
Shannon Strikes Again! Entropy-based Pruning in Deep Neural Networks for
Transfer Learning under Extreme Memory and Computation Budgets

Gabriele Spadaro1 Riccardo Renzulli1 Andrea Bragagnolo3 Jhony H. Giraldo2

Attilio Fiandrotti1 Marco Grangetto1 Enzo Tartaglione2
1 University of Turin, Computer Science Department, Italy
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Abstract

Deep neural networks have become the de-facto stan-
dard across various computer science domains. Nonethe-
less, effectively training these deep networks remains chal-
lenging and resource-intensive. This paper investigates
the efficacy of pruned deep learning models in trans-
fer learning scenarios under extremely low memory bud-
gets, tailored for TinyML models. Our study reveals that
the source task’s model with the highest activation en-
tropy outperforms others in the target task. Motivated by
this, we propose an entropy-based Efficient Neural Trans-
fer with Reduced Overhead via PrunIng (ENTROPI) al-
gorithm. Through comprehensive experiments on diverse
models (ResNet18 and MobileNet-v3) and target datasets
(CIFAR-100, VLCS, and PACS), we substantiate the supe-
rior generalization achieved by transfer learning from the
entropy-pruned model. Quantitative measures for entropy
provide valuable insights into the reasons behind the ob-
served performance improvements. The results underscore
ENTROPI’s potential as an efficient solution for enhancing
generalization in data-limited transfer learning tasks.

1. Introduction
Neural networks have emerged as a universal tool for

various computer vision tasks, achieving state-of-the-art
performance in image classification, object detection, and
other visual recognition challenges [?,5,15]. However, har-
nessing the full potential of these networks often proves
challenging due to their complexity and the immense data
requirements for training. To address this, researchers have
sought compact models to alleviate computational burdens
and improve efficiency [1, 7, 13, 21]. Among such ap-
proaches, pruning has emerged as a promising technique,
reducing neural network size by removing unnecessary con-
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Figure 1. A pruned encoder exhibits better performance than a
dense one in transfer learning scenarios, which correlates with the
entropy of its representations. The peak of performance in the tar-
get task empirically correlates to the peak of the entropy.

nections [2, 4, 8, 11–13, 19, 23]. However, while pruning
contributes to model efficiency, it may not always suffice,
particularly in scenarios with limited data availability.

In recent years, transfer learning has emerged as a piv-
otal approach to bridge the gap between data scarcity and
effective model training, leveraging pre-trained models on
large-scale datasets as a foundation for new tasks, leading to
faster convergence and improved generalization [14,22,24].
Nonetheless, the substantial parameter inefficiencies arising
from the large size of pre-trained models remain a chal-
lenge. To address this issue, some studies have explored
the combination of pruning and transfer learning. For in-
stance, DiffPruning [3] addresses parameter inefficiencies
by extending the fixed pre-trained base model through a
task-specific vector. Similarly, TransTailor [10] introduces
pruning of the pre-trained model to enhance transfer learn-
ing, focusing on the structure mismatch between the model
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Figure 2. Schematic representation of the proposed ENTROPI al-
gorithm. This approach trains a neural network in the source task
in synergy with iterative magnitude pruning (with decreasing val-
ues of α). An encoder selection chooses the pruned model with
the highest entropy, and finally, the pruned model is fine-tuned in
the target task.

trained on the source domain and the target task. However,
despite these advances, state-of-the-art methods still grap-
ple with high computational complexity. More specifically,
this poses a critical challenge in developing and deploying
TinyML models. As TinyML aims to run machine learning
algorithms on resource-constrained devices such as micro-
controllers, wearables, and Internet of Things (IoT) devices,
these platforms often have limited memory capacities [17].
Reducing computation and memory requirements is criti-
cal, as optimizing on the full architecture for fine-tuning is
in most cases impossible for devices having less than one
MB for memory, and optimizing on the classifier layer only
is one of the few viable options (see Table 2 for real mea-
sures).

