 260 0 0
r2, 42s 45 450 840 240 0 0
r32, 4s 45 510 1115 430 0 0

r23, 4s 120 1165 1685 180 0 0
r22, 32s 180 1985 3565 570 0 0

r25s 42 420 483 0 0 0

n “ 11

g 0 1 2 3 4 5
rαs

r11s 1 0 0 0 0 0

r2, 9s 11 44 0 0 0 0
r3, 8s 11 77 77 0 0 0
r4, 7s 11 99 165 55 0 0
r5, 6s 11 110 220 110 11 0

r22, 7s 55 440 495 0 0 0
r2, 3, 6s 110 1210 2530 770 0 0
r2, 4, 5s 110 1375 3564 1793 88 0
r32, 5s 55 770 2277 1452 66 0
r3, 42s 55 825 2684 2035 176 0

r23, 5s 165 1936 3905 924 0 0
r22, 3, 4s 495 7007 19085 8063 0 0
r2, 33s 165 2607 8195 4433 0 0

r3, 24s 330 4620 10395 1980 0 0

n “ 12

g 0 1 2 3 4 5
rαs

r12s 1 0 0 0 0 0

r2, 10s 12 54 0 0 0 0
r3, 9s 12 96 112 0 0 0
r4, 8s 12 126 252 105 0 0
r5, 7s 12 144 360 240 36 0
r62s 6 75 200 150 30 1

r22, 8s 66 600 819 0 0 0
r2, 3, 7s 132 1680 4308 1800 0 0
r2, 4, 6s 132 1968 6510 4740 510 0
r2, 52s 66 1032 3672 3072 474 0
r32, 6s 66 1092 4062 3640 380 0

r3, 4, 5s 132 2436 10500 12084 2568 0
r43s 22 432 2007 2604 710 0

r23, 6s 220 3000 7730 2910 0 0
r22, 3, 5s 660 11232 40716 28968 1584 0
r22, 42s 330 5988 23877 20097 1683 0

r2, 32, 4s 660 13218 59076 59442 6204 0
r34s 55 1212 6046 7163 924 0

r24, 4s 495 8616 28590 14274 0 0
r23, 32s 990 19104 73050 45456 0 0

r26s 132 2310 6468 1485 0 0
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n “ 13
g 0 1 2 3 4 5

rαs

r13s 1 0 0 0 0 0

r2, 11s 13 65 0 0 0 0
r3, 10s 13 117 156 0 0 0
r4, 9s 13 156 364 182 0 0
r5, 8s 13 182 546 455 91 0
r6, 7s 13 195 650 650 195 13

r22, 9s 78 793 1274 0 0 0
r2, 3, 8s 156 2249 6825 3640 0 0
r2, 4, 7s 156 2691 10803 10335 1755 0
r2, 5, 6s 156 2912 13130 15470 4238 130
r32, 7s 78 1482 6630 7670 1300 0

r3, 4, 6s 156 3393 18161 28145 9945 260
r3, 52s 78 1768 9984 16796 7046 364
r42, 5s 78 1872 11271 20904 10322 598

r23, 7s 286 4420 13819 7215 0 0
r22, 3, 6s 858 16900 76037 76765 9620 0
r22, 4, 5s 858 18720 97539 125606 27547 0
r2, 32, 5s 858 20488 117806 175916 45292 0
r2, 3, 42s 858 21684 133887 222781 71240 0
r33, 4s 286 7878 53404 100997 37635 0

r24, 5s 715 14612 63323 53053 3432 0
r23, 3, 4s 2860 68172 363610 419068 47190 0
r22, 33s 1430 37336 221715 298649 41470 0

r3, 25s 1287 30030 138138 100815 0 0

n “ 14
g 0 1 2 3 4 5 6

rαs

r14s 1 0 0 0 0 0 0

r2, 12s 14 77 0 0 0 0 0
r3, 11s 14 140 210 0 0 0 0
r4, 10s 14 189 504 294 0 0 0
r5, 9s 14 224 784 784 196 0 0
r6, 8s 14 245 980 1225 490 49 0
r72s 7 126 525 700 315 42 1

