Counting partitions by genus: a compendium of results

 Robert Coquereaux, Jean-Bernard Zuber
To cite this version:

Robert Coquereaux, Jean-Bernard Zuber. Counting partitions by genus: a compendium of results. Journal of Integer Sequences, 2024, 27 (24.2.6). hal-04269288v1

HAL Id: hal-04269288
 https://hal.science/hal-04269288v1

Submitted on 3 Nov 2023 (v1), last revised 15 Feb 2024 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Counting partitions by genus. A compendium of results

Robert Coquereaux and Jean-Bernard Zuber
Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
Sorbonne Université, UMR 7589, LPTHE, F-75005, Paris, France § CNRS, UMR 7589, LPTHE, F-75005, Paris, France

Abstract

This article is devoted to the enumeration of set partitions, according to their length, number of parts, cyclic type, and genus. Genus dependent Bell, Stirling numbers, and Faà di Bruno coefficients are introduced. Besides attempting to summarize what is already known on the subject, we obtain new generic results (in particular for partitions into two parts, for arbitrary genus), and present computer generated new data extending the number of terms known for sequences or families of such coefficients; this also allows us to propose new conjectures.

Keywords: set-partitions.
Mathematics Subject Classification: 05A18, 60Cxx, 05A15.

Introduction

This is the second paper in a series devoted to the combinatorics of set partitions and their enumeration according to their genus. In a previous paper 20, functional equations were written between generating functions (G.F.) of partitions, enabling one to count partitions in genus 0,1 and 2 . In the present paper, which is completely independent, our goal is different. We wish to collect as much data as possible on that combinatorics. Accordingly, our paper gathers classical and known results as well as new data, obtained by computer "brute force" calculations and a few exact new results. In many cases, these data suggest conjectures and extrapolations, that we mark with the $\operatorname{sign} \stackrel{?}{=}$.

This endeavor has benefited in a tremendous way from the existence of the On Line Encyclopedia of Sequences 16. Several unexpected connections and identifications have been made possible thanks to this irreplaceable and unique source 1 ,

Our paper is organized as follows. In section 1, we recall some basic definitions: total numbers of partitions are given by Bell numbers, and by Stirling numbers when the number of parts is fixed. The key notion of genus is also recalled. In Sect. 2, the Bell numbers are refined by fixing the genus of partitions, and by including partitions with or without singletons. Explicit expressions for their G.F. are given in genus 0 to 3, and the general form conjectured in higher genus. The same steps are repeated in Sect. 4 for the Stirling numbers, with again exact or conjectured results for their counting and G.F.
The rest of the paper is devoted to the counting of partitions of given cyclic type. In Sect. 5, we review three families of partitions for which this counting is generically known: the famous noncrossing partitions (i.e., of genus 0); the partitions into pairs, i.e., of type $\left[2^{k}\right]$, and arbitrary genus; and the partitions into two parts, for which we obtain a result in arbitrary genus, which is new, to the best of our knowledge. Section 6 gathers data on various types of partitions for which we have only partial results and conjectures: types [p^{k}] for varying p or k and three-part partitions. Finally Tables in Appendix contain the numbers of partitions of the set $\{1, \cdots, n\}$ of arbitrary genus up to $n=15$.

It is our hope that these results will inspire some readers, lead to new results ... and become soon obsolete!

1 Bell, Stirling, and Faà di Bruno numbers

1.1 Equivalence relations on a set with n elements

Any equivalence relation on a set is specified, and conversely, by a partition α of this set (or set-partition, for short).

The number of equivalence relations on a set with n elements is given by the Bell numbers, which obey the recurrence:

$$
\begin{equation*}
B_{n+1}=\sum_{p=0}^{n}\binom{n}{p} B_{p}, \text { with } B_{1}=1 \tag{1}
\end{equation*}
$$

hence

$$
\begin{equation*}
B_{n}=\frac{1}{e} \sum_{\ell=0}^{\infty} \frac{\ell^{n}}{\ell!}, \quad \text { OEIS sequence A000110. } \tag{2}
\end{equation*}
$$

[^0]The exponential generating function of the Bell numbers is

$$
\begin{equation*}
\mathcal{B}(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}=e^{e^{x}-1} \tag{3}
\end{equation*}
$$

1.2 Equivalence relations on a set with n elements, with k equivalence classes

One may impose that the equivalence relations have a given number, say k, of equivalence classes, i.e., that the partition has k parts.

The number of such relations is given by the Stirling number of the second kind, $S_{n, k}$, which obeys the recurrence relation:

$$
\begin{equation*}
S_{n, k}=k S_{n-1, k}+S_{n-1, k-1}, n>1, \text { with } S_{1, k}=0, k>1, \text { and } S_{1,1}=1 \tag{4}
\end{equation*}
$$

Explicit form

$$
\begin{equation*}
S_{n, k}=\frac{1}{k!} \sum_{s=0}^{k}(-1)^{k-s}\binom{k}{s} s^{n}, \tag{5}
\end{equation*}
$$

OEIS sequence A008277.
The exponential generating function of the Stirling numbers $S_{n, k}$ is

$$
\begin{equation*}
\mathcal{S}(x, y)=e^{y\left(e^{x}-1\right)} \tag{6}
\end{equation*}
$$

Sum rule:

$$
\begin{equation*}
B_{n}=\sum_{k=0}^{n} S_{n, k} \tag{7}
\end{equation*}
$$

1.3 Set with n elements, with k equivalence classes of specified cardinalities

One may further impose that the chosen equivalences classes have specified cardinalities.
The set of cardinalities of the classes of the equivalence relation defined by the set-partition α determines a partition $[\alpha] \vdash n$ of the integer n, called the type of the partition. It is usual to denote this integer partition as follows: $[\alpha]=\left[1^{\alpha_{1}}, \cdots, n^{\alpha_{n}}\right]$. It can be represented as a Ferrers diagram or as a Young diagram. The number of equivalence relations on a set with n elements having equivalent classes with cardinalities specified by $[\alpha]$ will be denoted by $C_{n,[\alpha]}$. These numbers are sometimes called the Faà di Bruno coefficients.

$$
\begin{equation*}
C_{n,[\alpha]}=\frac{n!}{\prod_{\ell=1}^{n} \alpha_{\ell}!(\ell!)^{\alpha_{\ell}}} . \tag{8}
\end{equation*}
$$

Sum rule: Calling $|\alpha|=\sum_{\ell} \alpha_{\ell}$ the number of parts of the integer partition [α], we have obviously

$$
\begin{equation*}
\sum_{\substack{[\alpha] \\|\alpha|=k}} C_{n,[\alpha]}=S_{n, k} . \tag{9}
\end{equation*}
$$

1.4 Genus of partitions on a cyclically ordered set

If the underlying set of n elements is totally ordered (for definiteness one may take $\{1,2,3, \ldots, n\}$), or if it is cyclically ordered, one may introduce a new structure, finer than the ones already considered, by determining the genus of set partitions (a non-negative integer). With α a partition of $\{1,2,3, \ldots, n\}$, we associate a permutation τ of \mathcal{S}_{n} : its cycles are the parts of α, whose elements are in increasing order. We also consider the cyclic permutation $\sigma:=(1,2, \ldots, n)$. Then following [?,?,12], the genus $g(\alpha)$ is defined by

$$
\begin{equation*}
n+2-2 g=\# \operatorname{cy}(\tau)+\# \operatorname{cy}(\sigma)+\# \operatorname{cy}\left(\sigma \circ \tau^{-1}\right) \tag{10}
\end{equation*}
$$

or in the present case,

$$
\begin{equation*}
-2 g=|\alpha|-1-n+\# \operatorname{cy}\left(\sigma \circ \tau^{-1}\right) \tag{11}
\end{equation*}
$$

since here $\# \operatorname{cy}(\sigma)=1$ and $\# \operatorname{cy}(\tau)=\sum \alpha_{\ell}=|\alpha|$. As is well known and recalled in [20], Eq. (10) is just Euler's formula for the genus of the associated map, with $f:=\# \operatorname{cy}\left(\sigma \circ \tau^{-1}\right)$ the number of faces of that map. Since f is a positive integer, and denoting $k=|\alpha|$ the number of parts of the integer partition $[\alpha]$, we have

$$
\begin{equation*}
g=\frac{n-k+1-f}{2} \leqslant \frac{(n-k)}{2} \tag{12}
\end{equation*}
$$

Also note that one-part partitions ($k=1$) have necessarily genus 0 . Hence for $g>0, k \geqslant 2$ and

$$
\begin{equation*}
n \geqslant 2 g+k \geqslant 2 g+2 . \tag{13}
\end{equation*}
$$

Remark. Assuming the existence of an order on the underlying set is not really a restriction since one can always choose one. Each family of set-partitions (or of equivalence relations) previously considered will be itself decomposed according to the genus, and we shall introduce notations $B_{n}^{(g)}, S_{n, k}^{(g)}$ and $C_{n,[\alpha]}^{(g)}$, with $\sum_{g} B_{n}^{(g)}=B_{n}, \sum_{g} S_{n, k}^{(g)}=S_{n, k}$ and $\sum_{g} C_{n,[\alpha]}^{(g)}=C_{n,[\alpha]}$.

