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Abstract

Endowing machines with social intelligence is a funda-
mental goal of artificial social intelligence. Dealing with
human-centered phenomena requires, however, a consid-
erable amount of manually annotated data, making data
annotation a costly and challenging task that hinders the
training of supervised learning algorithms. In this study,
we apply an approach grounded on Graph Convolutional
Network (GCN) to alleviate the annotation burden. As a
test bed, we select emergent states analysis with specific
reference to the team potency. At first, we build the PO-
TENCY dataset by fusing three datasets on social interac-
tion. Next, we compute a set of multimodal features char-
acterizing the social behavior of the team members and the
team as one. Finally, we feed the POTENCY dataset to a
semi-supervised GCN, trained on a binary node classifica-
tion task, with variable amounts of labels. We show that
GCN can assign team potency labels to an unlabeled team
in the dataset by using only a few labeled examples (i.e.,
10% of data), with performances comparable to or higher
than those of two baseline algorithms carrying out the same
task in a fully supervised way.

1. Introduction
Artificial social intelligence aims to equip machines with

the ability to analyze and interpret social phenomena [47].

Among these phenomena, emergent states are dynamic con-

structs that arise from team actions and interactions [42].

Examples of emergent states include cohesion, team po-

tency, and the transactive memory system. Studying emer-

gent states has particular relevance for artificial social in-

telligence since they can characterize the affective, motiva-

tional, behavioral, or cognitive state of a team [38]. Such

investigation presents unique challenges due to the multi-

party and nuanced nature of team interactions [27].

Prior research has explored computational approaches

for automated analysis of emergent states (e.g., [36, 26,

46, 13]). These approaches mostly rely on fully super-

vised learning paradigms, demanding a large number of la-

beled examples. Annotating social interaction data is how-

ever, a challenging, time-consuming, and costly task that

requires expert raters and precise coding schemes, such as

the Advanced Interaction Analysis for Teams (Act4Teams)

scheme [27]. The labor-intensive task of data annotation

is further compounded by the challenge of determining the

appropriate number of annotators and demonstrating anno-

tation certainty and reliability [2]. Moreover, data labeling

involves making critical choices that can influence the re-

sults, such as the method of data unitizing [8].

In this paper, we propose an approach grounded on

Graph Convolutional Network (GCN) to alleviate the an-

notation burden and enable effective analysis of emergent

states even with a limited amount of annotated data. Specif-

ically, we leverage relational information among data by

modeling them as a graph and employing a GCN in a semi-

supervised setting.

We assess the approach by applying it to automated anal-

ysis of team potency, i.e., “the collective believe that a team
can be effective” [24]. This emergent state was selected be-

cause of its link with group performance and satisfaction

[23, 33]. Endowing a machine with the ability to cope with

low potency scenarios could, indeed, allow us to devise so-

cially intelligent machines that can support the team’s well-

being and have a positive impact on its functioning [25].

More specifically, we measure the performances of binary

classification of team potency (i.e., low vs. high potency)

with a variable amount of labeled examples (from 1% of

the dataset size, up to 100%).

The main contribution of this work is as follows: we

show that the GCN-based approach can successfully assign

team potency labels by using only a few labeled examples

(i.e., 10% of data). The performances of the GCN are com-

parable to or higher than those of two baseline algorithms

carrying out the same task in a fully supervised way.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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2. Related Work
The cost of manual annotation remains a long-standing

and open problem, especially for computational approaches

to human-centered phenomena. Various techniques were

proposed to address different aspects of this issue.

Supervised methods using end-to-end deep learning

techniques were used to tackle uncertainty and unreliable

labels. For instance, Prabhu et al. [41] proposed an end-

to-end model to address subjectivity in emotion annota-

tions, whilst Wang and colleagues [50] incorporated an

agreement-oriented loss function to model label unreliabil-

ity in their deep learning model. Deep learning methods,

however, often require a significant amount of labeled data

to avoid overfitting [21], and their resource-intensive nature

contributes to environmental pollution [53].