r22, 10s 91 1022 1890 0 0 0 0
r2, 3, 9s 182 2926 10248 6664 0 0 0
r2, 4, 8s 182 3556 16758 19894 4655 0 0
r2, 5, 7s 182 3934 21420 32620 13034 882 0
r2, 62s 91 2030 11550 18900 8645 826 0
r32, 8s 91 1946 10157 14406 3430 0 0

r3, 4, 7s 182 4536 28938 56434 28280 1750 0
r3, 5, 6s 182 4858 33824 75040 48174 6090 0
r42, 6s 91 2562 18893 45654 33285 4620 0
r4, 52s 91 2660 20496 52710 42679 7490 0

r23, 8s 364 6265 22981 15435 0 0 0
r22, 3, 7s 1092 24290 129948 170380 34650 0 0
r22, 4, 6s 1092 27587 176351 307020 114940 3640 0
r22, 52s 546 14343 96726 182756 80094 3913 0

r2, 32, 6s 1092 29988 209510 415870 178920 5460 0
r2, 3, 4, 5s 2184 65674 513450 1200738 696794 43680 0

r2, 43s 364 11529 95613 243180 162099 12740 0
r33, 5s 364 11844 100660 262696 173348 11648 0
r32, 42s 546 18690 168273 475195 356951 31395 0

r24, 6s 1001 23240 123214 146020 21840 0 0
r23, 3, 5s 4004 111608 754614 1286642 365652 0 0
r23, 42s 2002 58912 427777 809823 278061 0 0

r22, 32, 4s 6006 191968 1525454 3268552 1314320 0 0
r2, 34s 1001 34692 301070 725193 339444 0 0

r25, 4s 2002 56378 354263 473242 60060 0 0
r24, 32s 5005 153832 1075165 1663893 255255 0 0

r27s 429 12012 66066 56628 0 0 0
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n “ 15
g 0 1 2 3 4 5 6

rαs

r15s 1 0 0 0 0 0 0

r2, 13s 15 90 0 0 0 0 0
r3, 12s 15 165 275 0 0 0 0
r4, 11s 15 225 675 450 0 0 0
r5, 10s 15 270 1080 1260 378 0 0
r6, 9s 15 300 1400 2100 1050 140 0
r7, 8s 15 315 1575 2625 1575 315 15

r22, 11s 105 1290 2700 0 0 0 0
r2, 3, 10s 210 3720 14760 11340 0 0 0
r2, 4, 9s 210 4575 24720 35070 10500 0 0
r2, 5, 8s 210 5145 32760 61215 32340 3465 0
r2, 6, 7s 210 5430 37200 78000 50550 8610 180
r32, 9s 105 2490 14835 24920 7700 0 0

r3, 4, 8s 210 5880 43470 102165 66675 6825 0
r3, 5, 7s 210 6420 53010 146040 127290 26940 450
r3, 62s 105 3300 28200 81500 77075 19380 650
r42, 7s 105 3375 29385 87510 84975 19575 300

r4, 5, 6s 210 7185 67260 221310 252090 79575 3000
r53s 35 1240 12060 41820 51565 18540 866

r23, 9s 455 8610 36190 29820 0 0 0
r22, 3, 8s 1365 33705 208320 336210 96075 0 0
r22, 4, 7s 1365 38955 293670 644535 347175 25650 0
r22, 5, 6s 1365 41580 342000 853500 579405 74040 0
r2, 32, 7s 1365 42105 344595 853035 522450 38250 0

r2, 3, 4, 6s 2730 94290 886620 2671710 2296950 354000 0
r2, 3, 52s 1365 48825 479040 1530360 1449285 274905 0
r2, 42, 5s 1365 51240 529425 1816410 1913445 417840 0
r33, 6s 455 16905 171635 570805 550950 90650 0