1.5 Partitions with no singletons

If a set partition has no singleton, its associated equivalence relation is such that no element is isolated. Equivalently, each part of the partition contains at least 2 elements. By adding the constraint that the families of partitions considered previously should have no singleton one can define "associated" ${ }^{2}$ Bell numbers \widehat{B}_{n}, and "associated" Stirling numbers (of the second kind) $\widehat{S}_{n, k}$. Obviously,

$$
\begin{equation*}
\sum_{k=1}^{n} \widehat{S}_{n, k}=\widehat{B}_{n} . \tag{14}
\end{equation*}
$$

Since the notation $C_{n,[\alpha]}$ already incorporates the partition type, there is no "hat" version of the Faà di Bruno coefficients: either $[\alpha]$ contains singletons, or it does not.
One obtains the following (almost) obvious identities :
Associated Bell numbers \widehat{B}_{n}. See OEIS A000296.

$$
\begin{align*}
& B_{n}=\widehat{B}_{n}+\widehat{B}_{n+1} \tag{15}\\
& \widehat{B}_{n}=\sum_{j=0}^{n-2}(-1)^{j} B_{n-1-j} . \tag{16}
\end{align*}
$$

Their exponential generating function is

$$
\begin{equation*}
\widehat{\mathcal{B}}(x)=e^{e^{x}-x-1} . \tag{17}
\end{equation*}
$$

Associated Stirling numbers of the second kind $\widehat{S}_{n, k}$. See OEIS A008299 (see also A134991 where they are called Ward numbers).

$$
\begin{equation*}
\widehat{S}_{n, k}=\sum_{\ell=0}^{k}(-1)^{\ell}\binom{n}{\ell} S_{n-\ell, k-\ell} \tag{18}
\end{equation*}
$$

[^1]Conversely,

$$
\begin{equation*}
S_{n, k}=\sum_{\ell=0}^{k-1}\binom{n}{\ell} \widehat{S}_{n-\ell, k-\ell} \tag{19}
\end{equation*}
$$

Their exponential generating function is

$$
\begin{equation*}
\widehat{\mathcal{S}}(x, y)=e^{y\left(e^{x}-x-1\right)} . \tag{20}
\end{equation*}
$$

They can be expressed in terms of the second-order Eulerian numbers $E^{(2)}$ by

$$
\begin{equation*}
\widehat{S}_{n, k}=\sum_{\ell=0}^{n-k}\binom{\ell}{n-2 k} E_{n-k, n-k-\ell}^{(2)} \tag{21}
\end{equation*}
$$

The $E^{(2)}$'s can themselves be expressed in terms of Stirling numbers of the second kind by

$$
\begin{equation*}
E_{n, k}^{(2)}=\sum_{j=0}^{k}(-1)^{k-j}\binom{2 n+1}{k-j} S_{n+j, j} \tag{22}
\end{equation*}
$$

From (21) and (22) one can recover (18).
Notice that

$$
\begin{equation*}
C_{n,\left[1^{r}, \alpha^{\prime}\right]}=\binom{n}{r} C_{n-r,\left[\alpha^{\prime}\right]}, \tag{23}
\end{equation*}
$$

where α^{\prime} has no singleton.
One can also impose a genus restriction on the partitions without singletons, and as singletons do not affect the genus, one is therefore led to consider numbers $\widehat{B}_{n}^{(g)}$ and $\widehat{S}_{n, k}^{(g)}$ with, of course $\sum_{g} \widehat{B}_{n}^{(g)}=\widehat{B}_{n}$ and $\sum_{g} \widehat{S}_{n, k}^{(g)}=\widehat{S}_{n, k}$. Moreover

$$
\begin{equation*}
C_{n,\left[1^{r}, \alpha^{\prime}\right]}^{(g)}=\binom{n}{r} C_{n-r,\left[\alpha^{\prime}\right]}^{(g)} . \tag{24}
\end{equation*}
$$

We shall return to these sequences in the next section.

2 Genus dependent Bell numbers $B_{n}^{(g)}$

2.1 Unconstrained partitions: basic numbers $B_{n}^{(g)}$

Genus 0 . Known as Catalan numbers. See OEIS A000108.

$$
\begin{align*}
B_{n}^{(0)}=\mathcal{C}_{n} & :=\frac{1}{(n+1)!} \frac{(2 n)!}{n!} \tag{25}\\
& =\{1,2,5,14,42,132,429,1430,4862,16796, \cdots\}
\end{align*}
$$

$$
\begin{equation*}
\text { Ordinary G.F. is } B^{(0)}(x)=\frac{1-\sqrt{1-4 x}}{2 x} \tag{26}
\end{equation*}
$$

Genus 1. See OEIS A002802.

$$
\begin{equation*}
B_{n}^{(1)}=\frac{1}{2^{4} 3} \frac{1}{(2 n-3)(2 n-1)} \frac{1}{(n-4)!} \frac{(2 n)!}{n!}, \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\text { Ordinary G.F. is } B^{(1)}(x)=\frac{x^{4}}{(1-4 x)^{5 / 2}}, \quad \text { see }[6] . \tag{28}
\end{equation*}
$$

Genus 2. The first terms are listed in OEIS A297179 (the formula below seems to be new).

$$
\begin{align*}
& B_{n}^{(2)}=\frac{1}{2^{9} 3^{2} 5} \frac{\left(5 n^{3}-39 n^{2}+88 n-84\right)}{(2 n-7)(2 n-5)(2 n-3)(2 n-1)} \frac{1}{(n-6)!} \frac{(2 n)!}{n!}, \tag{29}\\
& \text { Ordinary G.F. is } B^{(2)}(x)=\frac{x^{6}\left(1+6 x-19 x^{2}+21 x^{3}\right)}{(1-4 x)^{11 / 2}}, \quad \text { see }[6] . \tag{30}
\end{align*}
$$

Genus 3. We conjecture that
$B_{n}^{(3)} \stackrel{?}{=} \frac{1}{2^{13} 3^{4} 57} \frac{\left(35 n^{6}-819 n^{5}+7589 n^{4}-36009 n^{3}+93464 n^{2}-129060 n+95040\right)}{(2 n-11)(2 n-9)(2 n-7)(2 n-5)(2 n-3)(2 n-1)} \frac{1}{(n-8)!} \frac{(2 n)!}{n!}$,
Ordinary G.F. is $B^{(3)}(x) \stackrel{?}{=} \frac{x^{8}\left(1+60 x-66 x^{2}-130 x^{3}+1065 x^{4}-2262 x^{5}+1738 x^{6}\right)}{(1-4 x)^{17 / 2}}$.
This suggests for any $g>0$ the following Ansatz for the ordinary G.F.

$$
\begin{equation*}
B^{(g)}(x) \stackrel{?}{=} \frac{x^{2 g+2} P^{(g)}(x)}{(1-4 x)^{(6 g-1) / 2}} \tag{33}
\end{equation*}
$$

with an overall power of x dictated by 13) and a polynomial $P^{(g)}$ of degree $3(g-1)$.
We shall see in the sequel a repeated appearance of formulae of that type, in particular with the universal "critical exponent" $(6 g-1) / 2$ in the denominator.
For genus $g \geqslant 4$, we have incomplete results that corroborate this Ansatz:
Genus 4. The formula below is conjectured, and one should compute $B_{n}^{(4)}$ for $n=16,17,18,19$ to determine all the coefficients a_{i}

$$
\begin{equation*}
B_{n}^{(4)}=\{1,352,19261,541541,10571561,162718556\} \text { for } n=10, \cdots 15 . \tag{34}
\end{equation*}
$$

Ordinary G.F. should be

$$
B^{(4)}(x) \stackrel{?}{\left.\xlongequal{x} \frac{x^{10}\left(1+306 x+4035 x^{2}-16669 x^{3}+63735 x^{4}-136164 x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8}+a_{9} x^{9}\right)}{(1-4 x)^{23 / 2}}\right) .}
$$

Similarly, we propose for $g=5,6$

$$
\begin{align*}
B^{(5)}(x) & \stackrel{?}{=} \frac{x^{12}\left(1+1320 x+75068 x^{2}+218300 x^{3}+\cdots\right)}{(1-4 x)^{29 / 2}} \\
B^{(6)}(x) & \stackrel{?}{=} \quad \frac{x^{14}(1+5406 x+\cdots)}{(1-4 x)^{35 / 2}} . \tag{35}
\end{align*}
$$

The first non trivial coefficient in the numerator of $B^{(g)}(x), g>0$, appears to be always divisible by $6: 6\{1,10,51,220,901, \ldots\}$, for $g=2,3, \cdots$, and we conjecture that this sequence is given by

$$
\frac{(d(g)+8 g+2)(6 g-2)!}{C(g)(3 g-1)!}-2(6 g-1)
$$

in terms of $C(g): C=12,30240,518918400,28158588057600,3497296636753920000, \ldots$,
and $d(g): d=0,10,68,318,1336,5426, \ldots$, given by

$$
\begin{align*}
C(g) & =3 \times 2^{2 g-1} \frac{(2 g)!}{g!} \frac{(6 g-5)!!}{(2 g-3)!!}=12(2 g-1) \frac{(6 g-5)!}{(3 g-3)!} \tag{36}\\
d(g) & =\frac{1}{3}\left(4^{1+g}-1-3(6 g-1)\right) . \tag{37}
\end{align*}
$$

Warning. The sequence $B_{n}^{(0)}$, shifted in such a way that it starts with 1 for $n=1$, (resp. $B_{n}^{(1)}$, shifted in such a way that it starts with 1 for $n=3$) gives also the number of rooted bicolored unicellular maps of genus 0 (resp. of genus 1) on n edges. However this coincidence fails at genus 2 and above. Rooted bicolored unicellular maps are studied by Goupil et al. [8].

2.2 Partitions with no singletons: associated numbers $\hat{B}_{n}^{(g)}$

For all g one has the recurrence

$$
\begin{equation*}
\widehat{B}_{n}^{(g)}=B_{n}^{(g)}-\sum_{s=1}^{n}\binom{n}{s} \widehat{B}_{n-s}^{(g)} \text { with } \widehat{B}_{n}^{(g)}=0 \text { for } n<2 g+2, \text { and } \widehat{B}_{2 g+2}^{(g)}=1 \tag{38}
\end{equation*}
$$

Genus 0. See OEIA A005043 (Riordan numbers).

$$
\begin{equation*}
\widehat{B}_{n}^{(0)}=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{j}{\lfloor j / 2\rfloor} . \quad \text { Ordinary G.F. is } \quad \frac{2}{1+x+\sqrt{(1-3 x)(1+x)}}=\frac{1-\sqrt{\frac{1-3 x}{1+x}}}{2 x}, \tag{39}
\end{equation*}
$$

$0,1,1,3,6,15,36,91,232,603,1585,4213,11298,30537,83097,227475, \cdots$
For genus $g>0$, we have again a general Ansatz for the ordinary G.F. of $\widehat{B}_{n}^{(g)}$

$$
\begin{equation*}
\widehat{B}^{(g)}(x) \stackrel{?}{=} \frac{x^{2(g+1)}(1+x)^{g-1} \hat{P}^{(g)}(x)}{\Delta(x)^{\frac{(6 g-1)}{2}}} \tag{40}
\end{equation*}
$$

where $\Delta(x)=(1-3 x)(1+x)$ is the discriminant of the algebraic equation satisfied by $\widehat{B}^{(0)}(x)$, namely $\widehat{B}^{(0)}(x)=1+\left(x \widehat{B}^{(0)}(x)\right)^{2} /\left(1-x \widehat{B}^{(0)}(x)\right)$, see 20, and $\widehat{P}^{(g)}$ is a polynomial of degree $3(g-1)$, see below.