Semi-automated methods such as Active Learning (AL)

and semi-supervised algorithms were applied to alleviate

the burden of data labeling. AL delegates the annotation

procedure to a machine learning method, which selects un-

labeled samples based on a query strategy and presents them

to the annotator for labeling. Various AL approaches were

proposed [56, 55, 49]. Zhang and colleagues show poten-

tial savings of up to 79.17% of labels for emotion recogni-

tion in spoken interactions using only audio data [55]. Ef-

fectively combining AL with modern deep learning algo-

rithms remains, however, an open problem [43]. Further-

more, AL techniques can encounter challenges with techni-

cally complex data, as designing an effective query strategy
is non-trivial, and uninformative examples may be selected.

Recently, Voß and colleagues [48] tackled multimodal dis-

/agreement classification in human-robot interactions and

YouTube videos using semi-supervised deep architectures.

While their work demonstrates promising results, it still re-

lies on a supervised branch for the final classification, ne-

cessitating a significant amount of labeled examples to gen-

eralize effectively.

In the specific area of analysis of emergent states, pre-

vious works mostly explored supervised settings relying ei-

ther on data taken from already annotated datasets or on

data captured and annotated for the purpose. For exam-

ple, Hung et al. classified teams as high or low on cohesion

from manually annotated meetings recordings [26]. Ma-

man and colleagues [37] analyzed the temporal dynamics of

cohesion by using the GAME-ON dataset [36], which was

recorded and manually annotated for the purpose. Lee et
al. [32] developed a computational model of interpersonal

trust through hand-coded nonverbal social behaviors and

explored the temporal dynamic of the construct by means of

hidden Markov models. Coming to team potency, Castro-

Hernandez and colleagues [7] addressed it as both a re-

gression and a classification problem, but their work was

narrowly focused on virtual teams and required the time-

consuming recording of a dataset of students’ interactions.

Corbellini et al. [13] tackled multimodal team potency clas-

sification using traditional machine learning algorithms on

publicly available datasets, which were manually annotated

for the purpose. All these studies suffered from the anno-

tation burden that required a lot of effort and delayed the

achievement of results.

3. Background

In the following, we briefly describe the emergent state

we selected to test our approach (i.e., team potency) and the

class of artificial neural networks we adopted to detect it

(i.e., Graph Convolutional Networks).

Team potency. Potency is an emergent team phenomenon

known for its link with team performance and satisfaction

[23, 33, 45]. Many studies show that team potency grounds

on participatory [19], supportive [14], and cohesive [31] so-

cial interactions among the team members. More in detail,

team potency is a motivational construct, meaning that it re-

flects “team beliefs relating to the intensity, direction, and
effort regulation toward team task accomplishment” [42].

As an emergent phenomenon, it “arise[s] from interactions
among individuals, [is] shaped by the context over time, and
manifest[s] at higher levels of the system” [30]. Let us con-

sider the case in which one person has low confidence in

herself. Still, she could be confident of her team’s success,

leaning on her teammates [24]. Accordingly, team potency

is not related to what the individual thinks; rather, it is a

shared belief in the team as one. Finally, team potency is

task-independent as it is not related to the task the team is

involved in. Rather, it is a general idea that the team will

perform well in a broad spectrum of circumstances [42].

Graph Convolutional Network (GCN). Let G =
(V, E ,X) be an undirected, unweighted graph, where V =
{1, . . . , N} is the set of N vertices, E ⊆ {(p, q) | p, q ∈
V and p �= q} is the set of edges between nodes p and q,

and X ∈ R
N×F is a feature matrix, where F is the number

of node features. The adjacency matrix of the graph is de-

noted as A ∈ {0, 1}N×N , where A(p, q) = 1 ∀ (p, q) ∈ E ,

and A(p, q) = 0 otherwise. Moreover, D ∈ R
N×N is

a diagonal matrix representing the graph degree such that

D(p, p) =
∑N

q=1 A(p, q) ∀ p = 1, . . . , N . Thus, a GCN

layer is defined as follows [28]:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W(l)), (1)

where Ã = A + I and D̃ is its degree matrix. H(l) is the

output of layer l, with H(0) = X. W(l) ∈ R
din×dout is

the matrix of learnable parameters in layer l, and σ(·) is a

non-linear activation function. We omit the bias term in (1)

for simplicity.
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Figure 1. The pipeline of the approach: features are extracted from audio/video recordings and MoCap data when available. Next, a

per-dataset cleaning is applied to remove outlier (LOF) and labels overlapping (ENN). Then, we augment the datasets (SMOTE) and we

combine them to get the POTENCY dataset. A k-NN graph is built to feed a GCN that classifies high vs. low potency nodes.