In this paper, our objective is to identify a pruned model
on the source domain that outperforms the dense network,
leading to a more computationally efficient finetuning step
for the target task. To achieve this, we adopt the model
with the highest activation entropy, which results in supe-
rior performance in the target task. The compact nature
of pruned models endows them with enhanced generaliza-
tion capabilities and adaptability to novel tasks, owing to
their more general expressivity for generated features, as il-
lustrated in Fig. 1. Our claim is supported by quantitative
measures of entropy, which shed light on the structural dif-
ferences between pruned and dense models, providing in-
sights into why transfer learning from pruned models yields
superior performance. Consequently, we introduce an Ef-
ficient Neural Transfer with Reduced Overhead via Prun-
Ing (ENTROPI) algorithm for transfer learning with pruned
neural networks. Notably, we identify two regions based on
the encoder size: a specialization region, where the source
task benefits from the encoder’s capacity to aid the classi-
fier by projecting features into a lower-dimensional space,

and a forgetting region, where the model complexity ham-
pers the extraction of relevant information for the source
task, resulting in deteriorated performance. Intriguingly,
configurations close to the critical point α∗, where α is the
fraction of non-zero parameters, demonstrate better perfor-
mance across different target tasks, further reinforcing the
effectiveness of our approach.

Our contributions can be summarized as follows: firstly,
we introduce an entropy-based pruning mechanism for
transfer learning, a novel approach that identifies the more
suitable backbone through a simple forward-propagation
evaluation on the target task. Secondly, we offer insights
into the behavior of entropy concerning the source tasks,
revealing that the encoder utilizes its additional complexity
beyond the critical point α∗ to facilitate feature projection
into a smaller, more compact subspace, thereby simplify-
ing the classification problem while becoming more spe-
cialized on the source task. Thirdly, we observe that despite
potentially high entropy values for latent space representa-
tions, their exact entropy remains relatively small, confirm-
ing the previous point. Lastly, we present empirical vali-
dation through experiments conducted on popular architec-
tures, including ResNet18 [5] and MobileNetv3 [6].

2. Efficient Neural Transfer with Reduced
Overhead via PrunIng (ENTROPI)

Fig. 2 illustrates the overall scheme of the ENTROPI al-
gorithm, which consists of four main phases: i) training on
the source task, ii) iterative magnitude pruning at the current
α, progressively reduced by a factor α̂ in each iterative step,
iii) encoder selection for the target task according to the en-
tropy estimation on the target training, and iv) training the
classifier head for the target task.

2.1. Preliminaries

Let E(·) be the encoder of the neural network in Fig. 2
and let x be some sample from our dataset D. yxl,i is the
output of a given i-th neuron at the l-th layer for the input
x ∈ D given as follows:

yxl,i = φ
[
f(yx

l−1,θl,i)
]
, (1)

where θl,i are the parameters associated to the l-th layer,
f(·) is some affine function, φ(·) is the activation function,
and yx

l−1∈RNl−1 is the input of such neuron with Nl−1 the
number of outputs provided by the layer l−1.

2.2. Entropy Estimation

Here, we provide details on how we compute the entropy
of the activations inside the neural network model.

Let yx
l ∈ RNl represent the output of the l-th layer in

our neural network, with Nl denoting the number of outputs
for that layer. We assume that Nl is constant for all x ∈



D, i.e., the dimensionality of the input is always constant.
Therefore, we define the quantization index qxl,i as follows:

qxl,i ≜

⌊
yxl,i
∆

+
1

2

⌋
, (2)

where ∆ is the step size defined as:

∆ =
maxx,i{yxl,i} −minx,i{yxl,i}

M
, (3)

and M being the quantization levels. Therefore, we can
reconstruct the original output through ỹxl,i = ∆qxl,i.

Let us define the state of the pattern x at the output of
the encoder as its quantized representation. We can extend
the quantization index for the whole layer as follows:

qx
l = [qxl,1, q

x
l,2, · · · , qxl,Nl

]. (4)

Let |D| be the cardinality of our dataset, i.e., the number
of samples in D. For every possible state κ for l, we can
count its number of occurrences within |D|, estimating the
frequency distribution for every possible state κ as follows:

p(κ,D) =
1

|D|
∑
x∈D

1κ(q
x
l ), (5)

where 1(·) is the indicator function. At this point, we can
use the definition in (5) to write the entropy H(D) for the
output of the encoder as follows:

H(D) = −
∑
κ

p(κ,D) log[p(κ,D)]. (6)

We know by construction that this quantity is bounded be-
tween zero and log

(
MNl

)
.

