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We prove non-convergence theorems towards an unstable equilibrium (or a trap) for stochastic processes. The processes we consider are continuous-time or discrete-time processes and can be pertubations of the flow generated by a vector field. Our results extend previous results given for discrete-time processes by O. Brandière and M. Duflo in [BD96; Duf96], by R. Pemantle in [Pem90] and by P. Tarrès in [Tar00]. We correct and give a correct formulation to some theorems stated in [BD96; Duf96]. The method used to prove some of our theorems follow a method introduced by P. Tarrès in [Tar00]. Finally our non-convergence theorems are applied to give correct proofs of the non-convergence towards traps for the empirical measure of vertex reinforced random walks in [BRS13] and for non-backtracking vertex reinforced random walks in [LR18].

For Z a càdlàg process in R d , we will set Z t-:= lim s↑t Z s the left limit of Z at t > 0, ∆Z t = Z t -Z t-the jump of Z at t > 0, and Z s,t = Z t -Z s the increment of Z between s and t.

The total variation on an interval (s, t] of a càdlàg real-valued process Z will be denoted by V (Z, (s, t]) and is defined by

V (Z, (s, t]) = sup P n i=1 |Z t i -Z t i-1 |
where the supremum is taken other all partitions P = {s = t 0 < t 1 < • • • < t n = t} of (s, t]. Then t → V (Z, (0, t]) is càdlàg and defines a measure on (0, ∞). If V (Z, (0, t]) < ∞ for all t, then Z will be said to have finite variations.

The quadratic variation on an interval (s, t] of a càdlàg semimartingale Z is denoted [Z] s,t and is defined as the limit in probability of n i=1 |Z t i -Z t i-1 | 2 as the mesh of the partition P = {s = t 0 < t 1 < • • • < t n = t} of (s, t] goes to 0. The quadratic variation of Z on (0, t] is denoted [Z] t and we have that [Z] s,t = [Z] t -[Z] s , if s ≤ t. In the case Z has finite variations, we have that [Z] s,t = s<u≤t (∆Z u ) 2 . The quadratic covariation process of two càdlàg semimartingales Z and

Z ′ is defined by [Z, Z ′ ] := 1 4 ([Z + Z ′ ] -[Z -Z ′ ]
). Note that if Z or Z ′ has finite variations, then [Z, Z ′ ] s,t = s<u≤t (∆Z u )(∆Z ′ u ). A semimartingale Z is said purely discontinuous if its quadratic variation [Z] is a finite variation pure-jump process, i.e. [Z] s,t = s<u≤t (∆Z u ) 2 . If Z and Z ′ are two purely discontinuous semimartingales then [Z, Z ′ ] s,t = s<u≤t (∆Z u )(∆Z ′ u ). If M is a locally square integrable local martingale, its predictable quadratic variation process is well defined and is the predictable process, denoted M , such that [M ] -M is a local martingale. If M and M ′ are two locally square integrable local martingales, then we define the predictable quadratic covariation process M, M ′ := 1 4 ( M + M ′ -M -M ′ ) and we have that [M, M ′ ] -M, M ′ is a local martingale.

Let •, • be an inner product on R d , with associated norm denoted by • . We will denote by x 1 , . . . , x d the coordinates of x ∈ R d in an orthonormal basis for this inner product.

If Z is a càdlàg process in R d such that for all i, Z i is a semimartingale, we will set V (Z, (s, t]) = i V (Z i , (s, t]), [Z] t = i [Z i ] t and [Z] s,t = i [Z i ] s,t . And when Z i is a local martingale for each i, we will set Z t = i Z i t and Z s,t = i Z i s,t .

Let N be an open set of R d and ν ∈ (0, 1]. A function f : R d → R δ will be said to belong to C 1+ν (N ) if the restriction of f to N is C 1 with a ν-hölderian differential Df . We will also say that f ∈ C 2 (N ) if f restricted to N is C 2 (note that a function f may belong to C 1+1 (N ) but not to C 2 (N )).

If τ : [0, ∞) → [0, ∞) is a right-continuous non-decreasing function, its right-continuous inverse is the right-continuous non-decreasing function τ -1 : [0, ∞) → [0, ∞) defined by τ -1 (t) = inf{s : τ (s) > t}.

We will denote by M d (R) (resp. M d (C)) the set of d × d-matrices with real-valued (resp. complex-valued) entries. A vector x in R d will be viewed as a column x =   

x 1 . . .

x d    .

Introduction

The question of how traps are avoided by stochastic approximation algorithms has been studied by several authors (see [Pem90; BD96; Ben99; Tar00; BF12] and the survey [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF]). In this paper, we address the same question to continuous-time stochastic processes and apply these results to discretetime random processes (i.e. stochastic algorithms). This permits to extend previous results given in [START_REF] Pemantle | Nonconvergence to unstable points in urn models and stochastic approximations[END_REF] and in [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF]. A correction of the proof and a correct formulation of [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][Théorème 1] are also given (see Theorem 2.1.4 and remarks 2.8 and 2.9).

Giving a correction to [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][Théorème 1] had to be done: This theorem has been applied by many different authors (here is a non-exhaustive list: [LP19; GPS18; BFH13; FT11; LPT04; BP03; Yao00; DLM99] a more complete list is given in zbMath or in Mathscinet).

In the continuous-time setting the only known results are [START_REF] Benaim | Self-interacting diffusions. III: Symmetric interactions[END_REF][Theorem 2.26] (for a class of self-interacting diffusions) and [START_REF] Raimond | Strongly vertex-reinforced jump process on a complete graph[END_REF][Theorem 5.12] (which is quite general but that only allows a certain class of traps, i.e. a repulsive equilibrium x * of a C 1 vector field F such that DF (x * ) = λI, with λ > 0 and I the identity matrix).

In continuous-time the stochastic processes we consider take their values in R d and satisfy an equation such as

X t = X 0 + t 0 F s ds + M t + R t , ∀t ≥ 0,
where M is a càdlàg martingale, F is a progressively measurable process and R is a càdlàg adapted process with finite variations. In discrete-time the random sequences we consider satisfy

X n+1 -X n = γ n+1 G n + c n+1 (ε n+1 + r n+1 ), ∀n ≥ 0,
where ε n+1 is a martingale increment, G and r are adapted sequences, and where γ and c are sequences of non-negative real numbers. We will especially be interested to the case where F t = γ t f (X t ) (with γ t ≥ 0) and G n = f (X n ), with f a C 1 -function. A trap is an unstable equilibrium x * of f , i.e. f (x * ) = 0 and Df (x * ) has an eigenvalue with a positive real part. The goal is to give sufficient conditions ensuring the a.s. non-convergence of X towards an unstable equilibrium x * . A typical situation in discrete-time is the case γ n = c n = 1 n . If one supposes that n r n 2 < ∞ and that ε n is bounded, then to prove that X n cannot converge towards an unstable equilibrium is not straightforward. Additional assumptions on the noise ε n are required.

The main contributions of this paper are the following ones:

• A careful study of the continuous-time setting.

• Theorem 2.2.4, that gives (in the discrete-time setting) a correct formulation of [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][Théorème 1] and extends [START_REF] Pemantle | Nonconvergence to unstable points in urn models and stochastic approximations[END_REF][Theorem 1] (see Remark 2.11). • Theorem 2.3.1 that extends [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF][Theorem 9.1]: in [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF][Theorem 9.1], it is supposed that γ n = c n are such that e -c/γn < ∞ for all c > 0 and such that lim n→∞ γ α n k≥n γ 2 k . This is not required in Theorem 2.2.4. Note that Theorem 2.3.1 is essentially equivalent to [START_REF] Tarrès | Pièges répulsifs[END_REF][Theorem 2]. • Giving stronger results for excitations of order k ≥ 2 (see [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][Corollary 5]), our results are stated as a remark at the end of Section 4. These results can easily be obtained by passing through the continuous time. • In all our results, the assumptions on γ are weaker than for the previously shown nonconvergence theorems. which deals only with one-dimensional stochastic algorithms) the following condition on γ:

n γ n = ∞ and γ n = O(c n ) with c n such that n c 2 n < ∞. This condition is replaced in Theorem 2.2.4-(ii) by n c 2 n < ∞ and n>t γ 2 n = 0 n>t c 2 n as t → ∞.
The proof of Theorem 2.1.1 given in this paper essentially follows the proof of [Tar00][Theorem 1]. In the note [START_REF] Tarrès | Pièges répulsifs[END_REF], P. Tarrès proved a non-convergence theorem for one-dimensional stochastic algorithms (note that to extend its proof to multi-dimensional stochastic algorithms or to the continuous-time setting is not straightforward).

Let us give the content of this paper in a little more detail: The continuous-time results are stated in Section 2.1. We first suppose that F t is such that X t-, F t ≥ 0 and state the non-convergence Theorem 2.1.1 and Proposition 2.1.2. These results are proved in section 3.1.

We then suppose that F t = γ t H t X t , with γ t ≥ 0 and H t a matrix that converges as t → ∞ towards a repulsive matrix H, i.e. a matrix such that its eigenvalues all have a positive real part. Applying Theorem 2.1.1 to this setting allows us to prove Corollary 2.1.3, which is proved in Section 3.2. We finally suppose that F t = γ t f (X t ), with γ t ≥ 0 and f a C 1 vector field and state the main theorem in continuous time: Theorem 2.1.4. Sufficient conditions are given in Theorem 2.1.4 for the a.s. non-convergence of X towards an unstable equilibrium. Theorem 2.1.4 roughly says that if x * is unstable and if X is "sufficiently" excited towards the unstable directions of x * then X cannot converge towards x * . The proof of Theorem 2.1.4 is given in Section 3.3.

The last theorem in continuous-time is Theorem 2.1.5. This theorem is proved in Section 3.4. Theorem 2.1.5 is not implied by Theorem 2.1.4 and can be useful in many applications. Again Theorem 2.1.5 gives sufficient conditions for the a.s. non convergence towards an unstable equilibrium. This theorem permits to deal with situations where for example f is C 1+ν in the neighborhood of an unstable equilibrium and condition (ii

) (i.e. s≥t M - s 1+ν = o(α t ))
of Theorem 2.1.4 is not satisfied. But, giving additional assumptions on f and on γ we first show that, a.s. on the event {lim t→∞ X t = x * }, the process X is attracted sufficiently fast towards the unstable manifold of x * . This ensures that X is close after a large time to a stochastic process Y + for which condition (i) of Theorem 2.1.4 is satisfied. This permits to prove Theorem 2.1.5. In Section 2.3, sufficient conditions ensuring the non-convergence towards a normally hyperbolic set (for example, an "unstable" orbit) are given in Theorem 2.3.1. This theorem is proved as a corollary of Proposition 2.2.2.

In Section 3 (respectively in Section 4) the proofs of the continuous-time non-convergence theorems 2.2.1, 2.2.2 and 2.2.4 (respectively discrete-time non-convergence theorems) are given.

In Section 5, we give two examples where Theorem 2.2.5 can be used to give correct proofs of Theorem 3.9 in [START_REF] Benaim | Self-interacting diffusions. III: Symmetric interactions[END_REF] and Theorem 3.27 (with additional assumptions that are satisfied for NBVRRWs) in [START_REF] Line | Vertex reinforced non-backtracking random walks: an example of path formation[END_REF]. Theorem 2.1.5 could also be used to prove Theorem 6.13 in [START_REF] Raimond | Strongly vertex-reinforced jump process on a complete graph[END_REF], and Theorem 2.1.4 could be used to prove Theorem 2.26 in [START_REF] Benaim | Self-interacting diffusions. III: Symmetric interactions[END_REF] and Lemma 4.9 in [START_REF] Benaim | Self-interacting diffusions[END_REF].

Presentation of the results

2.1. Non-convergence results for continuous-time stochastic processes. Let •, • be an inner product on R d and let X be a càdlàg stochastic process in R d such that (2.1)

X t -X 0 = t 0 F s ds + M t + R t

where

• F is a progressively measurable process,

• For each i, M i is a càdlàg locally square integrable martingale,

• For each i, R i is a càdlàg adapted process with finite variations.

Remark 2.1. These last two assumptions do not depend on the inner product •, • , i.e. if they are satisfied for one inner product, they are satisfied for all inner product.