4. Methodology
The pipeline of the proposed method is illustrated in Fig-

ure 1. To begin, a preprocessing step is applied to each

dataset, involving the removal of outliers and filtering of

source signals. Next, a collection of features is computed

to characterize the multimodal social behavior of the team

members and of the team as one. The feature set then under-

goes a cleaning process, and the resulting data is augmented

by using a combination of over and under-sampling tech-

niques. Finally, we build a graph by applying a k-Nearest

Neighbors (k-NN) approach and proceed to train a GCN for

potency classification.

4.1. Task Formulation

We formulate the team potency binary classification task

as a semi-supervised node binary classification problem.

Let G = (V, E ,X) be the graph constructed from the fea-

ture matrix X. Similarly, let Vl ⊆ V be a subset of nodes

with associated labels1 y ∈ {0, 1} describing the team as

being either low or high on team potency. The task is to

classify the set of remaining unlabeled nodes Vu = V \ Vl

in a transductive scenario. This means the algorithm uses

the whole feature matrix X and the set of labeled nodes Vl

to give a label to unlabeled nodes. In other words, the infor-

mation which is implicit in the unlabeled examples is used

to give them a label.

4.2. Dataset

Due to the lack of publicly available datasets on potency,

we build the POTENCY dataset by aggregating parts of ex-

isting datasets concerning teams, and in which team mem-

bers (i) are engaged in a specific task, and (ii) are collaborat-

ing to achieve a shared goal. Here below, few information

1In semi-supervised learning scenarios 0 <
|Vl|
|V| << 1.

is given about each of the selected datasets:

AMI [6] consists of audio-video recordings in a meeting

scenario in which participants discuss seated around a ta-

ble. Two families of meetings are available: (i) remote con-
troller design task, in which team members discuss to solve

a design task, and (ii) miscellanea, in which team members

discuss various topics, e.g., fictitious planning of an office

move, research, and so on. Among the available data, we

use the mixed audio tracks of the team members and the

videos’ lateral views.

MULTISIMO [29] consists of audio and video record-

ings2 of 3-people teams solving a quiz. The participants are

seated around a table, two of them are the players and the

third one is the game facilitator. We select the mixed audio

tracks of the team members and the videos that captured the

whole scene.

GAME-ON [36] consists of audio, video, and MoCap

recordings of 3-people teams freely moving while playing

an escape game. We select video data from the frontal view

camera and we mix together the individual audio tracks.

Table 1 reports the technical specifications of every

dataset.

Table 1. Technical specifications of the selected datasets.

Dataset Video Audio MoCap

AMI 350× 280px, 25fps 16 kHz, Mono N/A

MULTISIMO 1920× 1080px, 30fps 48 kHz, Stereo N/A

GAME-ON 1280× 720px, 50fps 48 kHz, Mono 50 Hz

The POTENCY dataset finally consists of 18 teams hav-

ing from 3 to 4 team members each. Table 2 summarizes

the composition of the dataset.

2The dataset also includes Kinect skeletons that are not retained for

analysis because they are noisy in some of the segments of interest
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Table 2. The POTENCY dataset composition

Dataset Teams Samples Labels (low vs high)

AMI 6 162 81 vs 81
MULTISIMO 6 138 33 vs 105
GAME-ON 6 153 54 vs 99

POTENCY 18 453 168 vs 285

4.3. Preprocessing

Due to the different technical specifications of the

datasets, preprocessing is tailored to each of them.

Audio. We re-sample the audio tracks to 44.1kHz and con-

vert them to monophonic. Hence, we filter them with the

Audacity3 noise-reduction algorithm.

Movement. We process AMI and MULTISIMO video

recordings using OpenPose [5] for body pose estimation.

We remove the outliers from the resulting 2D body poses

with a Hampel filter [35]. Outliers are defined as those

points exceeding 3 times the Median Absolute Deviation in

a window of 7 frames for both datasets. Then, a Savitzky-

Golay filter [44] is applied to smooth the trajectories. The

filter parameters are: (i) window size of 25 frames with

a polynomial of order 3 for AMI, and (ii) window size of

30 frames with a polynomial of order 2 for MULTISIMO.

GAME-ON already provides cleaned 3D positional data at

50Hz. Thus, we project them on a 2D plane by removing

the depth axis.