r32, 4, 5s 1365 55020 612705 2303715 2692020 641475 0
r3, 43s 455 19215 224925 902400 1158840 321790 0

r24, 7s 1365 35250 219660 337050 82350 0 0
r23, 3, 6s 5460 172350 1398740 3159450 1515700 54600 0
r23, 4, 5s 5460 188025 1708035 4524870 2847420 185640 0
r22, 32, 5s 8190 304335 2994180 8823360 6327465 461370 0
r22, 3, 42s 8190 319605 3329865 10604790 8605395 780780 0
r2, 33, 4s 5460 229365 2581215 9060870 8289600 854490 0

r35s 273 12330 149674 576660 593303 69160 0

r25, 5s 3003 97140 761880 1493520 482292 0 0
r243, 4s 15015 554250 5104260 12450900 5524200 0 0
r23, 33s 10010 399660 4013730 10965465 5632135 0 0

r26, 3s 5005 180180 1471470 2622620 450450 0 0
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Table of S
pgq

n,k, from n “ 1 to n “ 15

This table can be obtained either directly, by generating for each n all partitions with a fixed
number of parts, then calculating their genus, or, indirectly, by summing appropriate rows of the
table of the genus dependent Faà di Bruno coefficients, while taking into account singletons (since

the following is a table for S
pgq

n,k, not for
pS

pgq

n,k). For each value of n the number of parts, k appears
vertically, and the genus g “ 0, 1, . . . increases in each row.

1 1
1 1
2 1

1 1
2 3
3 1

1 1
2 6, 1
3 6
4 1

1 1
2 10, 5
3 20, 5
4 10
5 1

1 1
2 15, 15, 1
3 50, 40
4 50, 15
5 15
6 1

1 1
2 21, 35, 7
3 105, 175, 21
4 175, 175
5 105, 35
6 21
7 1

1 1
2 28, 70, 28, 1
3 196, 560, 210
4 490, 1050, 161
5 490, 560
6 196, 70
7 28
8 1

1 1
2 36, 126, 84, 9
3 336, 1470, 1134, 85
4 1176, 4410, 2184
5 1764, 4410, 777
6 1176, 1470
7 336, 126
8 36
9 1

1 1
2 45, 210, 210, 45, 1
3 540, 3360, 4410, 1020
4 2520, 14700, 15330, 1555
5 5292, 23520, 13713
6 5292, 14700, 2835
7 2520, 3360
8 540, 210
9 45
10 1

1 1
2 55, 330, 462, 165, 11
3 825, 6930, 13860, 6545, 341
4 4950, 41580, 75075, 24145
5 13860, 97020, 121275, 14575
6 19404, 97020, 63063
7 13860, 41580, 8547
8 4950, 6930
9 825, 330
10 55
11 1

1 1
2 66, 495, 924, 495, 66, 1
3 1210, 13200, 37422, 29920, 4774
4 9075, 103950, 289905, 194150, 14421
5 32670, 332640, 729960, 284130
6 60984, 485100, 685608, 91960
7 60984, 332640, 233772
8 32670, 103950, 22407
9 9075, 13200
10 1210, 495
11 66
12 1

1 1
2 78, 715, 1716, 1287, 286, 13
3 1716, 23595, 90090, 109395, 35464, 1365
4 15730, 235950, 942942, 1085370, 252538
5 70785, 990990, 3396393, 2797080, 253253
6 169884, 1981980, 4972968, 2196480
7 226512, 1981980, 3063060, 443872
8 169884, 990990, 738738
9 70785, 235950, 52767
10 15730, 23595
11 1716, 715
12 78
13 1