Let

• Γ be an event,

• α : [0, ∞) → (0, ∞) be a non-increasing càdlàg function such that lim t→∞ α(t) = 0,

• τ : [0, ∞) → [0, ∞) be a non-decreasing càdlàg function such that τ (t) > t for all t > 0 and such that lim n→∞ τ n (t) = ∞ for all t > 0 (with (τ n ) n≥0 defined by

τ n+1 = τ n • τ if n ≥ 0 and τ 0 (t) = t if t ≥ 0). • κ : [0, 1] → [0, 1] be a càdlàg increasing function such that for all p ∈ [0, 1], κ(p) ≥ p. • E be a càdlàg adapted process taking its values in [0, ∞] such that a.s. on Γ (2.2) E[ ∆M S 2 1 S<∞ |F t ] κ(P[S < ∞|F t ]) ≤ E t
for all t ≥ 0 and all stopping times S larger than t. In practice, the function κ and the process E will be defined by κ(p) = p b for some b ∈ (0, 1] and by E t = k 2 α 2 t for some k ∈ (0, ∞). Our first result, proved in Section 3.1, is the following one: Theorem 2.1.1. Suppose that there are a constant ρ > 0 and a finite random variable T 0 such that a.s. on Γ,

X t-, F t ≥ 0,
for almost all t ≥ T 0 such that X t-< ρ, (2.3)

α 2 t -α 2 τ (t) = O M t,τ (t) (2.4) M t,∞ = O α 2 t , (2.5) V (R, (t, ∞)) = o(α t ), (2.6) E t = O(α 2 t ). (2.7) Then it holds that P[Γ ∩ {lim t→∞ X t = 0}] = 0.
Remark 2.2. The assumptions (2.3), (2.4), (2.5), (2.6) and (2.7) do not depend on the inner product •, • , i.e. if they are satisfied for one inner product, they are satisfied for all inner product.

Assuming a stronger assumption on F allows to have a weaker assumption on R:

Proposition 2.1.2. Let γ : [0, ∞) → [0, ∞) be a measurable function such that lim t→∞ γ t = 0 and such that ∞ t γ 2 s ds = O(α 2 t ). Suppose that R t = R ′ t + t 0 r ′′ s ds
, with R ′ a càdlàg apdpted proces with finite variations and r ′′ a càdlàg adapted process, and that there are constants ρ > 0, ν > 1 2 and a finite random variable T 0 such that a.s. on Γ, (2.4), (2.5) and (2.7) are satisfied and that

X t-, F t ≥ γ t X t- 2 ,
for almost all t ≥ T 0 such that X t-< ρ, (2.8)

V (R ′ , (t, ∞)) = o(α t ), (2.9) r ′′ t = O(γ 1+ν t ). (2.10)
Then it holds that P[Γ ∩ {lim t→∞ X t = 0}] = 0.

Remark 2.3. When X is a non-negative one-dimensional process, it suffices to suppose in Proposition 2.1.2 that R is such that R t ≥ R ′ t + t 0 r ′′ s ds, with R ′ a càdlàg adapted process with finite variations and r ′′ a càdlàg adapted process such that a.s. on Γ, (2.9) and (2.10) are satisfied.

Theorem 2.1.1 and Proposition 2.1.2 will be proved in Section 3.1. In Section 3.2, the following corollary of Theorem 2.1.1 will be proved:

Corollary 2.1.3. For each t ≥ 0, let γ t be non-negative and H t be a M d (R)-valued random matrix. Let H ∈ M d (R) be a repulsive matrix, i.e. a matrix such that its eigenvalues all have a positive real part. Suppose that there is a finite random variable T 0 such that a.s. on Γ,

• F t = γ t H t X t-for almost all t ≥ T 0 ;

• lim t→∞ H t = H;

• conditions (2.4), (2.5), (2.6) and (2.7) are satisfied. Then it holds that P[Γ ∩ {lim t→∞ X t = 0}] = 0.

For the two remaining theorems, respectively proved in sections 3.3 and 3.4, we let x * ∈ R d and f : R d → R d be a function such that f is C 1 in a convex neighborhood N * of x * . We will suppose that x * is an equilibrium for f , i.e. f (x * ) = 0. The equilibrium x * is said to be repulsive (resp. unstable) if the eigenvalues of Df (x * ) all have a positive real part (resp. if there is an eigenvalue of Df (x * ) having a positive real part).

The characteristic polynomial Π * of H * := Df (x * ) can be written as the product of two polynomials Π + and Π -, such that all roots of Π + (respectively of Π -) all have a positive real part (respectively all have a non-positive real part). Let δ + and δ -be respectively the dimension of the kernel of Π + (H * ) and the dimension of the kernel of Π -(H * ). Then there are an invertible matrix

P ∈ M d (R), a matrix H + ∈ M δ + (R) and a matrix H -∈ M δ -(R) such that • P -1 Df (x * )P = diag[H + , H -] = H + 0 0 H -;
• The eigenvalues of H + all have a positive real part, i.e. H + is repulsive;

• The eigenvalues of H -all have a non-positive real part, i.e. H -is non-repulsive. Note that if x * is unstable then δ + ≥ 1 and if x * is repulsive then δ + = d. For x ∈ R d , set y := P -1 x. Let (y + , y -) ∈ R δ + × R δ -be such that y = y + y -. Then P -1 Df (x * )P y =

H + y + H -y -. Set M ± = (P -1 M ) ± and R ± = (P -1 R) ± .
Theorem 2.1.4. Let γ : [0, ∞) → [0, ∞) be a measurable function and suppose that a.s. on Γ,

• F t = γ t f (X t ), for almost all t ≥ 0;

• conditions (2.4) and (2.5) are satisfied by M + , (2.6) and (2.7) are satisfied, and

M - t,τ (t) = O( M + t,τ (t)
). Suppose also that one of the three following conditions is satisfied

(i) x * is repulsive; (ii) x * is unstable, f ∈ C 1+ν (N * ) for some ν ∈ (0, 1],
M is a purely discontinuous martingale and s≥t ∆M -

s 1+ν = o(α t ) on Γ ∩ {lim t→∞ X t = x * }; (iii) x * is unstable, f ∈ C 2 (N * ) and s≥t ∆M - s 2 = o(α t ) on Γ ∩ {lim t→∞ X t = x * }.
Then it holds that P[Γ ∩ {lim t→∞ X t = x * }] = 0.

Remark 2.4. Note that if a.s. on Γ, M + satisfies (2.5) and M - t,τ (t) = O( M + t,τ (t) ), then a.s. on Γ, M -satisfies (2.5). Indeed, a.s. on Γ,

M - t,∞ = ∞ n=1 M - τ n-1 (t),τ n (t) = O ∞ n=1 M + τ n-1 (t),τ n (t) = O( M + t,∞ ) = O(α 2 t ).
Note also that if a.s. on Γ, M + satisfies (2.4) and M - t,τ (t) = 0(α 2 tα 2 τ (t) ), then a.s. on Γ, M - t,τ (t) = O( M + t,τ (t) ). Remark 2.5. Theorem 2.1.4 implies 1 [RN21][Theorem 5.12], which states the non-convergence towards a repulsive equilibrium x * of f such that Df (x * ) = λI, with λ > 0. Theorem 2.1.4 can also be used to prove [START_REF] Benaim | Self-interacting diffusions. III: Symmetric interactions[END_REF][Theorem 2.26] (in which it is proved that a.s. the empirical occupation measure of a self-interacting diffusion doesn't converge towards an unstable equilibrium of a vector field defined on the space of probability measures on a compact manifold).

There are examples (see Section 5) where the condition s≥t ∆M - s 1+ν = o(α t ) in (ii) of Theorem 2.1.4 is not satisfied, but where α t decreases towards 0 sufficiently fast, so that X is strongly attracted by the local unstable manifold in a neighborhood of x * . The following theorem allows to deal with such situations.

When x * is an unstable equilibrium for f such that δ -≥ 1, we will denote by µ the largest real number such that every eigenvalue of H -has a real part less or equal to µ. Then µ ≤ 0 and if x * is hyperbolic then one has that µ < 0.

Theorem 2.1.5. Let γ : [0, ∞) → [0, ∞) be a measurable function and suppose that F t = γ t f (X t ), for almost all t ≥ 0. For t ≥ 0, set m(t) = t 0 γ s ds and suppose that (i) x * is an hyperbolic unstable equilibrium of f and that condition (3.16) of Section 3.4.1 is satisfied for some constant ν > 0. 2 (ii) the function γ is such that

• ∞ 0 γ s ds = ∞; • λ := lim sup t→∞ log(α(t)) m(t)
< 0; > β(1 + ν) becomes λ > β(1 + ν) which is equivalent to λ > µ(1 + ν) (since β = sup{λ, µ} and ν > 0). For example, when α t = t -1/2 and γ t = (t + 1) -1 , we have m(t) = log(t + 1) and λ = -1/2. And this condition becomes µ(1 + ν) < -1/2. Conditions (i) and (ii) ensure that a.s. on Γ ∩ {lim t→∞ X t = x * }, X is attracted sufficiently fast by the unstable manifold (see Lemma 3.4.3). Then X will be close after a large time to the stochastic process Y + for which condition (i) of Theorem 2.1.4 will be satisfied. This will allow to prove the almost sure non-convergence of X towards x * on Γ.

• lim inf t→∞ log(α(t)) m(t) > β(1 + ν),
2.2. Non-convergence results for discrete-time stochastic processes. The question of avoiding traps for random processes is usually studied for stochastic algorithms, i.e. for (X n ) n∈N a random sequence in R d , adapted to a filtration (F n ) n∈N , such that for all n ≥ 0,

(2.11) X n+1 -X n = γ n+1 G n + c n+1 (ε n+1 + r n+1 ), 1 Not completely true since the condition E 1Γ ∞ t
Rs ds 2 = o(α 2 t ), given in [START_REF] Raimond | Strongly vertex-reinforced jump process on a complete graph[END_REF], does not imply that a.s. on Γ, ∞ t

Rs ds = o(αt).

2 A sufficient condition for (3.16) to be satisfied is that f is C 1+ν in a neighborhood of x * and that Df (x)v = 0 for all x in the local unstable manifold and v ∈ Π -(H * ), the vector space generated by the stable directions.

where

(γ n ) n≥0 and (c n ) n≥0 are non-negative deterministic sequences, (ε n ) n≥0 , (r n ) n≥0 and (G n ) n≥0 are adapted sequences such that for all n ≥ 0, E[ε n+1 |F n ] = 0 and E[ ε n+1 2 |F n ] < ∞.
We will assume that c n = 0 infinitely often and that n c 2 n < ∞. The results stated in this section are all corollaries of the theorems stated in Section 2.1, these theorems being applied to the time-continuous stochastic process X defined below. For t ≥ 0 and n = ⌊t⌋, set F t = F n . Then (F t ) t≥0 is a complete right-continuous filtration. Let us define the càdlàg processes F , M , R and X such that for all n ≥ 0 and t ∈ [n, n + 1),

(2.12)

F t = γ n+1 G n , M t = n k=1 c k ε k , R t = n k=1 c k r k and X t = X n + t n F s ds. (2.13) Then (2.1) is satisfied by X, F , M and R.
The details of the proofs of the following theorems are given in Section 4.

Theorem 2.1.1 implies the following theorem that extends Theorem 1 in [START_REF] Tarrès | Pièges répulsifs[END_REF].

Theorem 2.2.1. Let Γ be an event and suppose that there are a finite random variable T 0 , a > and ρ > 0 such that a.s. on Γ,

X n , G n ≥ 0, for all n ≥ T 0 such that X n < ρ, (2.14) 0 < lim inf E[ ε n 2 |F n-1 ] and lim sup E[ ε n a |F n-1 ] < ∞, (2.15) n r n 2 < ∞. (2.16) Then it holds that P[Γ ∩ {lim n→∞ X n = 0}] = 0.
Proposition 2.1.2 implies the following proposition: Proposition 2.2.2. Let Γ be an event. Suppose that γ n = O(c n ), that r = r ′ + r ′′ where r ′ is adapted and r ′′ is predictable and that there are a finite random variable T 0 , a > 2, β > 0, ρ > and ν > 1 2 such that a.s. on Γ, condition (2.15) is satisfied and

G n , X n ≥ β X n 2 for all n ≥ T 0 such that X n < ρ, (2.17) n r ′ n 2 < ∞ and r ′′ n = O γ 1+ν n c n . (2.18) Then it holds that P[Γ ∩ {lim n→∞ X n = 0}.
Remark 2.7. When X is a non-negative one-dimensional process it suffices to suppose that r is such that r ≥ r ′ + r ′′ , with r ′ and r ′′ such that a.s. on

Γ, n r ′ n 2 < ∞ and c n r ′′ n = O(γ 1+ν n ).
Corollary 2.1.3 (or Theorem 2.2.1) implies the following corollary that would correspond to [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][Proposition 4] (with different assumptions, but with a correct proof).

Corollary 2.2.3. Let Γ be an event. For each n ≥ 0, let H n be an F n -measurable M d (R)-valued random matrix. Let H ∈ M d (R) be a repulsive matrix. Suppose that there are a > 2 and a finite random variable T 0 such that a.s. on Γ,

• G n = H n X n for all n ≥ T 0 ;

• lim n→∞ H n = H;

• conditions (2.15) and (2.16) are satisfied.