Genus 1. See OEIS A245551.

$$
\begin{equation*}
\widehat{B}_{n}^{(1)}=\sum_{\ell=0}^{n-4} \frac{(-1)^{n-\ell} 3^{\ell-2}}{2^{n-4}} \frac{(2 \ell+3)!!(2 n-2 \ell-5)!!}{\ell!(-\ell+n-4)!}, \quad \text { G.F. } \widehat{B}^{(1)}(x) \text { with } \widehat{P}^{(1)}(x)=1 \tag{41}
\end{equation*}
$$

$0,0,0,1,5,25,105,420,1596,5880,21120,74415,258115,883883,2994355,10051860, \cdots$
Genus 2.

$$
\begin{gather*}
\widehat{B}_{n}^{(2)}=0,0,0,0,0,1,21,203,1512,9513,53592,278355,1359072,6318312,28227199,122005884, \cdots \\
\text { G.F. } \widehat{B}^{(2)}(x) \text { with } \widehat{P}^{(2)}(x)=\left(1+9 x-4 x^{2}+9 x^{3}\right), \tag{42}
\end{gather*}
$$

Genus 3.

$$
\begin{gather*}
\widehat{B}_{n}^{(3)}=0,0,0,0,0,0,0,1,85,1725,21615,208230,1685112,12028588,78029380,469278810, \cdots \\
\quad \text { G.F. } \widehat{B}^{(3)}(x) \text { with } \widehat{P}^{(3)}(x) \stackrel{?}{=}\left(1+66 x+249 x^{2}+226 x^{3}+894 x^{4}-480 x^{5}+406 x^{6}\right) . \tag{43}
\end{gather*}
$$

Genus 4.

$$
\widehat{B}_{n}^{(4)}=0,0,0,0,0,0,0,1,341,15103,318318,4615611,52720668, \cdots
$$

G.F. $\widehat{B}^{(4)}(x)$ with $P^{(4)}(x) \stackrel{?}{=} 1+315 x+6519 x^{2}+20228 x^{3}+65718 x^{4}+95247 x^{5}+\cdots$
with 4 terms missing.

3 Genus dependent Stirling numbers $S_{n, k}^{(g)}$

3.1 Partitions with k parts : the numbers $S_{n, k}^{(g)}$

Genus 0. Known as the Narayana numbers. See OEIS A001263.

$$
\begin{equation*}
S_{n, k}^{(0)}=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}=\frac{1}{k}\binom{n-1}{k-1}\binom{n}{k-1} . \tag{44}
\end{equation*}
$$

Their two-variable G.F. reads

$$
\begin{equation*}
S^{(0)}(x, y)=\frac{1+x-x y-\sqrt{(1+x-x y)^{2}-4 x}}{2 x} . \tag{45}
\end{equation*}
$$

Genus 1. Conjectured by Yip [19], proved by Cori and Hetyei 5 .

$$
\begin{gather*}
S_{n, k}^{(1)}=\frac{1}{6}\binom{n}{2}\binom{n-2}{k-2}\binom{n-2}{k}=\frac{1}{6}\binom{k}{2}\binom{n}{k}\binom{n-2}{k}, \tag{46}\\
\text { G.F. } \quad S^{(1)}(x, y)=\frac{x^{4} y^{2}}{\left((1+x-x y)^{2}-4 x\right)^{5 / 2}} . \tag{47}
\end{gather*}
$$

Genus 2. Obtained by Cori-Hetyei. See OEIS A297178.

$$
\begin{align*}
S_{n, k}^{(2)}= & 8 \gamma[n-10, k-6]-4 \gamma[n-10, k-5]-15 \gamma[n-10, k-4]+10 \gamma[n-10, k-3]+\gamma[n-10, k-2] \\
& -4 \gamma[n-9, k-5]+39 \gamma[n-9, k-4]-10 \gamma[n-9, k-3]-4 \gamma[n-9, k-2]-15 \gamma[n-8, k-4] \\
& -10 \gamma[n-8, k-3]+6 \gamma[n-8, k-2]-4 \gamma[n-7, k-2]+10 \gamma[n-7, k-3]+\gamma[n-6, k-2] \tag{48}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma(n, k)=\frac{\binom{n+10}{5}\binom{n+5}{k}\binom{n+5}{n-k}}{\binom{10}{5}} \tag{49}
\end{equation*}
$$

The result for $S_{n, k}^{(2)}$ may be simplified in the form

$$
\begin{equation*}
S_{n, k}^{(2)}=\frac{1}{30240} \chi^{(2)} *\left(\frac{\Gamma(n-t) \Gamma(n-t+5)}{\Gamma(k-s-1) \Gamma(k-s+4) \Gamma(n-k+s-t-3) \Gamma(n-k+s-t+2)}\right)_{\substack{0 \leqslant t \leqslant 4 \\ 0 \leqslant s \leqslant t}} \tag{50}
\end{equation*}
$$

with a triangular array of constants $\chi^{(2)}$ given by

$$
\chi^{(2)}(t, s)=\begin{array}{ccccc}
1 & & & & \tag{51}\\
-4 & 10 & & & \\
6 & -10 & -15 & & \\
-4 & -10 & 39 & -4 & \\
1 & 10 & -15 & -4 & 8
\end{array}
$$

and the $*$ product means a summation over $0 \leqslant s \leqslant t \leqslant 4$ of the product of the two factors.
Then the G.F. reads

$$
\begin{align*}
S^{(2)}(x, y)= & \frac{x^{6} y^{2} p^{(2)}(x, y)}{\left((1+x-x y)^{2}-4 x\right)^{11 / 2}} \tag{52}\\
p^{(2)}(x, y)= & \sum_{\substack{0 \leqslant t \leqslant 4 \\
0 \leqslant s \leqslant t}} \chi^{(2)}(t, s) x^{t} y^{s} \\
= & 1-x(4-10 y)+x^{2}\left(6-10 y-15 y^{2}\right)-x^{3}\left(4+10 y-39 y^{2}+4 y^{3}\right) \\
& \quad+x^{4}\left(1+10 y-15 y^{2}-4 y^{3}+8 y^{4}\right) \tag{53}
\end{align*}
$$

as first derived by Cori and Hetyei 6].

Observations and conjectures.

For $k=2$, we have an expression that follows from an exact formula for the two-part partitions of arbitrary genus, see below Sect. 4.3 :

$$
\begin{equation*}
S_{n, 2}^{(g)}=\binom{n}{2 g+2}=\frac{1}{\binom{2 g+2}{g+1}}\binom{n}{g+1}\binom{n-g-1}{g+1} \tag{54}
\end{equation*}
$$

All known data for $k=3$ and $n \leqslant 15, g \leqslant 6$ are consistent with

$$
\begin{equation*}
S_{n, 3}^{(g)} \stackrel{?}{=} \frac{4^{g+1}-1}{3} \frac{(n-g-1)}{g+2}\binom{n}{2 g+3}=\frac{4^{g+1}-1}{3\binom{2 g+3}{g+1}}\binom{n}{g+2}\binom{n-g-1}{g+2} \tag{55}
\end{equation*}
$$

In particular

$$
\begin{equation*}
S_{n, 3}^{(2)} \stackrel{?}{=} \frac{21}{4}\binom{n}{7}(n-3)=\frac{3}{5}\binom{n}{4}\binom{n-3}{4} \text { and } S_{n, 3}^{(3)} \stackrel{?}{=} 17(n-4)\binom{n}{9} . \tag{56}
\end{equation*}
$$

Also at given g, for the lowest $n=2 g+3, S_{2 g+3,3}^{(g)}=\frac{4^{g+1}-1}{3}$, OEIS A002450.
Observation: The result obtained in 50 for $S_{n, k}^{(2)}$ can be generalized in terms of an expression that encodes all (presently) known results for $S_{n, k}^{(g)}, g \geqslant 1$.
This expression is as follows

$$
\begin{align*}
S_{n, k}^{(g)} & \stackrel{?}{=} \frac{1}{C(g)} \chi^{(g)} *\left(\frac{\Gamma(n-t+g-2) \Gamma(n-t+4 g-3)}{\Gamma(k-s-1) \Gamma(k-s+3 g-2) \Gamma(n-k+s-t-2 g+1) \Gamma(n-k+s-t+g)}\right) \tag{57}\\
& =\frac{1}{C(g)} \chi^{(g)} *\left((3 g-1)!\binom{n-k+s-t+g-1,}{n-k+s-t-2 g}\binom{n-t+g-3}{k-s-2}\binom{n-t+4 g-4}{n-k+s-t+g-1}\right)_{\substack{0 \leqslant t \leqslant 4 g-4 \\
0 \leqslant s \leqslant t}} \tag{58}
\end{align*}
$$

with the integer constant $C(g)$ given in (36) and coefficients $\chi^{(g)}$ given for $g=3,4$ by

where the entries of $\chi^{(3)}$ have been determined from a subset of the existing data, but some of those of $\chi^{(4)}$ are still undetermined at this stage.
Observations:

- Each column of the arrays $\chi^{(g)}$ is symmetric.
- The entries of the first column of $\chi^{(g)}$, which is of length $4 g-3$, are binomial coefficients with alternated signs $(-1)^{t}\binom{4(g-1)}{t}$.
- The second column is the product of the line $4(g-1)$ of the triangular array OEIS A144431 (a "sub-Pascal array") by the coefficient $d(g)$ given above in (37).
- This second column can also be obtained as $d(g)$ times an appropriate line of a matrix defined as the inverse of the matrix of partial sums of the signed Pascal triangle (see A059260).
- The last $(g-1)$ lines of the array $\chi^{(g)}$ have a vanishing sum (a justification is given below).
- The last line of the array $\chi^{(g)}$ is conjectured to be given by (60) (details are given below).

