

$\label{eq:2.1} ZnWO4\ grains\ characterisation\ for\ GRAiNITA-a\\ new-generation\ calorimeter$

Giulia Hull, Ianina Boiaryntseva, Jacques Lefrancois, I. Tupitsyna, A.-M. Dubovik, S. Barsuk, M.-H. Schune, S. Monteil, D. Breton, A. Boyarintsev

▶ To cite this version:

Giulia Hull, Ianina Boiaryntseva, Jacques Lefrancois, I. Tupitsyna, A.-M. Dubovik, et al.. ZnWO4 grains characterisation for GRAiNITA – a new-generation calorimeter. IEEE Nuclear Science Symposium and Medical Imaging Conference, Nov 2022, Milan, Italy. hal-04269276

HAL Id: hal-04269276 https://hal.science/hal-04269276

Submitted on 3 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ZnWO₄ grains characterisation for GRAINITA – a new-generation calorimeter

G. Hull¹, I. Boiaryntseva^{1,2}, J. Lefrancois¹, I. Tupitsyna², A.-M. Dubovik², S. Barsuk¹, M.-H. Schune¹, S. Monteil³, D. Breton¹, A. Boyarintsev² ¹ Université Paris-Saclay, CNRS-IN2P3, IJCLab, Orsay, France

²Institute of Scintillation Materials of the National Academy of Science of Ukraine, Kharkiv, Ukraine

³ Université Blaise Pascal, CNRS-IN2P3, LP-Clermont, Aubiere, France

Laboratoire de Physique des 2 Infinis

Introduction: The electromagnetic calorimeters for high-energy physics experiments are often based on the use of scintillator materials and, in order to contain the cost of the detectors, the sampling technique is privileged with respect to the use of uniform inorganic crystals. With **GRAINITA**, we propose a new version of the Shashlik detector, for possible application in FCC e+e- experiments. The idea is to use, in the same volume, a mixture of high-Z scintillator grains and a high-density transparent liquid as absorber. Due to the stochastic confinement of the light, as in the LiquidO detection technique [1], the scintillation light remains localized in the zone of production and it can be collected on SiPMs, by means of wavelength shifting fibres, uniformly distributed in the detection volume. This new detector will provide extremely fine sampling of the electromagnetic shower and for this reason a very good photon energy resolution (R~2%/ \sqrt{E}) is expected with respect to conventional Shashlik detectors (typically R~10%/ \sqrt{E} , [2]).

The GRAINITA detector

Opaque scintillator technique for the development of a new Shashlik calorimeter with extremely fine sampling

Candidates scintillators: ZnWO₄ and BGO Candidate absorber: CH₂I₂

Shashlik calorimeter: alternating layers of scintillator and absorber

- \rightarrow For improved high energy and very good sampling
- \rightarrow For costs reduction costs: grains production is less expensive than volumetric crystals production
- \rightarrow For good energy measurements of the jets: study of the possibility of measuring the fraction of energy in the shower via Pulse Shape Discrimination.

ZnWO₄ can be produced directly in grain-shape via spontaneous crystallization X-ray excited emission spectrum

BGO can be reduced in the form of grains with the

• LY= 10 kph/MeV

- $\tau = 20 \ \mu s$
- $Z_{eff} = 61$
- $\lambda_{max} = 490 \text{ nm}$ • Crystal price/grains price = 2.5

• LY= 8-10 kph/MeV

• $\tau = 300 \text{ ns}$

X-ray excited emission spectrum

	ZnWO ₄	CH_2I_2	Mix
Density [g/cm ³]	7.62	3.32	5.47
Refractive index	2.1	1.74	
X ₀ [cm]	1.2	2.67	1.65
Molière radius[cm]	1.98	4.58	2.77

BGO CH_2I_2 Mix Density [g/cm³] 7.13 3.32 5.47 **Refractive index** 1.74 2.15 1.12 X₀ [cm] 2.67 1.50 Molière radius [cm] 2.26 4.58 2.84

Crystal grains production

ISMA developed the technique to grow ZnWO₄ single crystal granules using the flux method. Several methods have been investigated:

- **NaCl as a solvent + ZnWO₄ salt**: ZnWO₄ grains yield \approx 10 wt %; 44% of grains with size > 1mm, 33% of grains with size between 0.5 and 1 mm.
- Na₂WO₄ as a solvent + ZnO and WO₃ : ZnWO₄ grains yield ≈ 25 wt % but brownish color
- Na₂WO₄ as a solvent + ZnWO₄ salt: ZnWO₄ grains yield \approx 85 wt %, colorless and transparent, average

ZnWO₄ scintillation properties: grains vs crystals

The experimental set-up:

- ZnWO₄ crystals: $2 \times 2 \times 4 \text{ cm}^3$ and $1 \times 1 \times 1 \text{ cm}^3$
- ZnWO₄ plates (cut from the same single crystal) : 2 cm x 2 cm, different thickness: 0.85 mm, 1.03 mm, 2.14 mm, 3.14 mm, 4.25 mm
- ZnWO₄ grains, approximate later size: 0.5÷1.5 mm
- High gain PMT Hamamastu R2083, silicon grease, teflon tape
- Integrator circuit: $\tau_{\rm RC} = 100 \ \mu s$
- Digital oscilloscope: LeCroy WavePro 715Zi (acquisition at 100MS/s)
- ²⁴¹Am (60keV, completely absorbed in one grain), ¹³⁷Cs, ²²Na, ¹³³Ba sources

• $Z_{eff} = 73$ • $\lambda_{\rm max} = 480 \, \rm nm$ • Crystal price/grains price > 1.1

« Planetary Ball Milling » technique:

size of grains ≈ 1 mm lateral size.

1st batch: 40 g Size ~ 1÷3 mm

2nd batch: 170 g 3rd batch: 1380 g Size ~ 1 mm Size ~ 1÷2 mm

For **GRAINITA**, ZnWO₄ crystalline grains were grown with the flux method from thoroughly mixed ZnWO₄ (5N) and Na₂WO₄ (4N) starting materials, as this resulted to be the best effective solution to obtain sub-millimetric grains. Starting materials were charged into Pt crucible, placed into the resistive heating furnace, heated up to T=1250°C and then kept for 10 hours at this temperature to assure complete homogenization of the melt. According to he required size of the grains, the melt was cooled down to 750°C and then it was allowed to spontaneous cooling down to room temperature. Obtained ZnWO₄ crystalline grains were rinsed in distilled water at 100°C and dried at T= 400°C.

Spectrophotometer: PerkinElmer Lambda 850 UV/Vis

The light yield and energy resolution of a 1cm³ ZnWO₄ crystal are comparable with that of a same-sized BGO. At 662 keV we measured an energy resolution of 12.9% for ZnWO₄ and 13% for BGO.

The second production of grains shows a much smaller variance in the amplitude of the ²⁴¹Am peak at 60keV, thus indicating a better homogeneity in the grains light yield.

	Max Amp	Sigma	
Crystals	[mV]	[mV]	
l grain 1st batch	257.1	36.1	
l grain 1st batch	307.7	34.9	PMT
I grain 2nd batch	302.5	32.9	
I grain 2nd batch	290.2	36.6	
Grains 1st batch	260.7	59.2	
Grains 2nd bacth	292.7	43.1	PMT
).85 mm plate	298.2	36.9	
1.03 mm plate	300.3	34.0	
2.14 mm plate	284.2	36.6	PMT
3.14 mm plate	266.9	35.1	
1.25 mm plate	272.8	34.5	
·			
L cm ³ crystal	181.4	26.7	PMT
2x2x4 cm ³ crystal	125.9	23.2	

ΡΜΤ

Transmittance spectra for ZnWO₄ samples of different thickness

Conclusions and future work

Crystalline grains of ZnWO₄, grown with the flux method, proved to have scintillation properties comparable with that of volumetric optics. The latest batch of grains produced by ISMA (delivered at the end of October) is enough to assemble a medium-size prototype with approximate size of 5 cm x 5 cm x 10 cm and equipped with 16 WLS fibers, and SiPMs for the signal read-out. At present, we are working on the selection of the best suited optical fiber to be coupled to ZnWO₄ and BGO grains, respectively, as well as on the selection of the best suited liquid to be used as absorber. In the next future, we intent to develop two medium-size GRAiNITA prototypes, employing BGO and ZnWO₄ grains respectively, and to characterize the detectors response with cosmic rays and during an in-beam campaign.

Acknowledgements: This work was supported by IJCLab and by the "PAUSE - Solidarité Ukraine" of the University Paris-Sacaly

[1] A. Cabrera for the LiquidO Consortium, "Neutrino physics with an opaque detector", Comm. Phys. 4, 273 (2021)

[2] S. Barsuk for the LHCb Calorimeter Group, "The Shashlik electro- magnetic calorimeter for the LHCb experiment", LHCb-PROC-2004-006, 11th Intern. Conf. On Calorimetry In HEP, Perugia (Italy) 2004

[3] Reynolds M.L., Hagston W.E., Garlick G.F.J., Experimental Observations of the Absorption, Infra-Red Emission, and Excitation Spectra of Cr³⁺ Ions in ZnWO4, Physica Status Solidi (b), vol. 30, issue 1 (1968) pp. 113-117, 10.1002/pssb.19680300114