Then it holds that

P[Γ ∩ {lim n→∞ X n = 0}] = 0. Let x * ∈ R d and f : R d → R d be a function such that f is C 1 in a convex neighborhood N * of x * . Suppose that for all n ≥ 0, G n = f (X n ) and that x * is an unstable equilibrium for f .
Let us recall the notations from Section 3.3: There are an integer δ + ∈ {1, . . . , d}, an invertible matrix P ∈ M d (R), a repulsive matrix

H + ∈ M δ + (R) and a non-repulsive matrix H -∈ M δ -(R) (with δ -:= d -δ + ) such that • P -1 Df (x * )P = diag[H + , H -];
• The eigenvalues of H + all have a positive real part and the eigenvalues of H -all have a non-positive real part.

For x ∈ R d , set y := P -1 x. There is (y

+ , y -) ∈ R δ + ×R δ -such that y = y + y -and P -1 Df (x * )P y = H + y + H -y -. For n ≥ 0, set ε ± n = (P -1 ε n ) ± and r ± n = (P -1 r n ) ± .
The discrete time version of Theorem 2.1.4 is the following one.

Theorem 2.2.4. Let Γ be an event and x * be an unstable equilibrium. Suppose that for some a > 2, a.s. on Γ,

0 < lim inf E[ ε + n 2 |F n-1 ] and lim sup E[ ε n a |F n-1 ] < ∞. (2.19) n r n 2 < ∞. (2.20) Set α(t) = n>t c 2
n and suppose that one of the two following conditions is satisfied

(i) x * is repulsive; (ii) n>t γ 2 n = O(α(t)) (which is satisfied if γ n = 0(c n )) and there is ν ∈ (0, 1] such that f ∈ C 1+ν (N * ) and that n>t c 1+ν n ε - n 1+ν = o(α(t)) on Γ ∩ {lim X n = x * }. Then it holds that P[Γ ∩ {lim n→∞ X n = x * }] = 0. Remark 2.8. Theorem 2.2.1 gives a correct formulation of [BD96][Theorem 1]. But the setting is a bit different: • In [BD96][Theorem 1], -it is supposed that f ∈ C 1+1 (N * ) (i.e. ν = 1
) and there is a stronger assumption on the step of the algorithm:

γ n = O(c n ) and γ n = ∞. -Assumption (2.15) is replaced by the non-equivalent assumption that 0 < lim inf E[ ε + n |F n-1 ] and lim sup E[ ε n 2 |F n-1 ] < ∞. • In Theorem 2.2.1, when ν = 1, we have to assume that n>t c 2 n ε - n 2 = o(α t ) a.s. on Γ. But if one looks carefully at the proof of [BD96][Theorem 1],
a similar condition has to be satisfied in [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][Section I.4] (in order to obtain, using the notations of [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF], that ρ n 2 < ∞). Our result here does not permit to obtain

[BD96][Théorème 1]. 3
Remark 2.9. There are several inaccuracies in the proof of [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][Théorème 1] (also stated in [START_REF] Duflo | Algorithmes stochastiques[END_REF]) : (with the notations of [BD96])

3 When ν = 1, the hypothesis that lim sup n→∞ E[ εn 2 |Fn-1] < ∞ a.s. on Γ that is assumed in [BD96] is not far to imply that n>t c 2 n εn 2 = o(α(t)) a.s. on Γ: if one has that lim sup n→∞ E[ εn 2 ] < ∞ then E[ n>t c 2 n εn 2 ] = O(α 2 (t)) = o(α(t)). The condition n>t c 2 n εn 2 = o(α(t)) will be satisfied if lim sup n→∞ E[ εn 4 ] < ∞, since n>t c 2 n εn 2 ≤ α(t) n>t c 2 n εn 4 = o(α(t)).
(

1) In the proof of [BD96][Proposition 4], the application of [BD96][Théorème A] done in [BD96][page 407

] requires that R 1 n is adapted. This is not the case. (2) In [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][page 409]: it appears that to prove that n ρ n+1 2 < ∞ a.s. on Γ(z * ), one needs to have that c 2 n ǫ n+1 4 < ∞ a.s. which is not necessarily satisfied under the assumption given in [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][Théorème 1].

(3) In [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF][page 424]: there is a misuse in the application of an inequality of Burkholder.

Remark 2.10. Suppose that

c n = n -γ with γ ∈ (1/2, 1]. Then α(t) ∼ c γ t -γ+ 1 2 with c γ = (2γ - 1) -1/2 and • if ε - n = O(1), then n>t c 1+ν n ε - n 1+ν = O(t -γ(1+ν)+1 ) and n>t c 1+ν n ε - n 1+ν = o(α(t)) as soon as γν > 1/2; • if 1 = O( ε - n ), then t -γ(1+ν)+1 = O( n>t c 1+ν n ε - n 1+ν ) and the condition n>t c 1+ν n ε - n 1+ν = o(α t ) requires that γν > 1/2.
Note that the condition γν > 1/2 requires that ν > 1/2. Remark 2.11. It is an easy exercise to check that Theorem 2.2.4 implies

[Pem90][Theorem 1] (taking ν = 1 in (ii), γ n+1 = a n , c n+1 = n -γ and ε n+1 = ξ n /c n+1 ).
We now give a discrete version of Theorem 2.1.5. Recall that when x * is an unstable equilibrium for f such that δ -≥ 1, we denote by µ the largest real number such that every eigenvalue of H - has a real part less or equal to µ. Recall alsi that µ < 0 when x * is hyperbolic.

Theorem 2.2.5. Let Γ be an event and

x * ∈ R d . Suppose that G n = f (X n ). Set α(t) = n>t c 2 n
and suppose that (i) x * is an hyperbolic unstable equilibrium and (3.16) is satisfied for some ν > 0.

(ii) (γ n ) and (c n ) satisfy:

• n>t γ 2 n = O(α(t)); • n γ n = ∞; • λ := lim sup t→∞ log(α(t)) k≤t γ k < 0; • lim inf t→∞ log(α(t)) k≤t γ k > β(1 + ν).
where β = sup{λ, µ}. (iii) for some a > 2, (2.19) and (2.20) are satisfied a.s. on Γ.

Then P[Γ ∩ {lim n→∞ X n = x * }] = 0.
Remark 2.12. Our framework easily allows excitations of order k: in the previous theorems, if one has that lim n→∞ c n+1 cn = 1, then conditions (2.15) and (2.19) can be replaced by (2.21) and (2.22) with

0 < lim inf n→∞ k i=1 E[ ε n+i 2 |F n+i-1 ] and lim sup n→∞ E[ ε n a |F n-1 ] < ∞ (2.21) 0 < lim inf n→∞ k i=1 E[ ε + n+i 2 |F n+i-1 ] and lim sup n→∞ E[ ε n a |F n-1 ] < ∞. (2.22)
In the proof of these theorems, it suffices to take τ (t) = t + k and

F t = F n if t ∈ [n, n + 1).
Conditions (2.15) and (2.19) can also be replaced by (2.23) and (2.24) with

0 < lim inf n→∞ E[ k i=1 ε n+i 2 |F n ] and lim sup n→∞ E[ ε n a |F n-1 ] < ∞ (2.23) 0 < lim inf n→∞ E[ k i=1 ε + n+i 2 |F n ] and lim sup n→∞ E[ ε n a |F n-1 ] < ∞. (2.24)
In the proof of these theorems, it suffices to take τ (t) = t + k and

F t = F nk if t ∈ [nk, (n + 1)k).
2.3. Non-convergence towards a normally hyperbolic set. Let f : R d → R d be a C 1+ν vector field, with ν ∈ (1/2, 1]. Let S be a compact set invariant for the flow Φ generated by f . Suppose that S ⊂ M , where M is a locally invariant submanifold of dimension dδ, with δ ∈ {1, ..., d}. Suppose that R d = T p M ⊕ E u p for all p ∈ S with:

(i) p → E u p is a continuous mapping from S into G(δ, d) the Grassmann manifold of δ-dimensional subspaces of R d ; (ii) DΦ t (p)E u p = E u Φt(p) ; (iii)
there are constants λ > 0 and C > 0 such that, for all p ∈ S, w ∈ E u p and t ≥ 0, DΦ t (p)w ≥ Ce λt w .

Let (X n ) n∈N be a sequence of random variables in R d adapted to a filtration (F n ) n∈N satisfying (2.11). Let Γ be an event. We suppose that n c 2 n < ∞ and that γ n = c n , and we set α t = n>t c 2 n . We also suppose that there are a compact neighborhood N 0 (S) of S, c > 0, a > 2 and a finite random variable T 0 such that, a.s. on Γ,

• G n = f (X n ) for all n ≥ T 0 , • sup n ε n < ∞ and n r n 2 < ∞; • lim sup E[ ε n a |F n-1 ] < ∞, • E[ ε n+1 , v 2 |F n ] ≥ c1 Xn∈N 0 (S)
, for all n ≥ T 0 and all unit vector v ∈ R d .

Theorem 2.3.1. Suppose the assumptions described above are satisfied. Then it holds that

P[Γ ∩ {lim n→∞ d(X n , Γ) = 0}].
Proof. Let η be the non-negative Lipschitz function defined by Benaïm in [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF][Proposition 9.5]. Without loss of generality, we will suppose that the constant β in [Ben99][Proposition 9.5] is equal to 1 (if β = 1, it suffices to replace γ n by γ n /β). Note that we have slightly different notations to the ones in [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF][Proposition 9.5]: F , α, Γ and S have respectively to be replaced by f , ν, S and M .

We will apply Proposition 2.2.2 with Remark 2.7 to the sequence η(X) and to the event

Γ C := Γ ∩ {lim n→∞ d(X n , S) = 0} ∩ {sup n ε n + r n ≤ C} where C is a positive constant. Note that there is a random variable T ≥ T 0 such that a.s. on Γ C , for all n ≥ T we have X n ∈ N 0 (S) and r n+1 ≤ C. A.s. on Γ C , we have that, for n ≥ T , η(X n+1 ) -η(X n ) = Dη(X n )(X n+1 -X n ) + {η(X n+1 ) -η(X n ) -Dη(X n )(X n+1 -X n )}.
Let G η , ε η and r η be the adapted sequences defined such that when X n ∈ N 0 (S),

G η n = Dη(X n )f (X n ), ε η n+1 = Dη(X n )ε n+1 and r η n+1 = Dη(X n )r n+1 + 1 c n+1 {η(X n+1 ) -η(X n ) -Dη(X n )(X n+1 -X n )}
and such that when

X n / ∈ N 0 (S), G η n = η(X n+1 )-η(Xn ) γ n+1 , ε η n+1 = r η n+1 = 0. Then X satisfies for all n ≥ 0, η(X n+1 ) -η(X n ) = γ n+1 G η n + c n+1 (ε η n+1 + r η n+1 ). Assertion (iii) of [Ben99][Proposition 9
.5] ensures that there is a compact neighborhood N (S) ⊂ N 0 (S) of S and a finite constant k such that, a.s. on Γ C , for all n ≥ T ,

η(X n+1 ) -η(X n ) -Dη(X n )(X n+1 -X n ) ≥ -kγ 1+ν
n+1 . Let r ′ and r ′′ be the adapted sequences defined such that when 

X n ∈ N (S), r ′ n+1 = Dη(X n )r n+1 and r ′′ n+1 = -k c n+1 γ 1+ν n+1 and such that when X n / ∈ N (S), r ′ n+1 = r ′′ n+1 = 0. Then, a.s. on Γ C , for all n ≥ T we have r η n+1 ≥ r ′ n+1 + r ′′ n+1 . Assertion (vi) of [Ben99][Proposition 9.5] ensures that, when X n ∈ N (S), G η n = Dη(X n )f (X n ) ≥ η(X n ) and
E[|ε η n+1 | 2 |F n ] = E[| Dη(X n ), ε η n+1 | 2 |F n ] ≥ c Dη(X n ) 2 1 Xn∈N (S) . Therefore P[Γ ∩ {lim n→∞ d(X n , Γ) = 0}] = lim C→∞ P[Γ C ∩ {lim n→∞ η(X n ) = 0}] = 0.
v, E[ ε n+1 , v 2 |F n ] 1/2 ≥ E[| ε n+1 , v ||F n ] = 2E[ ε n+1 , v + |F n ] ≥ 2b1 Xn∈S .
In [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF][Theorem 9.1], it is only assumed that ν ∈ (0, 1], but, as it is noticed in [START_REF] Tarrès | Pièges répulsifs[END_REF], the proof of this theorem requires ν > 1/2.

Proofs of the non-convergence theorems for continuous-time processes

3.1. Proofs of Theorem 2.1.1 and Proposition 2.1.2. In this section, we let X be a càdlàg process in R d satisfying (2.1) and we let Γ, α, τ , κ and E be the event, functions and process introduced just before the statement of Theorem 2.1.1. We suppose that there are a finite random variable T 0 and ρ > 0 such that a.s. on Γ, (2.3) (2.4) (2.5) (2.6) and (2.7) are satisfied. Before proving Theorem 2.1.1, i.e. under the assumptions given above it holds that P[Γ ∩ {lim n→∞ X n = 0}] = 0, we first give a sufficient condition ensuring that (2.7) holds.