At genus g, the first non-zero coefficients $S_{n, k}^{(g)}$ appear for $(n, k)=(2 g+2,2)$, and their "experimental" values up to $n=4(2 g-1), k=2(2 g-1)$ can be used to determine the constants $\chi^{(g)}$ but one can lower these two integers by making use of the previous observations.

As already mentioned, 588, evaluated at $g=1,2$ gives back $S_{n, k}^{(1)}$ and $S_{n, k}^{(2)}$; moreover its evaluation at $g \geqslant 3$ is compatible with all presently known "experimental" results, with the Ansatz (55), and the sum over k of $S_{n, k}^{(3)}$ is indeed equal to $B_{n}^{(3)}$. This justifies the following conjectures.
Genus $g=3$ conjecture (weak form). The expression 58, with $g=3$, gives $S_{n, k}^{(3)}$ for all n and k. Genus g conjecture (strong form). The expression (58), together with an appropriate triangular array of constants $\chi^{(g)}$ gives $S_{n, k}^{(g)}$ for all $n, k, g>0$.

The corresponding Ansatz on the G.F. reads

$$
\begin{equation*}
\text { G.F. } \quad S^{(g)}(x, y) \stackrel{?}{=} \frac{x^{2 g+2} y^{2} p^{(g)}(x, y)}{\left((1+x-x y)^{2}-4 x\right)^{(6 g-1) / 2}} \tag{59}
\end{equation*}
$$

with $p^{(g)}(x, y)=\sum_{\substack{0 \leqslant t \leqslant 4(g-1) \\ \text { oss } \leqslant t}} \chi^{(g)}(t, s) x^{t} y^{s}$.
We have $S^{(g)}(x, 1)=B^{(g)}(x), p^{(g)}(x, 1)=P^{(g)}(x)$. The latter polynomial being (conjectured) of degree $3(g-1)$ in x, this tells us that the last $(g-1)$ lines of the array $\chi^{(g)}$ have a vanishing sum.

A further conjecture, in accordance with the existing data, is that the terms of highest degree in x, viz $4(g-1)$, of $p^{(g)}(x, y)$ are of the form

$$
\begin{equation*}
\left[p^{(g)}(x, y)\right]_{x^{4(g-1)}}=(1-y)^{2(g-1)}\left[(1-y)^{4 g+1} y^{-2 g-3} \sum_{j=0}^{2 g-2} \frac{2 s_{2 g+2+j, j+1}}{(2 g+j+2)(2 g+j+1)} y^{-j}\right]_{+} \tag{60}
\end{equation*}
$$

where $[\cdot]_{+}$is the polynomial part in y of the expression and $s_{p, q}$ are the Stirling numbers of the first kind. See OEIS A185259 where these polynomials are tabulated. If true, this conjecture determines the last line of $\chi^{(4)}$ to be
$\chi^{(4)}(13, s)=\{1,318,6831,6072,-99693,103950,196581,-413820,155628,146168,-117876,7776,8064\}$.
Particular cases : $S_{n, k}^{(3)}$ and $S_{n, k}^{(4)}$ for small k. The above general conjecture for $S_{n, k}^{(g)}$ leads, when $g=3,4$, and small values of $k=2,3,4$, to simple enough formulas that are displayed below. For $k=2$, they follow from (54). One can check that they are compatible with the known (experimental) values of $S_{n, k}^{(3)}$, up to $n=15$, (see tables the appendix).

Genus 3.

$$
\begin{gathered}
S_{n, 2}^{(3)}=\binom{n}{8}=(0,0,0,0,0,0,0,1,9,45,165,495,1287,3003,6435, \ldots) \quad \text { see OEIS A000581 } \\
S_{n, 3}^{(3)} \stackrel{?}{=} 17(n-4)\binom{n}{9}=(0,0,0,0,0,0,0,0,85,1020,6545,29920,109395,340340,935935, \ldots) \\
S_{n, 4}^{(3)} \stackrel{?}{=} \frac{5}{3}\left(32 n^{2}-288 n+613\right)\binom{n}{10}=(0,0,0,0,0,0,0,0,0,1555,24145,194150,1085370,4759755,17482465, \ldots)
\end{gathered}
$$

Genus 4.

$$
\begin{gathered}
S_{n, 2}^{(4)}=\binom{n}{10}=(0,0,0,0,0,0,0,0,0,1,11,66,286,1001,3003, \ldots) \text { see OEIS A001287 } \\
S_{n, 3}^{(4)} \stackrel{?}{=} \frac{341}{6}(n-5)\binom{n}{11}=(0,0,0,0,0,0,0,0,0,0,341,4774,35464,186186,775775, \ldots) \\
S_{n, 4}^{(4)} \stackrel{?}{=} \frac{11}{2}\left(65 n^{2}-715 n+1842\right)\binom{n}{12}=(0,0,0,0,0,0,0,0,0,0,0,14421,252538,2288286,14369355, \ldots)
\end{gathered}
$$

3.2 Partitions with no singletons: associated numbers $\widehat{S}_{n, k}^{(g)}$

Genus 0. See OEIS A108263.

$$
\begin{gather*}
\widehat{S}_{n, k}^{(0)}=\frac{1}{(n-k+1)}\binom{n-k-1}{n-2 k}\binom{n}{k} . \tag{61}\\
\text { Ordinary G.F. is } \frac{1+x-\sqrt{(1-x)^{2}-4 x^{2} y}}{2 x(x y+1)} . \tag{62}
\end{gather*}
$$

Genus 1.

$$
\begin{gather*}
\qquad \widehat{S}_{n, k}^{(1)}=\frac{1}{6}\binom{k}{2}\binom{n}{k}\binom{n-k}{k}, \tag{63}\\
\text { Ordinary G.F. is } \frac{x^{4} y^{2}}{\left((1-x)^{2}-4 x^{2} y\right)^{5 / 2}} . \tag{64}
\end{gather*}
$$

Genus 2 and above. It is conjectured that for generic genus $g>0$, the G.F. has the form

$$
\begin{equation*}
\widehat{S}^{(g)}(x, y) \stackrel{?}{\stackrel{x^{2 g+2} y^{2} \hat{p}^{(g)}(x, y)}{\left((1-x)^{2}-4 x^{2} y\right)^{(6 g-1) / 2}}} \tag{65}
\end{equation*}
$$

with $\hat{p}^{(g)}(x, y)$ a polynomial of degree $4(g-1)$ in x. For instance

$$
\begin{equation*}
\hat{p}^{(2)}(x, y)=1+2 x(-2+7 y)+x^{2}\left(6-22 y+21 y^{2}\right)+x^{3}\left(-4+2 y+7 y^{2}\right)+x^{4}\left(1+6 y-19 y^{2}+21 y^{3}\right), \tag{66}
\end{equation*}
$$

as derived in 20.
Remark. Note that $p^{(2)}(x, 0)=\hat{p}^{(2)}(x, 0)=(1-x)^{4}$ so that the term of order y^{2} in $S^{(2)}(x, y)$ or $\widehat{S}^{(2)}(x, y)$, i.e., the G.F. of genus 2 partitions into two parts with or without singleton is $x^{6} /(1-x)^{7}=$ $\frac{1}{2} \sum_{n=4}^{\infty} \frac{n}{3} x^{n} \sum_{p=1}^{n-1}\binom{p-1}{2}\binom{n-p-1}{2}$, in agreement with formula 83 below.

By the same token, we may assert that $p^{(g)}(x, 0)=\hat{p}^{(g)}(x, 0)=(1-x)^{4(g-1)}$ so that the term of order y^{2} in $S^{(g)}(x, y)$ or $\widehat{S}^{(g)}(x, y)$ is $x^{2 g+2} /(1-x)^{2 g+3}=\frac{1}{2} \sum_{n=2 g}^{\infty} \frac{n}{g+1} x^{n} \sum_{p=1}^{n-1}\binom{p-1}{g}\binom{n-p-1}{g}$. This implies that

$$
\begin{equation*}
\widehat{S}_{n, 2}^{(0)}=S_{n, 2}^{(0)}-n=\frac{1}{2} n(n-3) \quad \text { and } \quad \widehat{S}_{n, 2}^{(g)}=S_{n, 2}^{(g)}=\binom{n}{2 g+2} \text { for } g>0 \tag{67}
\end{equation*}
$$

in agreement with the result (54). These numbers can be recognized as the elements of the array OEIS A275514.

Particular case $n=2 k$.
Since we assume in this section that there are no singletons and since k denotes the number of parts, the equality $n=2 k$ implies that each part is of length 2 , so that the type is determined: $[\alpha]=\left[2^{k}\right]$, and $\widehat{S}_{2 k, k}=C_{2 k,\left[2^{k}\right]}$. Because of this coincidence, we postpone the study of this particular case to the next section, which is devoted to the study of coefficients $C_{n,[\alpha]}^{(g)}$.

4 Genus dependent Faà di Bruno coefficients $C_{n,[\alpha]}^{(g)}$. Part I. Fully solved cases.

The genus dependent Faà di Bruno coefficients $C_{n,[\alpha]}^{(g)}$ are explicitly known in many specific cases, for particular types $[\alpha]=\left[\ldots \ell^{\alpha \ell} \ldots\right]$ and/or for particular values of the genus g, most of them
discussed and summarized in section 5 . However, to the best of our knowledge, they are generically known in only three families of cases, two of them are classic - the cases of genus 0 , all types; and the partitions of type $\left[2^{p}\right]$, all $g-$, and the third one is new, the partitions into two parts, i.e., of type $[p, n-p]$; all g. We review these three cases in this section. In addition, the G.F. of all types of partitions are explicitly known for genus 1 and 2 , see [20], although the extraction of explicit formulae for the Faà di Bruno coefficients is arduous.