1 1
2 105, 1365, 5005, 6435, 3003, 455, 15
3 3185, 65065, 405405, 935935, 775775, 184275, 5461
4 41405, 975975, 6921915, 17482465, 14369355, 2564835
5 273273, 6441435, 43702659, 97222125, 58891833, 4235595
6 1002001, 21471450, 123708585, 205865660, 68645577
7 2147145, 38648610, 169954785, 177957780, 20033013
8 2760615, 38648610, 115450335, 59768280
9 2147145, 21471450, 37492455, 6017440
10 1002001, 6441435, 5219214
11 273273, 975975, 230230
12 41405, 65065
13 3185, 1365
14 105
15 1

1 1
2 105, 1365, 5005, 6435, 3003, 455, 15
3 3185, 65065, 405405, 935935, 775775, 184275, 5461
4 41405, 975975, 6921915, 17482465, 14369355, 2564835
5 273273, 6441435, 43702659, 97222125, 58891833, 4235595
6 1002001, 21471450, 123708585, 205865660, 68645577
7 2147145, 38648610, 169954785, 177957780, 20033013
8 2760615, 38648610, 115450335, 59768280
9 2147145, 21471450, 37492455, 6017440
10 1002001, 6441435, 5219214
11 273273, 975975, 230230
12 41405, 65065
13 3185, 1365
14 105
15 1
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Table of pS
pgq

n,k, from n “ 2 to n “ 15

This table can be obtained either directly, by generating, for each n, all partitions without
singletons, with a fixed number of parts, then calculating their genus, or, indirectly, by summing
appropriate rows of the table of the genus dependent Faà di Bruno coefficients (without singletons).
For each value of n the number of parts, k appears vertically, and the genus g “ 0, 1, . . . increases
in each row. Warning: the table starts at n “ 2.

n “ 2 n “ 3 n “ 4 n “ 5 n “ 6 n “ 7 n “ 8 n “ 9

1 1 1 1
1 1
2 2, 1

1 1
2 5, 5

1 1
2 9, 15, 1
3 5, 10

1 1
2 14, 35, 7
3 21, 70, 14

1 1
2 20, 70, 28, 1
3 56, 280, 154
4 14, 70, 21

1 1
2 27, 126, 84, 9
3 120, 840, 882, 76
4 84, 630, 546

n “ 10 n “ 11 n “ 12 n “ 13

1 1
2 35, 210, 210, 45, 1
3 225, 2100, 3570, 930
4 300, 3150, 5250, 750
5 42, 420, 483

1 1
2 44, 330, 462, 165, 11
3 385, 4620, 11550, 6050, 330
4 825, 11550, 31185, 13420
5 330, 4620, 10395, 1980

1 1
2 54, 495, 924, 495, 66, 1
3 616, 9240, 31878, 27940, 4642
4 1925, 34650, 137445, 118580, 10395
5 1485, 27720, 101640, 59730
6 132, 2310, 6468, 1485

1 1
2 65, 715, 1716, 1287, 286, 13
3 936, 17160, 78078, 102960, 34606, 1352
4 4004, 90090, 492492, 709280, 191334
5 5005, 120120, 648648, 770770, 92092
6 1287, 30030, 138138, 100815

n “ 14 n “ 15
1 1
2 77, 1001, 3003, 3003, 1001, 91, 1
3 1365, 30030, 174174, 322322, 182182, 21658
4 7644, 210210, 1513512, 3273270, 1797796, 112476
5 14014, 420420, 3132129, 6236230, 2319317
6 7007, 210210, 1429428, 2137135, 315315
7 429, 12012, 66066, 56628

1 1
2 90, 1365, 5005, 6435, 3003, 455, 15
3 1925, 50050, 360360, 890890, 760760, 182910, 5446
4 13650, 450450, 4129125, 12512500, 11606595, 2238600
5 34398, 1261260, 12381369, 37087050, 28261233, 2406040
6 28028, 1051050, 9879870, 24909885, 11638627
7 5005, 180180, 1471470, 2622620, 450450
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