Lemma 3.1.1. If there is a > 2 and t 0 > 0 such that a.s. on Γ, for all s ≥ t ≥ t 0 , one has that

(3.1) E[ ∆M s a |F t ] 2/a ≤ -k 2 ∆α 2 s , then (2.7) holds a.s. on Γ, with κ(p) = p b with b = 1 -2
a and with E the càdlàg process defined by

E t = k 2 α 2 t if t ≥ t 0 and E t = ∞ if t < t 0 .
Proof. Let t ≥ t 0 and S be a stopping time larger than t.

Then (setting b = 1 -2 a ) E[ ∆M S 2 1 S<∞ |F t ] ≤ s>t E[ ∆M s 2 1 S=s |F t ] ≤ s>t E[ ∆M s a |F t ] 2/a P[S = s|F t ] b ≤ - s>t k 2 (∆α 2 s )P[S < ∞|F t ] b ≤ k 2 α 2 t P[S < ∞|F t ] b ,
Where the two last inequalities hold a.s. on Γ. We thus have that, a.s. on Γ, for all stopping time S larger than t ≥ 0,

E[ ∆M S 2 1 S<∞ |Ft] κ(P[S<∞|Ft]) ≤ E t and E t = O(α 2 t ) as t → ∞.
3.1.1. Simplification of the hypotheses. We start by simplifying the hypotheses. Note that a.s.,

Γ = ∩ ε∈(0,1] ∪ (t 0 ,k)∈N 2 * Γ t 0 ,k,ε
, where for (t 0 , k) ∈ N 2 * and ε ∈ (0, 1], Γ t 0 ,k,ε is the set of all ω ∈ Γ for which T 0 ≤ t 0 and such that for all t ≥ t 0 ,

X t-, F t 1 { X t-≤ρ} ≥ 0, (3.2) M t,τ (t) ≥ k -2 (α 2 t -α 2 τ (t) ), (3.3) M t,∞ ≤ k 2 α 2 t , (3.4) V (R, (t, ∞)) ≤ εα t , (3.5) E t ≤ k 2 4 α 2 t . (3.6)
It is thus sufficient to prove Theorem 2.1.1 with Γ replaced with Γ t 0 ,k,ε for all (t 0 , k, ε) with t 0 sufficiently large and ε sufficiently small. Note that on Γ t 0 ,k,ε , for t ≥ t 0 , we have (using that

M t,∞ = n≥1 M τ n-1 (t),τ n (t) ≥ k -2 n≥1 α 2 τ n-1 (t) -α 2 τ n (t) ) (3.7) k -2 α 2 t ≤ M t,∞ ≤ k 2 α 2 t .
Note also that (3.5) and (3.6) imply that, for ε < k/2 and t ≥ t 0 ,

(3.8) E[ ∆X S 2 1 S<∞ |F t ] ≤ k 2 α 2 t × κ(P[S < ∞|F t ]
), for any stopping times S larger than t. For the rest of this section, we will suppose that Γ = Γ t 0 ,k,ε , with (t 0 , k) ∈ N 2 * and ε < k/2. We will also set

V t = V (R, (0, t]) (then V (R, (s, t]) = V t -V s = V s,t ).
Let T be the first time t ≥ τ (t 0 ) > t 0 such that one the following items hold

(i) X t-, F t 1 { X t-<ρ} < 0, (ii) M t -M τ -1 (t) < k -2 (α 2 τ -1 (t) -α 2 t ), (iii) sup s∈[t 0 ,t] M t -M s α 2 s > k 2 , (iv) sup s∈[t 0 ,t] Vt-Vs αs > ε, (v) E t > k 2 4 α 2 t .
Then T is a stopping time and T = ∞ a.s. on Γ. Possibly extending the probability space, define new processes

X ′ , F ′ , M ′ and R ′ such that if t < T , X ′ t = X t , F ′ t = F t , M ′ t = M t and R ′ t = R t , and such that for t ≥ T , F ′ t = R ′ t = 0 and M ′ t -M T = Mt -MT , where M is a martingale 4 in R d such that M t = α 2 0 -α 2 t .
Then, it can be checked that X ′ , F ′ , M ′ and R ′ satisfy a.s. for all t ≥ τ (t 0 ) conditions (3.2), (3.7), (3.5) and (3.8) and that X ′ = X on Γ. This implies that 4 One can take Mt = (BA t , 0, . . . , 0), where B is an independent standard Brownian motion and At = α 2 0α 2 t .

P[Γ ∩ {lim t→∞ X t = 0}] = P[Γ ∩ {lim t→∞ X ′ t = 0}] ≤ P[lim t→∞ X ′ t = 0]
. Therefore to prove Theorem 2.1.1 it suffices to prove that P[lim t→∞ X ′ t = 0] = 0. 3.1.2. A non-convergence proposition. We suppose in this subsection that there are t 0 ≥ 0, k ≥ 1, ρ > 0, ε > 0 and an increasing function κ : [0, 1] → [0, 1] satisfying κ(p) ≥ p for all p ∈ [0, 1], such that almost surely, for all t > t 0 , conditions (3.2), (3.7), (3.5) and (3.8) are satisfied, i.e.

• X t-, F t 1 { X t-≤ρ} ≥ 0, • k -2 α 2 t ≤ M t,∞ ≤ k 2 α 2 t , • V ∞ -V t ≤ εα t , • E[ ∆X S 2 1 S<∞ |F t ] ≤ k 2 α 2 t × κ(P[S < ∞|F t ]
), for any stopping times S larger than t. Note that condition (3.7) ensures that for each i, M i is a square integrable martingale and that [M ] -M is a martingale.

In this subsection, we will prove the following proposition, which will allow us to conclude the proof of Theorem 2.1.1.

Proposition 3.1.2. If ε ≤ 1 2 7 k 3 √ 2d and α t 0 ≤ ρ 2 3 k √ 2d , then P[lim t→∞ X t = 0] = 0.
To prove this proposition, we follow (and adapt to our framework) [START_REF] Tarrès | Pièges répulsifs[END_REF]. This proof is a consequence of two lemmas.

For t ≥ t 0 , let S t = inf{s ≥ t : X s ≥ Lα s }, where L is a positive constant we will fix later on.

Lemma 3.1.3. If (2L + ε)ε ≤ (2k) -2 and ρ ≥ Lα t 0 , then there is p > 0 such that for all t ≥ t 0 , P[S t < ∞|F t ] ≥ p.

Proof. Let us fix t ≥ t 0 . For s ∈ (t, S t ), we have X s-< ρ and for s > t,

X s∧St 2 = X t 2 + 2 s∧St t X u-, dX u + [X] s∧St -[X] t . (3.9) One has [X] = [M + R], [X] s∧St -[X] t ≥ [M ] s∧St -[M ] t 2 -([R] s∧St -[R] t ) (3.10) and s∧St t X u-, dX u = s∧St t X u-, F u du + s∧St t X u-, dM u + s∧St t X u-, dR u ≥ s∧St t X u-, dM u + s∧St t X u-, dR u . (3.11)
For all t, let M t be the martingale stopped at S t defined by

M t s = 2 s∧St t X u-, dM u + 1 2 s∧St t d([M ] u -M u ). (3.12)
Using (3.10), (3.11) and (3.12), (3.9) implies that

X s∧St 2 ≥ M t s + 2 s∧St t X u-, dR u + 1 2 M s∧St -M t -[R] s∧St -[R] t .
We have that

s∧St t X u-, dR u ≤ s∧St t X u-dV u ≤ L ∞ t α u dV u ≤ -L ∞ t (V u -V t )dα u ≤ Lεα 2 t and [R] s∧St -[R] t ≤ [R] ∞ -[R] t ≤ sup s≥t ∆R s × V ∞ -V t ≤ ε 2 α 2 t .
Therefore,

X s∧St 2 ≥ M t s -(2L + ε)εα 2 t + 1 2 M s∧St -M t .
Using that (2L + ε)ε ≤ 1 4k 2 , the martingale property yields

lim inf s→∞ E[ X s∧St 2 |F t ] ≥ - α 2 t 4k 2 + 1 2 lim inf s→∞ E[1 {St>s} ( M s -M t )|F t ] ≥ - α 2 t 4k 2 + 1 2 E[1 {St=∞} M t,∞ |F t ] ≥ - α 2 t 4k 2 + α 2 t 2k 2 P[S t = ∞|F t ] ≥ α 2 t 4k 2 - α 2 t 2k 2 P[S t < ∞|F t ] We also have E[ X s∧St 2 |F t ] = E[ X s∧St 2 1 {St≤s} |F t ] + E[ X s∧St 2 1 {St>s} |F t ] ≤ E[(Lα t + ∆X St ) 2 1 {St≤s} |F t ] + L 2 α 2 s P[S t > s|F t ] and therefore lim inf s→∞ E[ X s∧St 2 |F t ] ≤ E[(Lα t + ∆X St ) 2 1 {St<∞} |F t ] ≤ 2L 2 α 2 t P[S t < ∞|F t ] + 2k 2 α 2 t × κ(P[S t < ∞|F t ]
). This implies (using that if p ∈ [0, 1], then κ(p) ≥ p) that κ(P[S t < ∞|F t ]) ≥ 1 2+8L 2 k 2 +8k 4 . This proves the lemma since κ : [0, 1] → [0, 1] is increasing.

For t ≥ t 0 , set U t = inf{s > t : X s ≥ ρ} (then, S t ≤ U t as soon as ρ ≥ Lα t 0 ) and denote by H t the event {inf s∈[St,Ut] X s ≥

Lα S t 4 } ∩ {S t < ∞}. Lemma 3.1.4. If L ≥ (2ε) ∨ (2 3 k √ 2d
) and r ≥ Lα t 0 then, for all t ≥ t 0 , on the event {S t < ∞},

P[H t |F St ] ≥ 1/2. Proof. Let us fix t ≥ t 0 and set T t = inf{s > S t : X s < Lα S t 4 }. For s ∈ [S t , T t ∧ U t ), Itô's formula (Theorem 32 in [Pro04]) yields X s = X St + s St X u- X u- , dX u + 1 2 s St i,j δ i,j X u- - X i u-X j u- X u-3 d[X i , X j ] u + St<u≤s   ∆ X u - X u- X u- , ∆X u - 1 2 i,j δ i,j X u- - X i u-X j u- X u-3 ∆X i u ∆X j u   .

One has that

s St i,j δ i,j X u-- X i u-X j u- X u-3 d[X i , X j ] u ≥ St<u≤s i,j δ i,j X u-- X i u-X j u- X u-3 ∆X i u ∆X j u .
One also has that ∆ X u -X u- X u-, ∆X u ≥ 0 and that X St ≥ Lα St . This implies that for

s ∈ [S t , T t ∧ U t ), X s ≥ Lα St + s St X u- X u- , dM u + s St X u- X u- , dR u ≥ Lα St + s St X u- X u- , dM u -(V s -V St ). ≥ (L -ε)α St + s St X u- X u- , dM u . Let ( M t s , s ∈ [S t , T t ∧ U t )) be the martingale (stopped at T t ∧ U t ) defined by M t s = s St X u- X u-, dM u and set I t = inf s∈[St,Tt∧Ut) M t s . Then, for s ∈ [S t , T t ∧ U t ) (using that L -ε ≥ L 2 ) inf s∈[St,Tt∧Ut) X s ≥ I t + (L -ε)α St ≥ I t + Lα St 2 .
On the event {I t ≥ - 

Lα
P I t < - Lα St 4 F St ≤ 4 × 4 2 L 2 α 2 St E[[ M t ] Tt∧Ut |F St ] ≤ 2 6 d L 2 α 2 St E[[M ] Tt∧Ut -[M ] St |F St ] ≤ 2 6 d L 2 α 2 St E[ M Tt∧Ut -M St |F St ] ≤ 2 6 dk 2 L 2 ≤ 1 2 using that L ≥ 2 3 k √ 2d.
This proves the lemma.

Proof of Proposition 3.1.2. Choose L = 2 3 k √ 2d. Then one has that L ≥ 2ε and that (2L + ε)ε ≤ 2 2 Lε ≤ (2k) -2 . We also have that ρ ≥ Lα t 0 . The two previous lemmas can therefore be applied. For t ≥ t 0 ,

P[H t |F t ] =E[1 {St<∞} P(H t |F St )|F t ] ≥ 1 2 P[S t < ∞|F t ] ≥ p 2 .
Set H = {lim sup X t > 0}. We have for s > t ≥ t 0 ,

P[H|F t ] ≥ P[H ∩ {U s = ∞}|F t ] ≥ P[H s ∩ {U s = ∞}|F t ] ≥ P[H s |F t ] -P[U s < ∞|F t ].
We have 

lim s→∞ P[U s < ∞|F t ] = P[A c |F t ],
P[A c |F t ] = 1 A c , 1 H ≥ p 2 -1 A c a.s.
This implies that a.s., A ⊂ H. But since H c ⊂ A, we have that a.s. H c ⊂ H, which is possible only if P(H) = 1.