4.1 The particular case $g=0$

$C_{n,[\alpha]}^{(0)}$ is the number of non crossing partitions (also called planar partitions) of type [$\left.\alpha\right]$.

$$
\begin{equation*}
C_{n,[\alpha]}^{(0)}=\frac{n!}{\left(n+1-\sum \alpha_{\ell}\right)!\prod_{\ell} \alpha_{\ell}!}=\frac{1}{n+1}\binom{n+1}{\alpha_{1}, \cdots, \alpha_{n}, n+1-\sum \alpha_{j}} \tag{68}
\end{equation*}
$$

where the symbol (…) denotes a multinomial coefficient. It was first derived by Kreweras [13], and reappeared later in the context of large random matrices [1] and of free probabilities and their free (or non crossing) cumulants [15]. One may also collect these expressions into a G.F.

$$
\begin{equation*}
Z^{(0)}(x)=1+\sum_{n \geqslant 1} x^{n} \sum_{[\alpha] \vdash n} C_{n,[\alpha]}^{(0)} \prod_{\ell=1}^{n} \kappa_{\ell}^{\alpha_{\ell}} \tag{69}
\end{equation*}
$$

where the κ_{ℓ} are new indeterminates, from which we may also construct the function $W(x)=$ $\sum_{\ell \geqslant 1} \kappa_{\ell} x^{\ell}$. Then, it was shown in (1] that 68 is equivalent to the following functional relation between $Z^{(0)}$ and W

$$
\begin{equation*}
Z^{(0)}(x)=1+W\left(x Z^{(0)}(x)\right), \tag{70}
\end{equation*}
$$

see also $[7$ for a nice graphical interpretation of that identity.
As recalled above, the genus 1 and 2 G.F. have been constructed in 20. We don't repeat these formulae here but we shall use them in the following to substantiate some remarks and conjectures.

4.2 Type $[\alpha]=\left[2^{k}\right]$. So $n=2 k$ (k parts of length 2) and $g \leqslant \frac{k}{2}$.

If we focus on the terms with $[\alpha]=\left[2^{k}\right]$, it suffices to specialize the indeterminates κ to $\kappa_{\ell}=\kappa_{2} \delta_{\ell, 2}$. By a small abuse of notation, we still use $Z^{(g)}(x)$ and $W(x)$ for these specialized G.F.
As already mentioned, $C_{2 k,\left[2^{k}\right]}^{(g)}$ is known for all g and coincides with $\hat{S}_{2 k, k}^{(g)}$. This famous case was first solved by Walsh and Lehman [17,18 by combinatorial methods; then by Harer and Zagier [9], in the context of the virtual Euler characteristics of the moduli space of curves, by means of matrix integrals; and by Jackson by a character theoretic approach (11). It has been the object of an abundant literature since then, a good review of which is given in 14 .

$$
\begin{equation*}
\widehat{S}_{2 k, k}^{(g)}=C_{2 k,\left[2^{k}\right]}^{(g)}=\frac{(2 k)!}{(k+1)!(k-2 g)!}\left[\left(\frac{u / 2}{\tanh u / 2}\right)^{k+1}\right]_{u^{2 g}} \tag{71}
\end{equation*}
$$

where the notation $[Y]_{u^{k}}$ means the coefficient of u^{k} in expression Y. The first terms are given by the following table:

g	0	1	2	3	4
$k=1$	1				
$k=2$	2	1			
$k=3$	5	10			
$k=4$	14	70	21		
$k=5$	42	420	483		
$k=6$	132	2310	6468	1485	
$k=7$	429	12012	66066	56628	
$k=8$	1430	60060	570570	1169740	225225

The $g=0$ column is, by 68): $C_{2 k,\left[2^{k}\right]}^{(0)}=\frac{1}{k+1}\binom{2 k}{k}=\mathcal{C}_{k}$ (Catalan numbers) ${ }^{3}$. whose G.F. is

$$
\begin{equation*}
Z^{(0)}(u)=1+\sum_{k=1}^{\infty} C_{2 k,\left[2^{k}\right]}^{(0)} u^{k}=\frac{1-\sqrt{1-4 u}}{2 u} \tag{72}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
Z^{(0}(u)=1+u\left(Z^{(0}(u)\right)^{2} . \tag{73}
\end{equation*}
$$

(This is the equation 70) expressed here for $W(x)=\kappa_{2} x^{2}$ in the variable $u=\kappa_{2} x^{2}$.)
The $g=1$ column is $\frac{(2 k-1)!}{6(k-2)!(k-1)!}=\binom{2 k-1}{3} \mathcal{C}_{k-2}=\frac{(k+1) k(k-1)}{12} \mathcal{C}_{k}$, see OEIS A002802.
The k-th row's sum is, by (8), given by $(2 k-1)!!$, viz $\{1,1,3,15,105,945, \cdots\}$.
More generally,

$$
\begin{equation*}
C_{2 k,\left[2^{k}\right]}^{(g)}=\frac{1}{2^{g}} \mathcal{C}_{k} R_{g}(k) \tag{74}
\end{equation*}
$$

with $R_{g}(k)$ a polynomial of degree $3 g$ in $k[9,17]$ which (for $g>0$) vanishes for $k=-1,0, \cdots, 2 g-1$, and whose form can be made explicit [3, 8]. There are several expressions for the values that it takes when its argument k is an arbitrary non-negative integer. One of them, in terms of unsigned Stirling numbers of the first kind $c_{p, 4},{ }^{4}$, reads as follows [4]:

$$
\begin{equation*}
R_{g}(k)=\sum_{s=0}^{k}\binom{k}{s} \sum_{j=0}^{k+2-2 g}(-1)^{s+1-j} c_{k-s+1, k+2-2 g-j} c_{s+1, j} . \tag{75}
\end{equation*}
$$

As noticed in [9], the numbers $C_{2 k,\left[2^{k}\right]}^{(g)}$ (called $\epsilon_{g}(k)$ there) satisfy a recurrence formula

$$
\begin{equation*}
(k+1) C_{2 k,\left[2^{k}\right]}^{(g)}=2(2 k-1) C_{2(k-1),\left[2^{k-1}\right]}^{(g)}+\frac{1}{2}(2 k-1)(2 k-2)(2 k-3) C_{2(k-2),\left[2^{k-2}\right]}^{(g-1)} \tag{76}
\end{equation*}
$$

or in terms of the polynomials R introduced in Eq. (74),

$$
\begin{equation*}
R_{g}(k)=R_{g}(k-1)+\binom{k}{2} R_{g-1}(k-2) . \tag{77}
\end{equation*}
$$

See also [3] for other recurrences...
Proposition 1. The generating function of the $C_{2 k,\left[2^{k}\right]}^{(g)}$ for $g>0$ is of the form

$$
\begin{equation*}
Z^{(g)}(u):=\sum_{k} C_{2 k,\left[2^{k}\right]}^{(g)} u^{k}=\frac{u^{2 g} Q^{(g)}(u)}{(1-4 u)^{(6 g-1) / 2}}, \tag{78}
\end{equation*}
$$

where $Q^{(g)}(u)$ is a polynomial of degree $g-1$ in u satisfying $Q^{(g)}(0)=\frac{(4 g)!}{2^{2 g}(2 g+1)!}$.
Proof. One finds by explicit calculation that $Q^{(1)}(u)=1$ and then proceeds by induction. Equation (76) implies that $Q^{(g)}(u)$ satisfies the following recurrence formula

$$
\begin{align*}
& \quad(1-4 u) u \frac{d}{d u} Q^{(g)}(u)+(2 g+1+4 u(g-1)) Q^{(g)}(u)= \\
& \left(3\binom{4 g-1}{3}+\left(192 g^{3}-384 g^{2}+108 g-6\right) u+\left(384 g^{3}-1536 g^{2}+1440 g+192\right) u^{2}+\left(256 g^{3}-1920 g^{2}+4736 g-3840\right) u^{3}\right) Q^{(g-1)}(u) \\
& \quad+\left(48 g^{2}-24 g+3+\left(192 g^{2}-480 g-24\right) u+\left(192 g^{2}-1152 g+1728\right) u^{2}\right) u(1-4 u) \frac{d}{d u} Q^{(g-1)}(u) \\
& \quad+24(g+u(2 g-7)) u^{2}(1-4 u)^{2} \frac{d^{2}}{d u^{2}} Q^{(g-1)}(u)+4 u^{3}(1-4 u)^{3} \frac{d^{3}}{d u^{3}} Q^{(g-1)}(u) . \tag{79}
\end{align*}
$$

[^2]Assume that $Q^{(g-1)}(u)$ is a polynomial of degree $(g-2)$ which satisfies $Q^{(g-1)}(0)=\frac{(4(g-1))!}{2^{2(g-1)(2 g-1)!}}$. The r.h.s. of (79) is a priori of degree $g+1$ but one checks that it is in fact of degree g, making it possible to find a polynomial solution of degree $(g-1)$ in u for $Q^{(g)}$. Moreover the equation 79 for $u=0$ fixes the ratio $Q^{(g)}(0) / Q^{(g-1)}(0)$ in agreement with the values above.
Note that the expression $(1-4 u)$ in the denominator of (78) is -once again- nothing else than the discriminant of the equation (73) satisfied by $Z^{(0)}$.
The first $Q^{(g)}$ read

$$
\begin{gather*}
Q^{(1)}(u)=1 ; \quad Q^{(2)}(u)=21(1+u) ; \quad Q^{(3)}(u)=11\left(135+558 u+158 u^{2}\right) ; \\
Q^{(4)}(u)=11 \times 13\left(1575+13689 u+18378 u^{2}+2339 u^{3}\right) ; \tag{80}\\
Q^{(5)}(u)=3 \times 13 \times 17 \times 19\left(4725+67620 u+201348 u^{2}+132356 u^{3}+9478 u^{4}\right) ; \cdots
\end{gather*}
$$

with

$$
Q^{(g)}(0)=\{1,21,1485,225225, \ldots\}=C_{4 g,\left[2^{2 g}\right]}^{(g)}=\frac{1}{2^{g}} \mathcal{C}_{2 g} R_{g}(2 g)=\frac{(4 g)!}{2^{2 g}(2 g+1)!}, \text { see A035319. }
$$

4.3 Partitions into two parts: type $[\alpha]=[p, n-p]$.

Figure 1: (a) Partition with $n=12, p=5, f=5, s=1, g=3$;
(b) removing of "trivial faces" and doubling the edges to make the faces more visible, $f^{\prime}=1$

We first recall the main lines of the diagrammatic representation of a partition, see for example [20] for more details. Consider some partition α of the set $\{1, \cdots, n\}$. We first draw n points on a circle numbered from 1 to n and distributed clockwise. With each part of length ℓ of α, is associated a ℓ-valent vertex, in short a ℓ-vertex, whose edges are numbered clockwise by the elements of the part. The vertices are arranged inside the disc. Edges are then drawn by matching the indices. If the n points are thought of as forming a single additional n-vertex, this defines a map, which has $|\alpha|+1$ vertices, n edges and a number f of faces. The Euler characteristics of that map and its genus match the formulae given in Sect. 1.4 in terms of permutations σ and τ.