Unitizing. Teams’ recordings are segmented into 15s

non-overlapping segments for each data source (i.e. audio,

video, and movement trajectories). Such a window size

was already successfully applied for annotating affective so-

cial behaviors [8] drawing on the results of Ambady and

colleagues [1]. A subset of the remaining segments is re-

tained for analysis. We remove segments not relevant to the

group potency such as transitions between tasks. The pro-

cess yields a total of 151 segments.

4.4. Annotation

Commonly, team potency is assessed by administering a

questionnaire, following a referent-shift composition model
[9]. According to this model, the focus of the assessment is

shifted from the individuals to the team. This means that,

prior justification of within-group agreement, each person’s

rating is averaged among team members to obtain a team-

level score. This constraint is necessary to verify that there

is consensus among team members and it legitimates schol-

ars to aggregate the individual ratings. To annotate potency,

we adopt the 8-items scale developed by Guzzo et al. [24].

Specifically, in this study, the 7-point version of the scale

(from To no extent (1) to To great extent (7)) is used [14].

3Audacity® software is copyright © 1999-2021 Audacity Team. The

name Audacity® is a registered trademark

The work of [20] indeed shows that this scale is a reliable

tool for potency assessment.

We recruited two annotators (i.e., psychologists trained

for team analysis) to rate the audio-visual segments. An-

notators were instructed about the task by watching sample

segments from each of the datasets, that are not included in

the annotation procedure. Each annotator viewed the seg-

ments in random order and rated them over Guzzo’s scale.

To verify the annotators’ agreement, we compute the

r∗wg(j) index [34]. This index is commonly used to assess

interrater agreement for Likert-type responses and to sup-

port the averaging of individual ratings to the group level

[39]. r∗wg(j) ∈ [−1, 1], where −1 is maximum dissent and

1 is maximum consensus. Following the best practices out-

lined in [39], we consider r∗wg(j) ≥ 0.7 a reliable consensus.

Any disagreement was solved by verbal discussion between

the annotators.

As reported in Section 4.1, we formulate the problem as

a binary classification task (high potency vs. low potency).

To get the binary labels, we rearrange the interrater average

scores as follows:

y =

{
low, if score ≤ 4

high, if score > 4,
(2)

being score the average potency score assigned by the an-

notators to a segment.

Finally, since team potency is an emergent phenomenon,

we cannot expect it to change too often in a short period

of time [52]. Consequently, we review the ground truth to

clean artifacts resulting from the interrater average. We de-

fine as outliers those segments having an opposite label with

respect to both the previous and the next 15s segments over

time. That is, in case the previous and the next segments

have a different label with respect to the middle one, the

label of the middle segment is changed accordingly. As a

result, we change the label of three segments.

4.5. Feature extraction

Since feature extraction is not the focus of this research,

we leverage the state-of-the-art on analysis of team behav-

ior and emergent states (e.g., [22, 37, 13, 15]). We select a

collection of features that were already successfully used in

existing works. Features describe the behavior, in its par-

alinguistic and movement components, of both individual

team members as well as the team as one.

Concerning paralinguistic features, since individual au-

dios are not available for all datasets, we only compute

those referring to the team as one. Specifically, we use

OpenSmile [17] to compute the functional set of the Geneva

Minimalistic Acoustic Parameter Set (GeMAPS) [16]. Such

a set was previously successfully exploited to classify cohe-

sion dynamics [37] and for predicting team performances

[57]. Since GeMAPS loudness can be affected by the
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recording settings of the specific dataset, we normalize its

mean and standard deviation with respect to those computed

on the whole source audio.

Regarding movement features, we extract two individ-

ual features, i.e., Upper Body Energy (UBE) [13, 37] and

the distance of the head of each team member from the

team barycenter (BarDist) [22, 13, 37]. We also extract one

feature concerning the team as one, i.e., the entropy of the

displacement of the heads (HeadsEnt) [15]. Computations

are performed following the algorithms proposed in the ref-

erenced literature. In the case of UBE, since GAME-ON

takes place in a scenario in which people are free to move,

we account for this by removing the chest energy of each

team member. This step allows us to remove the influence

of walking from the obtained values.

After extracting the features, we compute their mean,

standard deviation, skewness, and kurtosis over 6s sliding

windows with 1.5s of overlap. As a result, our feature vec-

tor consists of 88 audio and 33 movement features, for a

total of 121 behavioral features.