3.1.3. Proof of Theorem 2.1.1. Proposition 3.1.2 applied to the process X ′ introduced at the end of subsection 3.1.1 and for the event Γ t 0 ,k,ε shows that on Γ ∩ {lim t→∞ X t = 0}, there is t 0 ≥ T 0 such that for all t ≥ t 0 , H t -H ≤ λ 2 (where for a matrix A, A := sup x; x =1 Ax ). Then, a.s. on Γ ∩ {lim t→∞ X t = 0}, it holds that for all t ≥ t 0

P [Γ t 0 ,k,ε ∩ {lim t→∞ X t = 0}] = 0 if α t 0 ≤ ρ 2 3 k √ 2d and if ε ≤ 1 2 7 k 3 √ 2d .
X u-, dX u = s∧St t X u-, F u du + s∧St t X u-, dM u + s∧St t X u-, dR u ≥ s∧St t X u-, dM u + s∧St t X u-, dR ′ u + s∧St t γ u X u- X u--kγ ν u du. (3.
F t , X t-= γ t H t X t-, X t- = γ t HX t-, X t-+ γ t (H t -H)X t-, X t- ≥ γ t λ -λ/2 X t- 2 ≥ 0.
Then one concludes applying Theorem 2.1.1.

Proof of Lemma 3.2.1. Let λ ∈ (0, ∞) be such that the real part of every eigenvalue of H is greater than 2λ. The real part of a complex number z will be denoted R(z).

Using the Jordan reduction of H, for all ε ∈ (0, λ], there are P ∈ M d (C) an invertible matrix and T ∈ M d (C) a triangular matrix such that H = P T P -1 and such that T i,j = 0 if j ∈ {i, i + 1}, λ i := T i,i is an eigenvalue of H and ε i := T i,i+1 ∈ {0, ε}. For 1 ≤ i ≤ d, let e i be i-th column of P . Then B := (e 1 , . . . , e d ) is a basis of C d . Define the sesquilinear form on

C d defined by b(x, x ′ ) = XT X ′ = d i=1 Xi X ′ i
, where X and X ′ are the vectors of the coordinates of x and x ′ in B. Set Q = P -1 and define the inner product

•, • on R d by x, x ′ = R b(Qx, Qx ′ ) . Denote by
• the norm associated to this inner product. Then, for

(x, x ′ ) ∈ R d × R d , x, x ′ = R x T QT Qx ′ = x T Sx ′ where S = 1 2 QT Q + Q T Q is a symmetric matrix in M d (R). For x ∈ R d and z := Qx, x, Hx = R x T QT QHx = R x T QT T Qx = R zT T z = R d i=1 λ i |z i | 2 + d i=1 ε i zi z i+1 ≥ 2λ i |z i | 2 -ε i |z i | × |z i+1 | ≥ 2λ i |z i | 2 - ε 2 i |z i | 2 + |z i+1 | 2 ) ≥ (2λ -ε) i |z i | 2 ≥ λ x 2 .
3.3. Proof of Theorem 2.1.4. In Theorem 2.1.4, we let x * ∈ R d and f : R d → R d be a function such that f is C 1 in a convex neighborhood N * of x * , and we suppose that x * is an equilibrium for f , i.e. f (x * ) = 0. Let us recall the construction given just before Theorem 2.1.4: there are integers (δ + , δ -) ∈ {0, . . . , d} 2 with δ + + δ -= d, an invertible matrix P ∈ M d (R), a matrix

H + ∈ M δ + (R) and a matrix H -∈ M δ -(R) such that • P -1 Df (x * )P = diag[H + , H -] = H + 0 0 H -;
• The eigenvalues of H + all have a positive real part, i.e. H + is repulsive;

• The eigenvalues of H -all have a non-positive real part, i.e. H -is non-repulsive.

Note that if x * is unstable then δ + ≥ 1 and if x * is repulsive then δ + = d. For x ∈ R d , set y := P -1 x.

Then there are y + ∈ R δ + and y -∈ R δ -such that y = y + y -and P -1 Df (x * )P y =

H + y + H -y -. Set M ± = (P -1 M ) ± and R ± = (P -1 R) ± .
We suppose that F t = γ t f (X t ) with γ t ≥ 0 and that a.s. on Γ, conditions (2.4) and (2.5) are satisfied by M + , and that (2.6) and (2.7) are satisfied. We also suppose that a.s. on Γ, M - t,τ (t) = O( M + t,τ (t) ). Theorem 2.1.4 states that if the hypotheses described above in this section are satisfied and if one of the three following conditions is satisfied

(i) x * is repulsive; (ii) x * is unstable, f ∈ C 1+ν (N * ) for some ν ∈ (0, 1], M is a purely discontinuous martingale and s>t ∆M - s 1+ν = o(α t ) on Γ ∩ {lim t→∞ X t = x * }. (iii) x * is unstable, f ∈ C 2 (N * ) and s>t ∆M - s 2 = o(α t ) on Γ ∩ {lim t→∞ X t = x * }; Then it holds that P[Γ ∩ {lim t→∞ X t = x * }] = 0.
Proof of Theorem 2.1.4. To simplify the notation, we suppose that x * = 0.

Suppose first that (i) is satisfied, i.e. 0 is repulsive. Then δ + = d and M = M + (and M -= 0). Set H = Df (0). Then one has

f (x) = f (0) + Df (0) + 1 0 [Df (tx) -Df (0)]dt • x = [H + r(x)]x, with r(x) = 1 0 [Df (tx) -Df (0)]dt = o(1). For t ≥ 0, set H t = H + r(X t-).
Then on Γ ∩ {lim t→∞ X t = 0}, lim t→∞ H t = H and one can conclude applying Corollary 2.1.3.

Suppose now that 0 is unstable and that condition (ii) or (iii) is satisfied. We first rectify the vector field f (x) and define new coordinates (u + , u -) such that the local stable manifold is an open subset of {u + = 0} and such that u -is a linear transformation of x. For this purpose, we follow Section I.4 in [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF] and chapter IX section 5 in [START_REF] Hartman | Ordinary differential equations[END_REF]. The equilibrium 0 being unstable, δ + ≥ 1.

For y ∈ R d , write y = y + y -with y + ∈ R δ + and y -∈ R δ -. Set h(y) := P -1 f (P y) = h + (y) h -(y) .
The function h is C 1+ν in a neighborhood of 0, h(0) = 0 and Dh(0

) = diag[H + , H -].
We then have that Y t := P -1 X t satisfies (3.14) [START_REF] Hartman | Ordinary differential equations[END_REF] (Lemma 5.1, Example 5.1 and Corollary 5.2), there are N + and N -, convex neighborhoods of 0 respectively in R δ + and R δ -, and g : R

Y + t = Y + 0 + t 0 γ s h + (Y s-)ds + (P -1 M t ) + + (P -1 R t ) + Y - t = Y + 0 + t 0 γ s h -(Y s-)ds + (P -1 M t ) -+ (P -1 R t ) - Following
δ -→ R δ + a C 1 -function such that g ∈ C 1+ν (N -),
• g(0) = 0 and Dg(0) = 0;

• If y ∈ N := N + × N -is such that y + = g(y -), then h + (y) = Dg(y -)h -(y).
The last assumption ensures that if y t satisfies dyt dt = h(y t ) with y(0) ∈ N such that u + 0 := y + 0g(y - 0 ) = 0, then as long as y t ∈ N , one has u + t := y + tg(y - t ) = 0. Set N * := {x : P -1 x ∈ N }. Then the set K of all x ∈ N * such that y + = g(y -), where y = P -1 x, is the (local) center-stable manifold of f at 0.

For (u + , u -) ∈ R δ + × R δ -, let y ∈ R d be such that y -= u -, y + = u + + g(u -) and let F + : R δ × R d-δ → R δ be defined by F + (u + , u -) = h + (y) -Dg(y -)h -(y). If y ∈ N then F + (0, u -) = 0
and, denoting by D + the differential with respect to u + ,

F + (u + , u -) = 1 0 D + F + (tu + , u -)dt u + = [H + + ∆(u + , u -)]u + ,
where ∆(u + , u -) is a matrix satisfying ∆(u + , u -) = O( y ν ) as y → 0, with ν = 1 when condition (iii) is satisfied.

Set now

U + t = Y + t -g(Y - t ), U - t = Y - t and H + t = H + + ∆(U + t-, U - t-).
Then on Γ ∩ {lim t→∞ X t = 0}, we have that lim t→∞ H + t = H + . In the case (ii) is satisfied, M is a pure jump martingale and U + satisfies (recall that M ± = (P -1 M ) ± and R ± = (P -1 R) ± )

U + t = U + 0 + t 0 F u s ds + M u t + R u t
where

F u t = γ t h + (Y t-) -Dg(Y - t-)h -(Y t-) M u t = M + t - t 0 Dg(Y - s-)dM - s R u t = R + t - t 0 Dg(Y - s-)dR - s - 0<s≤t ∆g(Y - s ) -Dg(Y - s-)∆Y - s .
It is straightforward to check that there is a finite random variable T such that on Γ∩{lim t→∞ X t = 0}, we have that Y t ∈ N for all t ≥ T . Since on Γ ∩ {lim t→∞ X t = 0}, F u t = γ t H + t U + t-for all t ≥ T , lim t→∞ H + t = H + and since H + is a repulsive matrix, in order to apply Corollary 2.1.3 to U + and Γ, it suffices to check that conditions (2.4), (2.5), (2.6) and (2.7) are satisfied by U + , M u and R u .

We have that on Γ ∩ {lim t→∞ X t = 0} (using that Dg(0) = 0 and that Dg is continuous),

• 0 Dg(Y - s-)dM - s t,τ (t) = o M + t,τ (t) 
and

• 0 Dg(Y - s-)dM - s t,∞ = o M + t,∞ .
Therefore on Γ ∩ {lim t→∞ X t = 0} , we have first

M u t,τ (t) ≥ 1 2 M + t,τ (t) + o( M + t,τ (t) ) and, since α 2 t -α 2 τ (t) = O( M + t,τ (t) ), condition (2.4) is satisfied by M u . Secondly, on Γ ∩ {lim t→∞ X t = 0} we have M u t,∞ ≤ 2 M + t,∞ + o( M + t,∞ ) = 0(α 2 t ) and condition (2.5) is satisfied by M u . Set V u t = V (R u , (0, t]) the variation of R u on [0, t]. On Γ ∩ {lim t→∞ X t = 0}, ∆g(Y - s ) - Dg(Y - s-)∆Y - s = O ∆Y - s 1+ν = O ∆M - s 1+ν + ∆R - s 1+ν and a.s. on Γ ∩ {lim t→∞ X t = 0}, V u t,∞ = O s>t ∆M - s 1+ν + V t,∞ = o(α t ),
i.e. condition (2.6) is satisfied. We have ∆U + t ≤ C ∆X t for some non-random constant C and so, since X satisfies (2.7), U + also satisfies (2.7). And we conclude applying Corollary 2.1.3.

In the case condition (iii) is satisfied, the arguments are identical and will be omitted. The most essential change is that one can apply Itô's formula since g is C 2 . Remark 3.1.

• If in the previous construction g = 0, i.e. when the local center-stable manifold of f at x * is a vector space, then the conditions on M -can be removed • If M is a continuous martingale, then the condition that s>t ∆M - s 2 = o(α t ) a.s. on Γ ∩ {lim X t = x * } is always satisfied and can be removed in (iii). Lemma 3.4.1. For all ε ∈ (0, -µ), there is a neighborhood N ε ⊂ N * of 0 such that K attracts N ε at rate µ + ε in the sense that

(3.15) d(ϕ t (x), K) ≤ e (µ+ε)t d(x, K).
for all x ∈ N ε and t ∈ [0, t ε (x)] where t ε (x) = inf{t > 0 :

ϕ t (x) / ∈ N ε }.
Proof. For x ∈ N * and 0 ≤ t ≤ inf{t > 0 : ϕ t (x) / ∈ N * }, set x t = ϕ t (x) and define u t = ψ(x t ) as above. Then

du + t dt = k + (u + t , u - t ), du - t dt = k -(u + t , u - t )
. We have (denoting by D -the differential with respect to u -)

k -(u + , u -) = k -(u + , 0) + D -k -(u + , 0)u -+ o( u -) = k -(u + , 0) + D -k -(0, 0)u -+ o( u -) = H -u -+ o( u -).
We thus have that

(u -) T k -(u + , u -) = (u -) T H -u -+ o( u -2 ). It holds that (u -) T H -u -≤ µ u -2 and that there is a neighborhood N ε sufficiently small such that for all x ∈ N ε , (u -) T k -(u + , u -) ≤ (µ + ε) u -2 .
We thus have that for all t ∈ [0, t ε (x)],

d u - t 2 dt = 2(u - t ) T k -(u + t , u - t ) ≤ 2(µ + ε) u - t 2
and so that for all t ∈ [0, t ε (x)], u - t 2 ≤ e 2(µ+ε)t u - 0 2 . This proves this lemma.