For example, Fig 1(a) shows a diagrammatic representation of a partition of $\{1, \cdots, 12\}$ into two parts $\alpha=(\{1,4,5,8,10\},\{2,3,6,7,9,11,12\})$. The map has 5 faces and its genus is thus 3 . This can be seen either by applying Eq. (11) with $\sigma=(1,2, \ldots, 12), \tau=(1,4,5,8,10),(2,3,6,7,9,11,12)$, and by calculating the product $\sigma \circ \tau^{-1}=(1,11,10,9,8,6,4,2)(3)(5)(7)(12)$, whose cyclic parts label the faces of the associated map, or diagrammatically, as it will be done below.

Lemma. (i) For the partition of type $[\alpha]=[p, n-p], g \leqslant \min (p-1, n-p-1)$.
(ii) Let s be the number of pairs of edges joining the p-vertex to consecutive points on the circle, then $g=p-s-1$.
Proof. Let us make use of the representation examplified in Fig. 1. There $n=12$ and $p=5$. In general, the diagram is completely determined by choosing p points $m_{1}, m_{2}, \cdots m_{p}$ out of the n points on the circle, and attaching to them the edges coming from the p-vertex (in black), while respecting their cyclic order. These p points on the circle will be called "black points". A $(n-p)$ vertex (in blue) is then connected to the $n-p$ other (blue) points. Let r_{i} the number of points between m_{i} and $m_{i+1}, i=1,2, \cdots, p$, (with the convention $m_{p+1} \equiv m_{1}$). Thus $\sum_{i} r_{i}=n-p$. Let us compute a lower bound on the number of faces of the resulting diagram. For each of the s indices i for which $r_{i}=0$, (i.e., $m_{i+1}=m_{i}+1$) there is one face attached to the p-vertex (in our example there is only one such index and the associated face on the figure is grey shaded). For each i for which $r_{i} \geqslant 1$, there are $r_{i}-1$ such "trivial" faces attached to the second vertex (in our example there are three such, that are the blue shaded ones in Fig. 1). In addition to these $s+\sum_{i}\left(r_{i}-1\right)$ trivial faces, there are $f^{\prime} \geqslant 1$ other faces (unshaded in Fig. 11), and thus the total number of faces is

$$
\begin{equation*}
f=\sum_{\substack{i \\ r_{i}=0}} 1+\sum_{\substack{i \\ r_{i} \geqslant 1}}\left(r_{i}-1\right)+f^{\prime}=s+((n-p)-(p-s))+f^{\prime}=n-2 p+2 s+f^{\prime} \tag{81}
\end{equation*}
$$

hence

$$
\begin{equation*}
g=\frac{n-1-f}{2}=p-s-\frac{f^{\prime}+1}{2} \leqslant p-1 . \tag{82}
\end{equation*}
$$

Because of the symmetry between the two vertices, one has as well $g \leqslant n-p-1$, whence the inequality of the first part of the lemma. Note that this bound on g is in general stronger than the one $\left\lfloor\frac{n-2}{2}\right\rfloor$ written in 12 .
Clearly the minimum value $g=0$ is reached for $f^{\prime}=1, s=p-1$, i.e., with the p-vertex being attached to p consecutive points on the circle.
In fact the previous inequality $f^{\prime} \geqslant 1$ is an equality. In other words, there is always only one more face in the argument above and $g=p-s-1$, which is the second part of the lemma. This is readily seen once the trivial faces attached to either the p - or the $(n-p)$-vertex are erased, together with the appropriate edges and points on the circle. After that removal of all trivial faces, the blue and black points alternate on the circle. Then we claim that the remaining edges make a circuit that visits alternately the two vertices and delineates a single face. To see this, pick some edge e starting from, say, the black vertex, and follow a circuit, keeping the face to your right. The next vertex to be encountered is the blue one, since otherwise, we would have still a trivial face attached to the black vertex. Keep going: from the blue vertex we go to a blue point on the circle, then to its clockwise neighbour which is black, then we return to the original black vertex along the original edge e (traveled in the opposite way), and leave that vertex along the edge e^{\prime}, which is the (anti-clockwise) neighbour of e on the vertex. Iterating these steps, we encounter alternately the two vertices along successive pairs of neighbouring edges, and when the circuit closes, all edges have been traveled and only one face has been delineated. See Fig. 1(b) for an illustration of this general result in a particular case.

Some readers may prefer to see the equality $f^{\prime}=1$ expressed in group theoretical terms. It reads as follows: Let τ be a permutation of $\{1,2, \ldots n\}$ defined as the product of two disjoint increasing cycles, and σ be the circular permutation $(1,2, \ldots, n)$, then the cyclic decomposition of the product $\sigma \circ \tau^{-1}$ contains only one non-trivial cycle.

Proposition 2. For general n, g and $p \geqslant 2$, (and $n \neq 2 p$, otherwise, if $n=2 p$, multiply by $\frac{1}{2}$)

$$
\begin{equation*}
C_{n,[p, n-p]}^{(g)}=\frac{n}{g+1}\binom{p-1}{g}\binom{n-p-1}{g} . \tag{83}
\end{equation*}
$$

Note that this result is symmetric under $p \leftrightarrow n-p$ as it should, and that the bound $g \leqslant$ $\min (p-1, n-p-1)$ is manifest. An alternative expression is

$$
\begin{equation*}
C_{n,[p, n-p]}^{(g)}=\frac{n}{p}\binom{p}{p-1-g}\binom{n-p-1}{g} . \tag{84}
\end{equation*}
$$

Proof. Following the lines of Lemma 1, a configuration is completely determined by the choice of the p points m_{i} on the circle, subject to the condition that there are s pairs of adjacent points. Thus

$$
\begin{equation*}
C_{n,[p, n-p]}^{(g)}=\#\left\{m_{1}, \cdots, m_{p} \in\{1, n\} \mid \#\left\{i \mid m_{i+1}=m_{i}+1\right\}=s\right\} \tag{85}
\end{equation*}
$$

where $g=p-s-1$. This number may be easily computed by a transfer matrix technique 5 Suppose the black and blue points of the circle are representing two states of a periodic system on a circle, and assign a weight $1, t, t^{2} u$ to a transition (i.e., an arc on the circle) between respectively black-black, black-blue and blue-blue points. The matrix

$$
M=\left(\begin{array}{cc}
1 & t \\
t & t^{2} u
\end{array}\right)
$$

describes the possible transitions between these states. The number $C_{n,[p, n-p]}^{(g)}$ is then the coefficient of $t^{2 p} u^{p-1-g}$ in

$$
\begin{equation*}
t_{n}=\operatorname{tr} M^{n} . \tag{86}
\end{equation*}
$$

Let $z:=t^{2}$. By virtue of the characteristic equation of M, the numbers t_{n} satisfy the recurrence relations

$$
\begin{equation*}
t_{n}=t_{1} t_{n-1}+z(1-u) t_{n-2} \tag{87}
\end{equation*}
$$

with $t_{0}=2$ and $t_{1}=1+z u$, whence $t_{2}=1+2 z+z^{2} u^{2}, t_{3}=1+3 z+3 z^{2} u+z^{3} u^{3}$. It follows from (87) that

$$
\begin{equation*}
\left[t_{n}\right]_{z^{p} u^{p-1-g}}=\left[t_{n-1}\right]_{z^{p} u^{p-1-g}}+\left[t_{n-1}\right]_{z^{p-1} u^{p-2-g}}+\left[t_{n-2}\right]_{z^{p-1} u^{p-1-g}}-\left[t_{n-2}\right]_{z^{p-1} u^{p-2-g}} \tag{88}
\end{equation*}
$$

from which all $\left[t_{n}\right]_{z^{p} u^{p-1-g}}$ may be reconstructed for $p \leqslant n-1,0 \leqslant g \leqslant p-1$.
Let $D_{n, p, g}:=\frac{n}{g+1}\binom{p-1}{g}\binom{n-p-1}{g}$, one may check that the D 's satisfy the same relation, namely

$$
\begin{equation*}
D_{n, p, g}=D_{n-1, p, g}+D_{n-1, p-1, g}+D_{n-2, p-1, g-1}-D_{n-2, p-1, g}, \tag{89}
\end{equation*}
$$

as well as
$D_{2,1,0}=\left[t_{2}\right]_{z u^{0}}=2, D_{2,1,1}=\left[t_{2}\right]_{z u^{-1}}=0, D_{3,2,0}=\left[t_{3}\right]_{z^{2} u}=3, D_{3,2,1}=\left[t_{3}\right]_{z^{2} u^{0}}=0, D_{2,1,0}=\left[t_{2}\right]_{z u^{0}}=0$.
Thus $C_{n,[p, n-p]}^{(g)}$ is given by that expression $D_{n, p, g}$, which completes the proof of Proposition 1.