4.6. Feature Set Cleaning and Augmentation

From the feature set, we filter out outliers per dataset
using the Local Outlier Factor (LOF) algorithm [4] with a

neighborhood equal to 20. We remove a total of 25 samples

(1.85% AMI, 5% MULTISIMO, and 9.8% GAME-ON).

Furthermore, to prevent overfitting, we augment the feature

set per dataset. We first apply the Edited Nearest Neighbors

(ENN) [51] method to clean regions of the feature set where

a dense overlapping of discordant labels occurs. The num-

ber of neighbors for the search is set to three. Next, the Syn-

thetic Minority Over-sampling Technique (SMOTE) ([10])

method is adopted for over-sampling the feature set. We

use the default number of neighbors equal to five. Finally,

ENN with a neighborhood equal to seven is run to remove

possible noise due to the over-sampling, as suggested in [3].

4.7. Graph Construction

To build the graphs, we exploit the geometrical informa-

tion in the POTENCY dataset. Specifically, let X ∈ R
N×F

be the features of the augmented dataset defined in Section

4.6, being N the number of samples and F the size of the

feature vector (i.e., 121 as shown in Section 4.5). Each node

in V is thus an F -dimensional vector. We use a k-Nearest

Neighbours (k-NN) method with k = 129 to construct the

graph, i.e., we connect each node to its k nearest neighbors.

We assign a weight equal to 1 to these k-NN connections.

Finally, we force the graph to be undirected.

5. Experiments
To show the effectiveness of our approach, we compare

the GCN algorithm against two baselines: a Label Propa-

gation Classifier (LPA) [58], and the Variational Splines of

Pesenson (V-Splines) [40]. Training is performed with an

increasing percentage of labels, i.e., 1%, 5%, 10%, 25%,

50%, 75%, and 100%. 35 different seeds are used for each

algorithm.

We evaluate the algorithms in a Leave-One-Team-Out

(LOTO) setting. Namely, for each algorithm (i) we itera-

tively mask the samples of one team so that all such samples

are unlabeled, (ii) we then perform training using a random

subset of nodes sampled from the remaining nodes, and (iii)

we finally compute a metric to evaluate the performances of

the algorithms by comparing the labels assigned to the sam-

ples of the team that was left out with the ground-truth (i.e.,

the labels provided by the manual annotation). Steps (ii)

and (iii) are repeated for all percentages of labeled samples

listed above. As a metric, we choose the F1 score.

The overall effect of the algorithms and label percent-

age on the performance metric is assessed with a two-way

repeated measures permutation ANOVA [54]. Thus, we in-

vestigate (i) the main effect of the algorithms on the perfor-

mance at each label percentage, and (ii) the main effect of

label percentages on the performance of each algorithm. In

both cases, if statistical significance is detected, we perform

pairwise permutation t-test post-hoc[12] and False Discov-

ery Rate (FDR) correction.

5.1. Implementation Details

We train GCN using Pytorch Geometric 2.3 [18] on an

Nvidia Geforce Rtx 3090 GPU. We adopt the same archi-

tecture described in [28]. Specifically, we define the GCN

architecture with 2 graph convolutional layers with 32 hid-

den units and the ReLU activation function. We use the

Adam optimizer with a learning rate of 0.01 to minimize

the binary cross-entropy loss with an L2 regularization fac-

tor of 10−4. We further regularize using a Dropout layer

with 50% of dropout probability. GCN is trained for 200
epochs.

6. Results and Discussion
Table 3 shows the obtained F1 scores vs. the label per-

centages for GCN and the two baselines. F1 scores are re-

ported for the low and high potency classes. The average

F1 score is reported as well, and also displayed in Figure 2.

The two-way analysis of the average F1 scores shows

that both factors (i.e., the algorithms and the percentage of

labels) have a significant effect on the performance met-

ric (p < .001 for both). The post-hoc analyses for the

main effect of the algorithm on the performance at each

percentage of available labels confirm that GCN signifi-

cantly outperforms the baseline algorithms for amounts of

labels lower than 75%. In detail, GCN performs better than

the LPA classifier for amounts of labels lower than 75%
(1% : p < .001, 5% : p < .001, 10% : p < .001,

25% : p < .001, 50% : p < .001); no significant difference
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Table 3. Per-class and average (±std) F1 scores for an increasing amount of labels and for the three algorithms.