There is one last assumption that will have to be done on the vector field f : there is ν > 0 and a constant C ν < ∞ such that for all x ∈ N * , setting u = ψ(x),

(3.16) k + (u + , u -) -k + (u + , 0) ≤ C ν u -1+ν .
Recall that u -= d(x, K) and that, setting y = P -1 x, h + (y + , y -) = k + (u + , u -) and u -= y -g(y + ). In the following, set h : N + → R δ + the vector field defined by h(u + ) = k + (u + , 0). This vector field is C 1 in N + and 0 is a repulsive equilibrium for h.

Example 3.2. Let us given ν > 0, µ < 0, δ + ≥ 1 and δ -≥ 1 with δ + + δ -= d. For x ∈ R d , set x ν ∈ R d such that x ν i = x i if i ≤ δ + and x ν i = |x i | 1+ν otherwise. Let f be a C 1 vector field on R d such that in a compact neighborhood N of 0, we have f i (x) = F + i (x ν ) if i ≤ δ + x i F - i (x) otherwise where for i ≤ δ + , F + i is C 1 with F + i (0) = 0, and for i ≥ δ + + 1, F - i is a continuous function such that F - i (0) = µ. Then 0 is an equilibrium for f and Df (0) = diag[H + , H -], with H + i,j = ∂ j F + i (0) and H - ij = µδ ij . Since µ < 0, H -is attractive. If F + is such that H + is
repulsive then we are in the framework described above, with P = I, g = 0, k = h = f and K = {x ∈ N : x -= 0} (where for x ∈ N , x + ∈ R δ + is defined by

x + i = x i for i ≤ δ + and x -∈ R δ -is defined by x - i = x δ + +i for i ≤ δ -).
Then, for all ε ∈ (0, -µ), K attracts a neighborhood of 0 at rate µ + ε (in the sense given in Lemma 3.4.1), and since for all i ≤ δ + , F + i is Lipschitz in N , (3.16) is satisfied.

3.4.2. Statement of Theorem 2.1.5. For t ≥ 0, set m(t) = t 0 γ s ds. In Theorem 2.1.5, we also have made the following assumptions on γ and α:

• ∞ 0 γ s ds = ∞; • λ := lim sup t→∞ log(α(t)) m(t)
< 0;

• lim inf t→∞ log(α(t)) m(t) > β(1 + ν),
where β = sup{λ, µ}, with µ introduced in subsection 3.4.1.

Let us recall the statement of Theorem 2.1.5: Suppose that the hypotheses described above in this section are satisfied and suppose that a.s. on Γ, conditions (2.5) and (2.6) are satisfied by M and R, condition (2.4) is satisfied by M + and that condition (2.7) is satisfied by

Y + t := (P -1 X t ) + . Then it holds that P[Γ ∩ {lim t→∞ X t = 0}] = 0. 3.4.3. Change of time and λ-APT. For t ≥ 0, set m(t) = t 0 γ s ds, X m t = X m -1 (t) , M m t = M m -1 (t) and R m t = R m -1 (t)
, where m -1 (t) = inf{s : m(s) > t}. Then X m satisfies (3.17)

X m t = X m 0 + t 0 f (X m s-)ds + M m t + R m t . Set V t = V (R, (0, t]) and V m t = V (R m , (0, t]). Then M m t = M m -1 (t) and V m t = V m -1 (t) . Set α m (t) = α(m -1 (t)).
In many applications, α(t) = 1 √ t , m(t) = log(t), m -1 (t) = e t and so α m (t) = e -t/2 . Lemma 3.4.2. a.s. on Γ, X m is a λ-asymptotic pseudotrajectory (or a λ-APT), i.e. for all T > 0,

(3.18) lim sup t→∞ 1 t log sup 0≤h≤T d X m t+h , ϕ h (X m t ) ≤ λ.
Proof. We essentially follow the proof of Proposition 8.3 in [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF]. For (t 0 , k) ∈ N 2 , let Γ t 0 ,k be the set of all ω ∈ Γ such that for all t ≥ t 0 , M t,∞ ≤ k 2 α 2 t . Then Γ = ∪ t 0 ,k Γ t 0 ,k and it suffices to prove the lemma with Γ replaced by Γ t 0 ,k . So we now fix

(t 0 , k) ∈ N 2 . Let σ := inf{t ≥ t 0 : sup s∈[t 0 ,t] M s,t α 2 s > k 2 }. Then σ is a stopping time, σ = ∞ on Γ t 0 ,k , and for t > t 0 , M σ t,∞ ≤ k 2 α 2 t . Set I σ t := sup u≥t M σ t,u
. By Doob's inequality, it holds that for t > m(t 0 ) and δ > 0,

P I σ m -1 (t) > e -δt ≤ e 2δt E[ M σ m -1 (t),∞ ] ≤ e 2δt k 2 α 2 m (t).
Let ε > 0 and δ > 0 be such that δ + ε < -λ. Since λ = lim sup t→∞ log(αm(t)) t < 0 it holds that α m (t) = o e (λ+ε)t . Therefore, P I σ m -1 (t) > e -δt = o e 2(δ+λ+ε)t . This easily implies (using Borel-Cantelli Lemma) that I σ m -1 (t) = 0(e -δt ).

For (t, T ) ∈ R 2 + , set (3.19) ∆(t, T ) = sup h∈[0,T ] M m t,t+h + R m t,t+h . On Γ t 0 ,k , σ = ∞ and ∆(t, T ) ≤ I σ m -1 (t) + V m t,∞ .
Therefore, for all fixed T , a.s. on Γ t 0 ,k , as t → ∞, ∆(t, T ) = 0(e -δt ) + o(α m (t)) = 0(e -δt ).

This proves that a.s. on Γ t 0 ,k , lim sup t→∞ 1 t log ∆(t, T ) ≤ -δ. This holds for all -δ > λ and so a.s. on Γ t 0 ,k , lim sup

t→∞ 1 t log ∆(t, T ) ≤ λ.
As noticed in [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF], this concludes the proof of this lemma.

Following the proof of Lemma 8.7 in [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF] we prove the following lemma (note that Lemma 8.7 in [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF] cannot be directly applied since in our setting: K is not positively invariant and K does not attracts N * exponentially fast in the sense of [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF]):

Lemma 3.4.3. a.s. on Γ ∩ {lim t→∞ X t = 0}, lim sup t→∞ 1 t log d(X m t , K) ≤ β.
Proof. The proof of this lemma is almost identical to the one of Lemma 8.7 in [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF]. For completeness, we give a proof of this lemma. Let us fix ε ∈ (0, β) and T > 0, let N ε be the neighborhood introduced in Lemma 3.4.1. Then there is a neighborhood N ε,T ⊂ N ε such that t ε (x) ≥ T for all x ∈ N ε,T (to construct such neighborhood it suffices to use that f (x) = O( x )). We then have that for all x ∈ N ε,T , d(ϕ T (x), K) ≤ e (µ+ε)T d(x, K). Thus a.s. on Γ ∩ {lim t→∞ X t = 0}, there is t 0 such that for all t ≥ t 0 , X m t ∈ N ε,T and

d(X m t+T , K) ≤ d(X m t+T , ϕ T (X m t )) + d(ϕ T (X m t ), K) ≤ e (λ+ε)t + e (µ+ε)T d(X m t , K). Let v k = d(X m kT , K), ρ = e (µ+ε)T and k 0 = [t 0 /T ] + 1. Then v k+1 ≤ ρ k + ρv k for k ≥ k 0 . Hence, v k 0 +m ≤ ρ m (mρ k 0 -1 + v k 0 ) for m ≥ 1. It follows that lim sup k→∞ log(v k ) kT ≤ log(ρ) T ≤ β + ε.
Also for t ∈ [kT, (k + 1)T ] and k ≥ k 0 , d(X m t , K) ≤ d(ϕ t-kT (X m kT ), X m t ) + d(ϕ t-kT (X m kT ), K) ≤ e (λ+ε)kT + e (µ+ε)(t-kT ) d(X m kT , K) ≤ e (λ+ε)kT + v k .

Thus

lim sup t→∞ log(d(X m t , K)) t ≤ β + ε.
And since ε is arbitrary we get the desired result.

Lemma 3.4.3 implies that a.s. on Γ ∩ {lim t→∞ X t = 0}, for all ε > 0, d(X t , K) = O e (β+ε)m(t) .

3.4.4. Proof of Theorem 2.1.5. The process Y + (= (P -1 X) + ) satisfies (3.20)

Y + t = Y + 0 + t 0 γ s h(Y + s-)ds + M + t + R Y + t with M + t := (P -1 M m t ) + and R Y + t := (P -1 R m t ) + + t 0 γ s h + Y s--h(Y + s-) ds.
Since lim t→∞ Y + t = 0 on the event Γ ∩ {lim t→∞ X t = 0}, if Theorem 2.1.4 can be applied to Y + and to the event Γ ∩ {lim t→∞ X t = 0}, then one has shown that P(Γ ∩ {lim t→∞ X t = 0}) = 0 and Theorem 2.1.5 is proved. We have assumed in Theorem 2.1.5 that condition (2.7) is satisfied by Y + and that conditions (2.4) and (2.5) are satisfied a.s. on Γ ∩ {lim t→∞ X t = 0}. Therefore, 0 being a repulsive equilibrium (i.e. (i) of Theorem 2.1.4 is satisfied), it remains to check that R Y + satisfies (2.6) a.s. on Γ ∩ {lim t→∞ X t = 0}. Lemma 3.4.4. R Y + satisfies (2.6) a.s. on Γ ∩ {lim t→∞ X t = 0}.

Proof. Lemma 3.4.3 implies that a.s. on Γ ∩ {lim t→∞ X t = 0}, for all ε > 0, d(X t , K) = Y - tg(Y + t ) = O e (β+ε)m(t) . Assumption (3.16) then implies that a.s on Γ ∩ {lim t→∞ X t = 0}, for all ε > 0,

h + Y t = h Y + t + O( Y - t -g Y + t 1+ν ) (3.21) = h Y + t + O(e (β+ε)(1+ν)m(t) ) (3.22)
This implies that a.s on Γ ∩ {lim t→∞ X t = 0},

∞ t γ s h + Y s--h(Y + s-) ds = O ∞ t γ s e (β+ε)(1+ν)m(s) ds = O ∞ m(t)
e (β+ε)(1+ν)u du = O(e (β+ε)(1+ν)m(t) ).

Since lim inf t→∞ log α(t) m(t)

> β(1 + ν), taking ε sufficiently small, we obtain (2.6).

Proofs of the non-convergence theorems for discrete-time processes

Let (X n ) n∈N be a random sequence in R d , adapted to a filtration (F n ) n∈N , such that (4.1)

X n+1 -X n = γ n+1 G n + c n+1 (ε n+1 + r n+1 ),
where (γ n ) n≥0 and (c n ) n≥0 are non-negative deterministic sequences, (ε n ) n≥0 , (r n ) n≥0 and (G n ) n≥0 are adapted sequences such that for all n ≥ 0, E[ε n+1 |F n ] = 0 and E[ ε n+1 2 |F n ] < ∞. We will assume that c n = 0 infinitely often and that n c 2 n < ∞. In Theorem 2.2.1, Proposition 2.2.2, Corollary 2.2.3 and Theorem 2.2.4, it is supposed that for some event Γ and some constant a > 2, a.s. on Γ, lim sup E[ ε n a |F n-1 ] < ∞. We thus have that a.s. Γ = ∪ n 0 ,k Γ n 0 ,k , where Γ n 0 ,k is the set of all ω ∈ Γ such that for all n ≥ n 0 , E[ ε n a |F n-1 ] ≤ k a . It is then straightforward to check that it suffices to prove these theorems with Γ replaced by Γ n 0 ,k . In the following we will therefore suppose from now on in this section that Γ = Γ n 0 ,k for some

(n 0 , k) ∈ N 2 .
For t ≥ 0 and n = ⌊t⌋, set F t = F n . Then (F t ) t≥0 is a complete right-continuous filtration. Let us define the càdlàg processes F , M , R and X such that for all n ≥ 0 and t ∈ [n, n + 1), (4.2)

F t = γ n+1 G n , M t = n k=1 c k ε k , R t = n k=1 c k r k and X t = X n + t n F s ds. (4.3)
Then, X, F , M and R are adapted to (F t ) t≥0 and satisfy (2.1) for all t ≥ 0. Note also that, with respect to the filtration (F t ) t≥0 , F is progressively measurable and M is a locally square integrable martingale. Moreover, for t ≥ 0,

[M ] t = n≤t c 2 n ε n 2 (4.4) M t = n≤t c 2 n E[ ε n 2 |F n-1 ] (4.5) V (R, (0, t]) = n≤t c n r n . (4.6)
We also have that

∆X t = 0 if t ∈ N * and that ∆X t = c n (ε n + r n ) if t = n ∈ N * .
Let us also set for t ≥ 0, α t = n>t c 2 n so that α : [0, ∞) → (0, ∞) is a non-increasing function, and

E t = k 2 α 2 t if t ≥ n 0 and E t = ∞ if t < n 0 .
Then it is an easy exercice using Lemma 3.1.1 that a.s. on Γ, for all stopping time S,

E[ ∆M S 2 1 S<∞ |F t ] P[S < ∞|F t ] b ≤ E t
and that a.s. on Γ, (2.7) is satisfied.