Remarks

1. The formula (83), originally proposed for $p \geqslant 2$, extends trivially to all p : from (24), we learn that $C_{n,[1, n-1]}^{(g)}=n C_{n-1,[n-1]}^{(g)}=n \delta_{g 0}$, in accordance with the rhs of 83) evaluated at $g=0$.
2. One may check that the expression of $C_{n,[p, n-p]}^{(g)}$ is consistent with the Faà di Bruno coefficient (8): $\sum_{g=0}^{p-1} C_{n,[p, n-p]}^{(g)}=\binom{n}{p}$. Once again, this is trivially true for $p=1$ and, for $2 \leqslant p<n-p$, this is an easy consequence of the celebrated Vandermonde identity, namely:

$$
\begin{equation*}
\sum_{k=0}^{m}\binom{n}{k}\binom{\ell}{m-k}=\binom{\ell+n}{m} \tag{90}
\end{equation*}
$$

[^3]Here, using (84) together with 90 , one finds: $\frac{n}{p} \sum_{g=0}^{p-1}\binom{p}{p-1-g}\binom{n-p-1}{g}=\frac{n}{p}\binom{n-1}{p-1}=\binom{n}{p}$.
3. Generating function of the $C_{[p, n-p]}^{(g)}$. One may build a G.F. for the $C_{[p, n-p]}^{(g)}$ adapted to their symmetry under $p \leftrightarrow n-p$:

$$
\begin{equation*}
Z^{(g)}(x, v):=\frac{1}{2} \sum_{n=0}^{\infty} \sum_{p=1}^{n-1} C_{[p, n-p]}^{(g)} x^{n} v^{2 p-n} \tag{91}
\end{equation*}
$$

One finds

$$
\begin{equation*}
Z^{(g)}(x, v)=\mathcal{Z}^{(g)}(x, 1 / v)=\frac{(2-x(v+1 / v)) x^{2 g+2}}{2(1-x v)^{g+2}(1-x / v)^{g+2}} \tag{92}
\end{equation*}
$$

In particular, for $v=1$, one recovers the G.F. of the $S_{n, 2}^{(g)}$ already encountered in the Remark at the end of Sect. 3.2, $\sum_{n} S_{n, 2}^{(g)} x^{n}=\frac{x^{2 g+2}}{(1-x)^{2 g+3}}$.

The previous Proposition is illustrated here by the explicit computation of $C_{n,[n-5,5]}^{(g)}$ for low n

g	0	1	2	3	4
$n=6$	6				
$n=7$	7	14			
$n=8$	8	32	16		
$n=9$	9	54	54	9	
$n=10$	5	40	60	20	1
$n=11$	11	110	220	110	11
$n=12$	12	144	360	240	36
$n=13$	13	182	546	455	91
$n=14$	14	224	784	784	196
$n=15$	15	270	1080	1260	378

Case $[\alpha]=\left[p^{2}\right]$. So $n=2 p$ (2 parts of length p), and $g=\frac{2 p-1-f}{2} \leqslant p-1$.
This is of course a particular case of the type $[\alpha]=[p, n-p]$ considered in this section. Here, the Faà di Bruno coefficients are the numbers "of ways to put p identical objects into $g+1$ of altogether p distinguishable boxes", see OEIS A103371. Notice that the last writing below is indeed consistent with (83). One has

$$
\begin{equation*}
C_{2 p,\left[p^{2}\right]}^{(g)}=\binom{p-1}{p-g-1}\binom{p}{p-g-1}=\binom{p-1}{g}\binom{p}{g+1}=\frac{p}{g+1}\binom{p-1}{g}^{2} \tag{93}
\end{equation*}
$$

For small values of p and g these coefficients are gathered with those of the cases $[\alpha]=\left[p^{k}\right]$ studied in section 5.1.
The general formula being given above we only notice that the $g=0$ sequence is just p and that the $g=1$ sequence defines the pentagonal pyramidal numbers that we shall meet again in section 5.1 -see our comments there. Notice also that the sum over g is $\binom{2 p-1}{p}=\{1,3,10,35,126,462 \cdots\}$, see OEIS A001700, and that the penultimate term in each row, $\{2,6,12,20,30, \ldots\}$, is equal to $p(p-1)$, indeed, for $g=p-2, C_{2 p,\left[p^{2}\right]}^{(p-2)}=\binom{p-1}{p-2}\binom{p}{p-1}=p(p-1)$.

5 Genus dependent Faà di Bruno coefficients $C_{n,[\alpha]}^{(g)}$. Part II. A compilation of partial results.

5.1 About types $[\alpha]=\left[p^{k}\right]$ for given $p=2,3,4, \ldots$ as a function of k

The results for $C_{n,[\alpha]}^{(g)}$ when $[\alpha]=\left[p^{k}\right]$ are gathered in Table 1. For given p and k the values are listed vertically (downward) according to the genus g, for $g=0,1,2, \ldots$. Here $n=k p$, (i.e., k parts of length p); we have $g=(k(p-1)+1-f) / 2$, therefore $g \leqslant k(p-1) / 2$. These values have been obtained by an explicit determination of the genus for computer generated set partitions, or obtained from general theorems.

Table 1. Table of coefficients $C_{n,[\alpha]}^{(g)}$ for $n=k p,[\alpha]=\left[p^{k}\right]$.

	$k=1$	$k=2$	$k=3$	$k=4$
$p=2$	1	2,1	5,10	$14,70,21$
$p=3$	1	$3,6,1$	$12,102,144,22$	$55,1212,6046,7163,924$
$p=4$	1	$4,18,12,1$	$22,432,2007,2604,710$	$140,7236,108090,592824,1180364,688270,50701$
$p=5$	1	$5,40,60,20,1$	$35,1240,12060,41820,51565,18540,866$	$285,26800,809960, \cdots$
$p=6$	1	$6,75,200,150,30,1$	$51,2850,47475,316700,905415,1076238,462375,47752$	$506,75450,3837575, \cdots$
$p=7$	1	$7,126,525,700,315,42,1$	$70,5670,144270, \cdots$	$819,177660,13656006, \cdots$

	$k=5$	$k=6$	$k=7$
$p=2$	$42,420,483$	$132,2310,6468,1485$	$429,12012,66066,56628$
$p=3$	$273,12330,149674,576660,593303,69160$	$1428,114888,2771028, \cdots$	$7752,1011486,42679084, \cdots$
$p=4$	$969,103680,3588318, \cdots$	$7084,1359882,90800208, \cdots$	$53820,16846704,1929948363, \cdots$
$p=5$	$2530,495200,34034480, \cdots$	$23751,8373000,1097464620, \cdots$	$231880,133685440,29830376800, \cdots$
$p=6$	$5481,1707000,195525750 \cdots$	$62832,35331000,7670848500, \cdots$	$749398,690413850,254134018600, \cdots$
$p=7$	$10472,4755870,818352528, \cdots$	$141778,116450460,37838531178, \cdots$	$1997688,2691733464,1479039054696, \cdots$

In this section we describe some generic features of the sequences that are obtained for increasing values of p, for various choices of $[\alpha]=\left[p^{k}\right]$. The situation where $[\alpha]=\left[p^{2}\right]$, which is a particular case of the type $[\alpha]=[p, n-p]$ considered in section 4.3 - a "solved case" - (see eqs. (83) or (84)), was already discussed at the end of 4.3 .

We recall from (8) that:

- the k-th row's sum (over g) in the Table of $\left[p^{k}\right]$ is $(p k)!/\left(k!(p!)^{k}\right)$, see OEIS A025035, A025036, A025037, A025038, A025039, for $p=3, \ldots, 7$.
- and from 68 that $C_{p . k,\left[p^{k}\right]}^{(0)}=\frac{1}{p k+1}\binom{p k+1}{k}=\frac{1}{(p-1) k+1}\binom{p k}{k}$.

Genus $g=1$: Observations and conjectures.
For $k=2$, it follows from Prop. 1 below that

$$
\begin{equation*}
C_{2 p,\left[p^{2}\right]}^{(1)}=\frac{p(p-1)^{2}}{2} \tag{94}
\end{equation*}
$$

which are the "pyramidal pentagonal numbers", $\{0,1,6,18,40,75,126,196,288,405, \cdots\}$, see OEIS A002411. Furthermore, we observe that these pyramidal pentagonal numbers factorise the coefficients $C_{p k,\left[p^{k}\right]}^{(1)}$

$$
\begin{equation*}
C_{p k,\left[p^{k}\right]}^{(1)} \stackrel{?}{=} C_{2 p,\left[p^{2}\right]}^{(1)} \phi(p, k) \tag{95}
\end{equation*}
$$

$$
\phi(p, k)=\begin{array}{ccccccl}
0 & 1 & 10 & 70 & 420 & \cdots & \tag{96}\\
0 & 1 & 17 & 202 & 2055 & \cdots & \\
0 & 1 & 24 & 402 & 5760 & \cdots & \\
0 & 1 & 31 & 670 & 12380 & \cdots & 2 \leqslant p \leqslant 7 \\
0 & 1 & 38 & 1006 & 22760 & \cdots & \\
0 & 1 & 45 & 1410 & 37745 & \cdots & \\
& \vdots & & & & &
\end{array}
$$

in which the third column is an arithmetic series $7 p-4$, the fourth $34 p^{2}-38+10$, etc. In other words, the above tables are compatible with the following expressions ${ }^{6}$,

$$
\begin{gather*}
C_{3 p,\left[p^{3}\right]}^{(1)}=\frac{p(p-1)^{2}}{2}(7 p-4) \\
C_{4 p,\left[p^{4}\right]}^{(1)}=\frac{p(p-1)^{2}}{2}\left(34 p^{2}-38 p+10\right) \\
C_{5 p,\left[p^{5}\right]}^{(1)}=\frac{p(p-1)^{2}}{2} \frac{5}{6}\left(169 p^{3}-279 p^{2}+146 p-24\right), \tag{97}\\
C_{6 p,\left[p^{6}\right]}^{(1)}=\frac{p(p-1)^{2}}{2}\left(533 p^{4}-1160 p^{3}+\frac{1813}{2} p^{2}-\frac{599}{2} p+35\right), \\
C_{7 p,\left[p^{7}\right]}^{(1)}=\frac{p(p-1)^{2}}{2} \frac{7}{120}\left(32621 p^{5}-87970 p^{4}+91335 p^{3}-45410 p^{2}+10744 p-960\right) .
\end{gather*}
$$

The constant terms in the polynomial ϕ appear to be (up to a sign $(-1)^{k}$) the "tetrahedral (or triangular pyramidal) numbers": $k\left(k^{2}-1\right) / 6$, A000292.

Genus $g=2$: Observations and conjectures.

$$
\begin{gather*}
C_{3 p,\left[p^{3}\right]}^{(2)} \stackrel{?}{=} \frac{1}{8} p(p-1)^{2}(p-2)\left(27-55 p+26 p^{2}\right) \\
C_{4 p,\left[p^{4}\right]}^{(2)} \stackrel{?}{=} \frac{1}{6} p()^{2} p-1\left(287-1248 p+1908 p^{2}-1218 p^{3}+274 p^{4}\right) \tag{98}\\
C_{5 p,\left[p^{5}\right]}^{(2)} \stackrel{?}{=} \frac{1}{144} p(p-1)^{2}\left(-30576+194318 p-467213 p^{2}+532986 p^{3}-288895 p^{4}+59500 p^{5}\right)
\end{gather*}
$$

In each case, the conjecture has been tested on at least two more values than those used in the extrapolation.