Class Model 1% 5% 10% 25% 50% 75% 100%

F1low

LPA 0.29±0.09 0.32±0.07 0.40±0.02 0.42±0.02 0.48±0.03 0.53±0.02 0.55±0.00

V-Splines 0.53±0.06 0.54±0.04 0.54±0.04 0.55±0.04 0.55±0.03 0.55±0.02 0.56±0.00

GCN 0.57±0.08 0.61±0.06 0.63±0.03 0.66±0.02 0.66±0.02 0.66±0.02 0.65±0.01

F1high

LPA 0.65±0.11 0.82±0.03 0.82±0.01 0.78±0.01 0.76±0.01 0.75±0.00 0.73±0.00

V-Splines 0.68±0.04 0.68±0.02 0.67±0.02 0.66±0.02 0.65±0.02 0.64±0.01 0.64±0.00

GCN 0.65±0.06 0.64±0.04 0.63±0.03 0.62±0.02 0.62±0.02 0.62±0.01 0.61±0.01

F1avg

LPA 0.47±0.05 0.57±0.04 0.61±0.01 0.60±0.01 0.62±0.02 0.64±0.01 0.64±0.00

V-Splines 0.60±0.04 0.61±0.02 0.61±0.03 0.60±0.02 0.60±0.02 0.60±0.01 0.60±0.00

GCN 0.61±0.04 0.62±0.03 0.63±0.02 0.64±0.02 0.64±0.01 0.64±0.01 0.63±0.01

The significant results are shown in bold. Multiple bold values for the same percentage of labeled examples mean that the

difference between such values is not statistically significant.

Figure 2. Average F1 scores for an increasing amount of labels and

for the three algorithms.

is found for percentage of available labels higher than 75%.

GCN outperforms V-Spline for all the tested amounts of la-

bels (5% : p = .0352, 10% : p < .001, 25% : p < .001,

50% : p < .001, 75% : p < .001, 100% : p < .001). The

post-hoc analyses for the main effect of the percentages of

available labels on the performances of each algorithm re-

veal that for GCN there is no statistical difference between

the average F1 score obtained with the 10% of labels and

those obtained with higher amounts of labels (all p values

≥ 0.05). For LPA, there exists a significant difference be-

tween the average F1 scores for all percentages. No sta-

tistically significant difference is observed for V-Spline. In

summary, the analysis on the average F1 scores confirms

that an amount of labels as low as 10% is enough for GCN

to get the same performances reached with 100% of labels

by both GCN and LPA and to get better performances than

V-Spline with all the available labels.

About the F1 scores for each class (see Table 3), all the

algorithms reach F1 scores higher than 0.6 on the high po-

tency class with any amount of labels, whereas scores are

closer or even lower than 0.5 for the low potency class.

This is in line with the results reported in [13] suggesting

that classifying high potency is easier. Following the re-

sults of the analysis of the average F1-scores, we observe

specifically that GCN outperforms both LPA and V-Spline

for the low-potency class (both p < .001), whereas LPA

outperforms both GCN and V-Spline for the high-potency

class (both p < .001). Nevertheless, in an artificial social

intelligence scenario, detecting low levels of potency is of

particular interest to design proper strategies of intervention

to positively impact the team functioning [25] and support

humans’ effort [11]. Therefore, the significantly better per-

formances of GCN with respect to those of the baselines in

the average F1-score and in the F1-score for the low potency

class make it more effective than the baselines for giving la-

bels to unlabeled team potency samples based on a small

number of labels.

7. Conclusions
In this study, we presented a method to reduce the cost

of manual annotations of social interactions. To assess our

method we assigned a low vs. high potency label to unla-

beled data exploiting only a small portion of manually anno-

tated data. Hence, we trained a GCN on a binary node clas-

sification task in a semi-supervised setting. Results show

that using a GCN we can reduce the number of labels up

to only the 10% to effectively classify social interactions.

The benefits of achieving good performance in such a set-

ting could be multiple, such as reducing the time and cost

of collecting many manually annotated data. Moreover, this

approach decreases the time and energy consumption with

respect to training deep architectures on big datasets. This

study presents some limitations too. GCN was trained in

a transductive framework meaning that the k-NN graph has

to be re-constructed and the model re-trained each time new

data is added. Adopting such a framework makes the algo-

rithm costly to maintain in a real-world scenario.
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