Let us finally set τ (t) = t + 1 for all t ≥ 0.

Proof of Theorem 2.2.1. In Theorem 2.2.1, we also suppose that a.s. on Γ,

0 < lim inf E[ ε n 2 |F n-1 ] and n r n 2 < ∞
and that there is a finite random variable T 0 and ρ > 0 such that a.s. on Γ, for all n ≥ T 0 ,

X n , G n 1 { Xn <2ρ} ≥ 0. (4.7)
It is straightforward to check that a.s. on Γ, lim n→∞ c n+1 (ε n+1 + r n+1 ) = 0 and therefore that a.s. on Γ 0 := Γ ∩ {lim n→∞ X n = 0}, lim n→∞ γ n+1 G n = lim n→∞ (X n+1 -X n ) = 0. So we can choose the random time T 0 such that a.s. on Γ 0 , for all n ≥ T 0 ,

X n , G n 1 { Xn <2ρ} ≥ 0 and γ n+1 G n < ρ. (4.8)
In order to apply Theorem 2.1.1 we now verify that a.s. on Γ 0 for all t ≥ T 0 , (2.3), (2.4), (2.5), (2.6) and (2.7) are satisfied. We have already checked that (2.7) holds a.s. on Γ.

Let us check that condition (2.3) is satisfied a.s. on Γ 0 . If t ∈ (n, n + 1), we have X t-= X n + (tn)γ n+1 G n and F t = γ n+1 G n , and so (4.8) implies that a.s. on Γ 0 for almost all t ≥ T 0 ,

X t-, F t 1 { X t-<ρ} ≥ 0 (using that if X t-< ρ, then X n ≤ X t-+ γ n+1 G n < 2ρ), i.e. condition (2.3) is satisfied. For t ∈ [n -1, n), M t,t+1 = M t+1 -M t = c 2 n E[ ε n 2 |F n-1 ] α 2 t -α 2 t+1 = c 2 n and so lim inf M t,t+1 α 2 t -α 2 t+1 = lim inf E[ ε n 2 |F n-1
] > 0 a.s. on Γ 0 . This proves that, a.s. on Γ 0 , (2.4) is satisfied with τ (t) = t + 1. We also have that

M t,∞ α 2 t = n>t c 2 n E[ ε n 2 |F n-1 ] n>t c 2 n and therefore lim sup M t,∞ α 2 t ≤ lim sup E[ ε n 2 |F n-1 ] ≤ lim sup E[ ε n a |F n-1 ] 2/a < ∞.
This proves (2.5).

Applying Cauchy-Schwartz inequality,

V (R, (t, ∞)) = n>t c n r n ≤ α t n>t r n 2 .
This implies condition (2.6), a.s. on Γ 0 . Theorem 2.1.1 can therefore be applied and this proves Theorem 2.2.1.

Proof of Proposition 2.2.2. In Proposition 2.2.2, it is supposed that γ n = O(c n ) ant that there are a random variable T 0 , β > 0, ρ > 0 and ν > 0 for which (2.17) and (2.18) are satisfied a.s. on Γ (for convenience, we replace in this proof ρ by 2ρ in (2.17)).

It is straightforward to check that a.s. on Γ, lim n→∞ c n+1 (ε n+1 + r n+1 ) = 0 and therefore that a.s. on Γ 0 := Γ ∩ {lim n→∞ X n = 0}, lim n→∞ γ n+1 G n = lim n→∞ (X n+1 -X n ) = 0. So we can choose the random time T 0 such that a.s. on Γ 0 , for all n ≥ T 0 , βγ n+1 ≤ 1 and

X n , G n 1 { Xn <2ρ} ≥ β X n 2 and γ n+1 G n < ρ. (4.9) Set γ t = β 2 γ n+1 if t ∈ (n, n + 
1] and α t as it is defined in the proof of Theorem 2.2.1. Then (using that

γ n = O(c n )), ∞ t γ 2 s ds = O(α 2 t )
. The definition of the processes X, F , M and R is slightly modified: we now set

R t = R ′ t + t 0 r ′′ s ds where, for t ∈ [n, n + 1), R ′ t = n k=1 c k r ′ k and r ′′ t = c n+1 r ′′ n+1 .
In order to apply Proposition 2.1.2, we now verify that a.s. on Γ 0 for all t ≥ T 0 , (2.4), (2.5), (2.7), (2.8), (2.9) and (2.10) are satisfied. We have already checked that (2.7) holds a.s. on Γ. Conditions (2.4) and (2.5) can be checked as in the proof of Theorem 2.2.1.

Let us check that condition (2.8) is satisfied: a.s. on Γ 0 for all t ∈ (n, n + 1) such that t ≥ T 0 and such that X t < ρ, it holds that X n < 2ρ and since (using in the last inequality that βγ n+1 ≤ 1 and that X

t- 2 ≤ 2( X n 2 + γ 2 n+1 G n 2 )) X t-, F t = γ n+1 X n , G n + γ 2 n+1 G n 2 ≥ βγ n+1 X n 2 + γ 2 n+1 G n 2 ≥ β 2 γ n+1 X t- 2 .
condition (2.8) is therefore satisfied a.s. on Γ 0 . Condition (2.9) can be verified exactly as is verified condition (2.6) in the proof of Theorem 2.2.1. The last condition to be verified is condition (2.10). Condition (2.18) implies that for t ∈

[n -1, n), r ′′ t = c n r ′′ n = O(γ 1+ν n ) = O(γ 1+ν t ).
Proposition 2.1.2 can therefore be applied and this proves Proposition 2.2.2.

Proof of Corollary 2.2.3. This corollary can easily be proved using Theorem 2.2.1 as is proved Corollary 2.1.3 using Theorem 2.1.1. Let us show how to prove Corollary 2.2.3 as a corollary of Corollary 2.1.3. In Corollary 2.2.3, it is supposed that H n is an adapted sequence of random matrices converging a.s. on Γ towards a repulsive matrix H and that there is a random variable T 0 such that a.s. on Γ, G n = H n X n for all n ≥ T 0 and that (2.16) are satisfied a.s. on Γ.

In order to apply Corollary 2.1.3, we set γ t = γ n+1 for all t ∈ (n, n + 1]. Note that we can choose T 0 such that a.s. on Γ, for all t ∈ (n, n + 1) and n ≥ T 0 , the matrix I + (tn)γ n+1 H n is invertible. Let us then define a random matrix H t such that a.s. on Γ,

H t = H n (I + (t -n)γ n+1 H n ) -1 for all t ∈ (n, n + 1) and n ≥ T 0 , so that γ t H t X t-= γ t H t (X n + (t -n)γ n+1 H n X n ) = γ n+1 H n X n = F t .
Then a.s. on Γ, lim t→∞ H t = H. Condition (2.7) has already been checked and conditions (2.4), (2.5) and (2.6) can be verified as in the proof of Theorem 2.2.1.

Corollary 2.1.3 can therefore be applied and this proves Corollary 2.2.3.

Proof of Theorem 2.2.4. In Theorem 2.2.4, x * ∈ R d is an unstable equilibrium of a vector field

f : R d → R d such that f is C 1 in a convex neighborhood N * of x * . For all n ≥ 0, G n = f (X n ) and it is also supposed that a.s. on Γ, 0 < lim inf E[ ε + n 2 |F n-1 ] and n r n 2 < ∞.
It is set α(t) = n>t c 2 n and it is also supposed that one of the two following conditions is satisfied

(i) x * is repulsive; (ii) n>t γ 2 n = O(α(t)) (which is satisfied if γ n = 0(c n )) and there is ν ∈ (0, 1] such that f ∈ C 1+ν (N * ) and that n>t c 1+ν n ε - n 1+ν = o(α t ) on Γ ∩ {lim X n = x * }.
In order to apply Theorem 2.1.4, we set

γ t = γ ⌈t⌉ , M + t = k≤t c k ε + k and M - t = k≤t c k ε - k . Note that for t ∈ (n, n + 1), F t = γ n+1 f (X n ). Setting Ft = γ t f (X t ) and Rt = R t + t 0 (F s -Fs ) ds, we get that for all t ≥ 0, X t -X 0 = t 0 Fs ds + M t + Rt .
We now apply Theorem 2.1.4 with F and R replaced by F and R. As in the proof of Theorem 2.2.1, conditions (2.4) and (2.5) can be verified for M + . Condition (2.7) has already been verified. Let us verify that condition (2.6) is satisfied by R a.s. on Γ ∩ {lim n→∞ X n = x * }. Note that a.s. on

Γ ∩ {lim n→∞ X n = x * }, setting n = ⌊t⌋, F t -Ft = γ n+1 f (X n ) -f (X t ) = o(γ 2 n+1 ) (using that X t -X n ≤ γ n+1 f (X n ) ). We therefore have that a.s. on Γ ∩ {lim n→∞ X t = x * } V ( R, (t, ∞)) ≤ k>t c k r k + ∞ t F s -Fs ds ≤ k>t c 2 k × k>t r k 2 + o k>t γ 2 k = o(α t ) i.e. condition (2.6) is satisfied by R a.s. on Γ ∩ {lim n→∞ X n = x * }.
We now verify that a.s. on Γ, M - t,τ (t) = O( M + t,τ (t) ). This easily follows from the fact that (setting n = ⌊t⌋) a.s. on Γ

M - t,t+1 = c 2 n+1 E[ ε - n+1 2 |F n ] ≤ c 2 n+1 E[ ε n+1 2 |F n ] = O(c 2 n ) = O( M + t,t+1 ) since M + t,t+1 = c 2 n+1 E[ ε + n+1 2
|F n ] and since a.s. on Γ, lim inf E[ ε + n |F n-1 ] > 0. Finally, we can conclude when (i) of Theorem 2.2.4 is satisfied by using the case (i) of Theorem 2.1.4. When (ii) of theorem 2.2.4 is satisfied, to use the case (ii) of Theorem 2.1.4, it remains to check that M is purely discontinuous (which is straightforward) and that a.s. on Γ, s>t ∆M - Proof of Theorem 2.2.5. For this theorem, we have G n = f (X n ). As in the proof of Theorem 2.2.4, for t ≥ 0, set Ft = γ t f (X t ) and Rt = R t + t 0 (F s -F) ds. We will apply Theorem 2.1.5 to the process X, with F and R replaced by F and R. It is straightforward to check that assumptions (i) and (ii) of Theorem 2.2.5 imply assumptions (i) and (ii) of Theorem 2.1.5 (with the same constants λ and µ). To conclude, it remains to check condition (iii) of Theorem 2.1.5.

It is straightforward to check that (2.5) is satisfied a.s. on Γ, and it can be verified that (2.6) is satisfied a.s. on Γ exactly as in the proof of Theorem 2.2.4. Since lim inf

M + t,t+1 α 2 t -α 2 t+1 = lim inf E[ ε + n 2 |F n-1 ],
(2.4) is satisfied by M + a.s. on Γ. The fact that (2.7) is satisfied a.s. on Γ (with M replaced by (P -1 M ) + in (2.2)) can easily be proved using Lemma 3.1.1. Theorem 2.1.5 can therefore be applied and this proves Theorem 2.2.5.

Examples

5.1. Strongly vertex reinforced random walks on complete graphs. We give here a correct proof of Theorem 3.9 in [START_REF] Benaim | Strongly vertex-reinforced-randomwalk on a complete graph[END_REF]. Denote by v n the empirical occupation measure at time n of a strongly reinforced VRRW 6 on a complete graph with d vertices with reinforcement weight ω(k) = k α , where α > 1. Let v * ∈ R d be such that v * i ∈ [0, 1] and i v * i = 1. In [START_REF] Benaim | Strongly vertex-reinforced-randomwalk on a complete graph[END_REF] there is a vector field f defined in a neighborhood N * of v * by (5.1)

f i (v) = -v i + v α i j A ij v α j H(v)
where H(v) = i,j A ij v α i v α j and A is a symmetric matrix with non-negative entries such that A ij > 0 if i = j and j A ij does not depend on i.