5.2 Cases $[\alpha]=[n-p-q, p, q]$. Partition of n into $k=3$ parts.

All the data that have been collected in that case, when the genus is 0 or 1 , see the Tables in the Appendix, are consistent with the following Ansätze

$$
\begin{array}{ll}
C_{n,[n-p-q, p, q]}^{(0)} & =n(n-1) \\
C_{n,[n-p-q, p, q]}^{(1)} & \stackrel{?}{=}\left(-5(n-1)^{2}+3\left(p^{2}+q^{2}+r^{2}-1\right)+6 p q r+(r+p)(r+q)(p+q)\right) \frac{n}{2} \tag{100}
\end{array}
$$

where in the last expression, the symmetry in the exchange of p, q and $r:=n-p-q$ is manifest; these expressions have to be multiplied by $\frac{1}{2}$ if two of the three integers $p, q, n-p-q$ are equal, and by $\frac{1}{6}$ if $p=q=n-p-q$.

[^4]
6 Tables

Coefficients $C_{n,[\alpha]}^{(g)}$ for $2 \leqslant n \leqslant 15$ and $\alpha_{1}=0$
Partitions without singletons, ordered by increasing number of parts $|\alpha|$ and then by lexicographic order on $[\alpha]$

$\mathrm{n}=15$							
${ }_{[\alpha]}{ }^{g}$	0	1	2	3	4	5	6
[15]	1	0	0	0	0	0	0
[2, 13]	15	90	0	0	0	0	0
[3,12]	15	165	275	0	0	0	0
$[4,11]$	15	225	675	450	0	0	0
[5,10$]$	15	270	1080	1260	378	0	0
[6, 9]	15	300	1400	2100	1050	140	0
[7, 8]	15	315	1575	2625	1575	315	15
[$\left.2^{2}, 11\right]$	105	1290	2700	0	0	0	0
[$2,3,10$]	210	3720	14760	11340	0	0	0
[2, 4, 9]	210	4575	24720	35070	10500	0	0
[2, 5, 8]	210	5145	32760	61215	32340	3465	0
[2, 6, 7]	210	5430	37200	78000	50550	8610	180
[$\left.3^{2}, 9\right]$	105	2490	14835	24920	7700	0	0
[3, 4, 8]	210	5880	43470	102165	66675	6825	0
[3, 5, 7]	210	6420	53010	146040	127290	26940	450
[$3,6^{2}$]	105	3300	28200	81500	77075	19380	650
[$\left.4^{2}, 7\right]$	105	3375	29385	87510	84975	19575	300
[4, 5, 6]	210	7185	67260	221310	252090	79575	3000
[5^{3}]	35	1240	12060	41820	51565	18540	866
$\left[2^{3}, 9\right]$	455	8610	36190	29820	0	0	0
[$\left.2^{2}, 3,8\right]$	1365	33705	208320	336210	96075	0	0
[$\left.2^{2}, 4,7\right]$	1365	38955	293670	644535	347175	25650	0
$\left[2^{2}, 5,6\right]$	1365	41580	342000	853500	579405	74040	0
$\left[2,3^{2}, 7\right]$	1365	42105	344595	853035	522450	38250	0
[2, 3, 4, 6]	2730	94290	886620	2671710	2296950	354000	0
[2, 3, 5 $\left.{ }^{2}\right]$	1365	48825	479040	1530360	1449285	274905	0
[$\left.2,4^{2}, 5\right]$	1365	51240	529425	1816410	1913445	417840	0
[$\left.3^{3}, 6\right]$	455	16905	171635	570805	550950	90650	0
$\left[3^{2}, 4,5\right]$	1365	55020	612705	2303715	2692020	641475	0
[$3,4^{3}$]	455	19215	224925	902400	1158840	321790	0
[$\left.2^{4}, 7\right]$	1365	35250	219660	337050	82350	0	0
$\left[2^{3}, 3,6\right]$	5460	172350	1398740	3159450	1515700	54600	0
[$\left.2^{3}, 4,5\right]$	5460	188025	1708035	4524870	2847420	185640	0
$\left[2^{2}, 3^{2}, 5\right]$	8190	304335	2994180	8823360	6327465	461370	0
[$\left.2^{2}, 3,4^{2}\right]$	8190	319605	3329865	10604790	8605395	780780	0
$\left[2,3^{3}, 4\right]$	5460	229365	2581215	9060870	8289600	854490	0
[3^{5}]	273	12330	149674	576660	593303	69160	0
$\left[2^{5}, 5\right]$	3003	97140	761880	1493520	482292	0	0
[$\left.2^{4} 3,4\right]$	15015	554250	5104260	12450900	5524200	0	0
$\left[2^{3}, 3^{3}\right]$	10010	399660	4013730	10965465	5632135	0	0
[$\left.2^{6}, 3\right]$	5005	180180	1471470	2622620	450450	0	0

Table of $S_{n, k}^{(g)}$, from $n=1$ to $n=15$
This table can be obtained either directly, by generating for each n all partitions with a fixed number of parts, then calculating their genus, or, indirectly, by summing appropriate rows of the table of the genus dependent Faà di Bruno coefficients, while taking into account singletons (since the following is a table for $S_{n, k}^{(g)}$, not for $\left.\widehat{S}_{n, k}^{(g)}\right)$. For each value of n the number of parts, k appears vertically, and the genus $g=0,1, \ldots$ increases in each row.

Table of $\widehat{S}_{n, k}^{(g)}$, from $n=2$ to $n=15$
This table can be obtained either directly, by generating, for each n, all partitions without singletons, with a fixed number of parts, then calculating their genus, or, indirectly, by summing appropriate rows of the table of the genus dependent Faà di Bruno coefficients (without singletons). For each value of n the number of parts, k appears vertically, and the genus $g=0,1, \ldots$ increases in each row. Warning: the table starts at $n=2$.

Acknowledgements

After the present article was made available as a preprint (its version 1 on arXiv) we received several comments from A. Hock suggesting that several partitions functions obtained in the present paper could be re-written by using changes of functions suggested by the formalism of topological recursion. This is in particular so for $g=1$ in the case of partitions into three equal parts where expressions (97) presented as conjectures in the first version of our paper could be proved by A. Hock by using this method. We understand that this discussion will be the subject of a forthcoming publication 10 .

It is also a pleasure to thank G. Chapuy, P. Di Francesco and E. Garcia-Failde for stimulating discussions.

References

[1] É. Brézin, C. Itzykson, G. Parisi and J.-B. Zuber, Planar diagrams, Comm. Math. Phys. 59 (1978) 35-51
[2] J. B. Caicedo, V. H. Moll, J. L. Ramirez and D. Villamizar, Extensions of Set Partitions and Permutations, The Electronic Journal of Combinatorics 25 (2019) 2.20
[3] G. Chapuy, Combinatoire bijective des cartes de genre supérieur, PhD thesis 2009, https://pastel.archives-ouvertes.fr/pastel-00005289v1
[4] R. X. F. Chen and C. M. Reidys, Narayana polynomials and some generalizations, http: //arxiv.org/abs/1411.2530
[5] R. Cori and G. Hetyei, Counting genus one partitions and permutations, http://arxiv.org/ abs/1306.4628 [math.CO], 2013, Sém. Lothar. Combin. 70 (2013)
[6] R. Cori and G. Hetyei, Counting partitions of a fixed genus, http://arxiv.org/abs/1710. 09992 The Electronic Journal of Combinatorics 25
[7] P. Cvitanovic, Planar perturbation expansion, Phys. Lett. 99B (1981) 49-52
[8] A. Goupil and G. Schaeffer, Factoring N-cycles and counting maps of given genus, Europ. J. Combinatorics 19 (1998) 819-834
[9] J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457-485
[10] A. Hock, Genus partitions, Work in progress. To appear.
[11] D.M. Jackson, Counting cycles in permutations by group characters, with an application to a topological problem, Transactions of theAmerican Mathematical Society 299 (1987), 785-801
[12] A. Jacques, Sur le genre d'une paire de substitutions, C. R. Acad. Sci. Paris 267 (1968), 625-627
[13] G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math., 1 (1972) 333-350
[14] S.K. Lando and A.K. Zvonkin, Graphs on Surfaces and Their Applications, with an appendix by D. Zagier, Encycl. of Math. Sci. 141 (2004), Springer
[15] R. Speicher, Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Annalen, 298 (1994) 611-628
[16] https://oeis.org/
[17] T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus I, J. Combinatorial Theory B 13 (1972), 192-218
[18] T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus II, J. Combinatorial Theory B 13 (1972), 122-141
[19] M. Yip, Genus one partitions, PhD thesis, University of Waterloo, 2006
[20] J.-B. Zuber, Counting partitions by genus. I. Genus 0 to 2, http://arxiv.org/abs/2203. 05875

[^0]: ${ }^{1}$ Sometimes we shall refer to some OEIS sequence because it is known to count the partitions under study, but sometimes it only means that the sequence is recognized as one present in OEIS, but not necessarily recognized as relevant for the chosen context.

[^1]: ${ }^{2}$ More generally one could introduce s-associated Bell or Stirling numbers by imposing that each part contains at least s elements but in the present paper we consider only the case $s=2$. See 2

[^2]: ${ }^{3}$ It therefore coincides with $B_{k}^{(0)}$.
 ${ }^{4} c_{p, q}$ is the number of permutations of p elements that have q distincts cycles. They are positive integers such that $s_{p, q}=(-1)^{p-q} c_{p, q}$ where the $s_{p, q}$, the Stirling numbers of the first kind, obey $\sum_{p \geqslant 1} S_{n, p} s_{p, q}=\delta_{n, q}$.

[^3]: ${ }^{5}$ We are quite grateful to Philippe Di Francesco for this suggestion

[^4]: ${ }^{6}$ These expressions (eqs 97 , were presented as conjectures when the first version of our paper was posted as a preprint to arXiv but they have been subsequently proved by A. Hock: see our comments in the acknowledgments section.