Theorem 3.9 states that when v * is an unstable equilibrium for f , then P[lim n→∞ v n = v * ]. We thus let v * be an unstable equilibrium. In the proof of Theorem 3.9 given in [START_REF] Benaim | Strongly vertex-reinforced-randomwalk on a complete graph[END_REF][Theorem], there is a process Z n such that lim n→∞ Z nv n = 0 and such that (2.11) is satisfied by Z n with γ n = c n = n -1 and G n = f (Z n ). It is easy to see that if S := {i : v * i > 0} denotes the support of v * , then K := {z ∈ N * : z i = 0 if i ∈ S} is the (local) unstable manifold of f . Moreover, it can be shown that K attracts a neighborhood of v * at rate 1 and it can be checked that (3.16) is satisfied with ν = α -1 > 0. In [START_REF] Benaim | Strongly vertex-reinforced-randomwalk on a complete graph[END_REF], it has been shown that r n ≤ C/n, that E[ε n+1 |F n ] = 0 and that on the event {lim n→∞ Z n = v * },

lim inf n→∞ E[ ε + n+2 2 F n+1 ] + E[ ε + n+1 2 |F n ] > 0.
Therefore Theorem 2.2.5 with Remark 2.12 can be applied (here k = 2, α(t) = n≥t n -2 , λ = lim t→∞ log(α(t)) k≤t γ k = -1 2 , µ = -1, β = -1 2 , ν = α -1 and we do have β(1 + ν) = -1+ν 2 < λ = -1 2 ) and we have proved that P[lim n→∞ Z n = v * ] = 0, which is what is claimed in Theorem 3.9 in [START_REF] Benaim | Strongly vertex-reinforced-randomwalk on a complete graph[END_REF]. 5.2. Non-backtracking VRRW. We correct here non-convergence theorems stated in [START_REF] Line | Vertex reinforced non-backtracking random walks: an example of path formation[END_REF]. In Section 3 in [START_REF] Line | Vertex reinforced non-backtracking random walks: an example of path formation[END_REF], Theorem 3.27 states the non-convergence towards an unstable equilibrium v * of a vector field f on R d , for a sequence of random variable (v n ) n≥0 in R d . In order to prove this theorem, another sequence of random variable (Z n ) n≥0 in R d is introduced and is such that lim n→∞ Z nv n = 0 and such that it satisfies (2.11) with γ n = c n = (n + d) -n and G n = f (Z n ). As in the previous subsection, it is proved in [START_REF] Line | Vertex reinforced non-backtracking random walks: an example of path formation[END_REF] that, for some m ≥ 0, on the event {lim n→∞ v n = v * }, r n = O(1/n), that E[ε n+1 |F n ] = 0 and that on the event {lim n→∞ v n = v * },

lim inf n→∞ E   m q=0 ε + n+q+1 2 F n   > 0.
So in order to proof that P[lim n→∞ v n = v * ] = 0 (or equivalently that P[lim n→∞ Z n = v * ] = 0) one would like to be able to apply Theorem 2.2.4 or Theorem 2.2.5 together with remark 2.12 (taking k = m + 1). In [START_REF] Line | Vertex reinforced non-backtracking random walks: an example of path formation[END_REF], Corollary 3.IV.15 in [START_REF] Duflo | Algorithmes stochastiques[END_REF] is applied, but as noticed in the previous sections, the proof of this corollary is incorrect.

With the hypotheses given in [START_REF] Line | Vertex reinforced non-backtracking random walks: an example of path formation[END_REF][Theorem 3.27], one also only has that f is Lipschitz in a neighborhood of v * , which is not sufficient to apply Theorem 2.2.4 or Theorem 2.2.5.

To apply Theorem 2.2.4, one would have to assume moreover that f is C 1 in a neighborhood of v * and v * is repulsive or that f is C 1+ν in a neighborhood of v * for some ν ∈ (0, 1], k≥n = o(n -1/2 ) is satisfied if ν > 1/2. To apply Theorem 2.2.5, one would have to assume moreover that

• f is C 1 in a neighborhood of v * ,
• v * is an hyperbolic equilibrium, and so that there is K a local unstable manifold that attracts a neighborhood of v * at rate µ for some µ < 0, • Condition 3.16 is satisfied for some ν > 0. As in the previous subsection, λ = -1/2, and so Theorem 2.2.5 can only be applied if the condition µ(1 + ν) < -1/2 is satisfied.

In [START_REF] Line | Vertex reinforced non-backtracking random walks: an example of path formation[END_REF] Theorem 3.27 is applied to prove Theorem 1.2 and the non-convergence towards an unstable equilibrium for the empirical occupation measure of a class of non-backtracking VRRWs on complete graphs (in [START_REF] Line | Vertex reinforced non-backtracking random walks: an example of path formation[END_REF][subsection 4.11.3]) with reinforcement weight ω(k) = k α , where α ≥ 1. As in the previous subsection, it can be shown easily that v * is hyperbolic, that the local unstable manifold is attracted at rate µ = -1 and that (3.16) is satisfied with ν = α -1. When α > 1, ν > 0 and Theorem 2.2.5 with remark 2.12 can be applied. When α = 1, f is C 1+1 in a neighborhood of v * and Theorem 2.2.4 with remark 2.12 can be applied. Therefore Theorem 1.2 remains correct for all α ≥ 1.

  Theorem 2.3.1 is essentially equivalent to [Tar00][Theorem 2] and extends [Ben99][Theorem 9.1]: there is an additional term r n and (1) in [Ben99][Theorem 9.1], it is assumed that lim n→∞ γ in Theorem 2.3.1 it is just assumed that n c 2 n < ∞. (2) the assumption on the noise ε is weaker in Theorem 2.3.1 than in [Ben99][Theorem 9.1]. Indeed, condition (i) in [Ben99][Theorem 9.1] (i.e. for all unit vector v, E[ ε n+1 , v + |F n ] ≥ b1 Xn∈S , with b > 0) implies that for all unit vector

s

  1+ν = o(α t ) (which follows from the fact that s>t ∆M -s 1+ν = n>t c 1+ν n ε - n 1+ν ).

  -1/2 ) on {lim n→∞ v n = v * } and v * is unstable. Note that in [LR18][Section 3.3], it is shown that there is C < ∞ such that for all n, ε n ≤ C. So k≥n ε - k 1+ν k 1+ν

  so, a.s. on Γ C , (2.17) is satisfied for all n ≥ T . One also easily checks that a.s. on Γ C , (2.18) is satisfied, i.e. n |r ′ n | 2 < ∞ and c n r ′′ n = O(γ 1+ν n ). In order to apply Proposition 2.2.2, it remains to check that condition 2.15 is satisfied by ε η a.s. on Γ C . It is straightforward to check that, a.s. on Γ C , lim sup E[|ε η n+1 | a |F n ] < ∞. The fact that a.s. on Γ C , lim inf E[|ε η n+1 | 2 |F

n ] > 0, follows from the fact that a.s. on Γ C , for all n ≥ T ,

  T t ∧ U t = U t and the event H t is realized. Therefore, on the event {S t < ∞}, P[H t |F St ] ≥ P I t ≥ -

	Lα S t 4 , Lα S t
	4

S t 4 } ∩ {S t < ∞}, we have inf s∈[St,Tt∧Ut) X s ≥ F St . By Doob's inequality, on the event {S t < ∞},

  Since, a.s., lim t→∞ P[H|F t ] = 1 H and lim t→∞

where A is the event {∃t; U t = ∞}. Since, P[H s |F t ] = E[P[H s |F s ]|F t ] ≥ p 2 , we have P[H|F t ] ≥ p 2 -P[A c |F t ]

  Proof of Proposition 2.1.2. It suffices to follow the lines of the proof of Theorem 2.1.1. The only changes are essentially the following ones:• In the proof of Lemma 3.1.3, equation (3.11) has to be replaced by

	As noticed in subsection 3.1.1, this suffices to prove Theorem 2.1.1.
	3.1.4. Proof of Proposition 2.1.2. The framework is the same as for Theorem 2.1.1, but in Propo-sition 2.1.2, we have R t = R ′ t + t s ds and conditions (2.3) and (2.6) are replaced by (2.8), (2.9) 0 r ′′ and (2.10).

s∧St t

  In the proof of Lemma 3.1.4, when one underestimates X s for s ∈ [S t , T t ∧U t ] we must add Proof of Corollary 2.1.3. In Corollary 2.1.3, H is a repulsive matrix, i.e. a matrix such that its eigenvalues all have a positive real part. We also have that for all t ≥ 0, γ t ≥ 0 and H t is a M d (R)-valued random variable. And it is supposed that (i) a.s. on Γ, lim t→∞ H t = H, (ii) there is a finite random variable T 0 such that, a.s. on Γ, for all t ≥ T 0 ,F t = γ t H t X t-Proof of Corollary 2.1.3. Lemma 3.2.1 ensures the existence of λ > 0 and of an inner product •, • such that Hx, x ≥ λ x 2 . Since a.s. on Γ ∩ {lim t→∞ X t = 0}, lim t→∞ H t = H, we have that a.s.

	Before proving this lemma, let us prove Corollary 2.1.3:				
	13)								
	and (separating the cases X u-≥ kγ ν u and X u-< kγ ν u ) we underestimate the last integral by -k 2 s∧St t γ 1+2ν u du = o(α 2 t ) since ν > 1 2 . • the term s St X u-X u-, F u + r ′′ u du which can be underestimated by (using Cauchy-Schwartz
	inequality for the second term)							
	s St	γ u X u--kγ ν u du ≥	Lα St 4	s St	γ u du -k	s St	γ 2 u du	s St	γ 2ν u du
		≥	Lα St 4	s St	γ u du -k 2 α St	s St	γ 2ν u du
	and we use the fact that (since ν > 1/2)	s St γ 2ν u du = (1 +			
	and that conditions (2.4), (2.5), (2.6) and (2.7) are satisfied on Γ.			

s St γ u du × o(1).

3.2. The proof of Corollary 2.1.3 relies on Theorem 2.1.1 and on the following lemma: Lemma 3.2.1. There are λ > 0 and an inner product •, • such that Hx, x ≥ λ x 2 , with x 2 = x, x .
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3.4. Proof of Theorem 2.1.5. In Theorem 2.1.5, we suppose that a.s. on Γ, M and R satisfy (2.5) and (2.6).

3.4.1. Assumptions on F t and the unstable manifold. We suppose that F t = γ t f (X t-), where γ : [0, ∞) → [0, ∞) is a measurable function and f : R d → R d is a measurable vector field, which is C 1 in a neighborhood of an unstable equilibrium x * for ϕ the flow generated by f . Without loss of generality, we suppose that x * = 0. Also, we will suppose that the equilibrium x * is hyperbolic, i.e. the eigenvalues of Df (x * ) all have a non-zero real part (note that this assumption is not necessary in this subsection and is only used in subsection 3.4.2).

The rectification of f given below is similar to the one given in Section 3.3, but here the new coordinates (u + , u -) are such that the local unstable manifold is an open subset of {u -= 0} and such that u + is a linear transformation of x, and the function g maps N + onto N -(whereas in Section 3.3, g maps N -onto N + ). Following [START_REF] Hartman | Ordinary differential equations[END_REF], there are integers δ + ∈ {1, . . . , d}, δ -= dδ + , an invertible matrix

• The eigenvalues of H + all have a positive real part and the eigenvalues of H -all have a negative real part, i.e. H + is repulsive and H -is attractive.

Let µ be the smallest real number such that every eigenvalue of H -has a real part less or equal to µ. Then, x * being hyperbolic, µ < 0.

y)

. Then h is C 1 in a neighborhood of 0, h(0) = 0 and Dh(0

Following [START_REF] Hartman | Ordinary differential equations[END_REF] (Lemma 5.1, Example 5.1 and Corollary 5.2), there are N + and N -, convex neighborhoods of 0 respectively in R δ + and R δ -and g :

The last assumption ensures that if y t satisfies dyt dt = h(y t ) with y(0) ∈ N such that u - 0 := y - 0g(y + 0 ) = 0, then as long as y t ∈ N , one has u - t := y - tg(y + t ) = 0. Set N * := {x : P -1 x ∈ N }. Then the set K of all x ∈ N * such that y -= g(y + ), where y = P -1 x, is the (local) unstable

, where set y = y + y -= P -1 x. Then ψ : N * → ψ(N * ) defined by ψ(x) = u is a C 1 -diffeomorphism. We denote by d(x, x ′ ) the distance in N * defined 5 by d(x, x ′ ) = ψ(x)ψ(x ′ ) . Note that d(x, K) = u -(since K is the set of all x ∈ N * such that u -= 0). Let also k be the vector field defined on ψ(N * ) by k + (u + , u -) = h + (u + , u -+ g(u + )), k -(u + , u -) = h -(u + , u -+ g(u + )) -Dg(u + )h + (u + , u -+ g(u + )).

Then k + and k -are C 1 and k -(u + , 0) = 0.