2.3. Pruning has an Impact on the Entropy

To reduce the number of parameters in a deep neural net-
work, a prevalent approach involves thresholding based on
specific hyperparameters, which determines the number of
parameters to be eliminated [2, 19]:

θl,i,j =

{
θl,i,j |θl,i,j | > Q|θ|(1− α),
0 otherwise, (7)

where Q|θ|(·) is the quantile function for the ℓ1 norm of
the parameters, and (1−α) ∈ [0, 1] is the fraction of pa-
rameters to be removed. It is important to highlight that
numerous attempts have been made to propose more effec-
tive pruning strategies; however, iterative magnitude prun-
ing, despite being relatively costly, offers the best trade-off
in terms of approach complexity and performance. This
phenomenon has been extensively discussed in the litera-
ture, as evidenced by studies such as [16,20]. Consequently,
we have chosen to adopt iterative magnitude pruning as our

pruning approach, and we refrain from conducting an abla-
tion study on alternative methods.

During the pruning process, as we approach a certain rel-
ative size α∗, we can anticipate that the entropy of y will be
upper-bounded. Specifically, we can establish that:

H(D) ≤
Nl∑
i=1

Hi(D) = −
Nl∑
i=1

M∑
κ=1

pi(κ,D) log[pi(κ,D)],

(8)
where the term pi(κ,D) is determined by

pi(κ,D) =
1

|D|
∑
x∈D

δκ,qxl,i , (9)

where δi,j is the Kronecker delta. Therefore, expanding (2),
we get:

qxl,i =

⌊
φ
[
f(yx

l−1,θl,i)
]

∆
+

1

2

⌋
. (10)

We know that for a sufficiently small ∆ and a sufficiently
large D, in a model trained to extract information from the
input, the entropy of the deeper layers is smaller or equal
than one of the shallower ones (because of information fil-
tering) [18]. We expect that, when having low pruning
regimes at high α, the entropy of the signal is low as the
encoder E(·) is also partially aiding for the classification (or
rather, for the target task), projecting the signal into a low-
dimensional space. As α drops, however, the encoder will
not have enough parameters to effectively project the input
signal: the signal becomes sparser, and the entropy grows.
This behavior is however also upper-bounded by the prun-
ing ratio: in a fully-connected layer, if the number of pa-
rameters is lower than the size of the input, then necessarily
the entropy of the layer can not be at its largest value and is
bounded by a constant value in a low pruning ratio regime,
while it grows linearly with increasing pruned parameters.

To summarize, we expect two different trends for the en-
tropy of the output of the encoder: i) as α decreases (un-
til a critical α∗) the entropy of the output’s representations
grows, as the encoder, having progressively fewer and fewer
parameters, becomes unable to effectively project the signal
into a low-dimensionality space, useful for the target task,
and ii) for sizes smaller than α∗, the trend reverts: the en-
tropy drops as the parameter complexity is insufficient to
propagate enough information, and with that also the per-
formance on the trained task drops.

3. Experiments and Results

This section presents the experimental setup and results
of the paper. We conducted transfer learning experiments
by training and pruning two Convolutional Neural Network
(CNN) models from scratch on the CIFAR-10 dataset. We



Table 1. Top-1 accuracy (↑) on transfer learning for ResNet18 and MobileNet-v3.

Dataset ResNet18 MobileNet-v3
Dense Pruned Dense Pruned

CIFAR-100 14.46±0.27 (α = 1.0) 21.83±0.09 (α = 0.0077) 13.91±0.02 (α = 1.0) 17.36±0.09 (α = 0.0038)
VLCS 48.73±1.25 (α = 1.0) 49.51±1.01 (α = 0.0186) 45.22±0.94 (α = 1.0) 53.84±0.79 (α = 0.0158)
PACS 18.57±8.94 (α = 1.0) 19.49±8.14 (α = 0.0085) 30.16±1.61 (α = 1.0) 32.59±2.62 (α = 0.0106)
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Figure 3. Entropy and Top-1 test accuracy on Cifar-100 using
ResNet18 at different α values.

trained with batches of size 128 using Adam, with learn-
ing rate 10−5 and exponential decay of 0.99. Subsequently,
we used the pruned models’ backbones as feature extrac-
tors and added new classification layers. The entire back-
bone was frozen, and the models were trained on three other
datasets: PACS, VLCS, and CIFAR-100. Specifically, we
evaluated two different CNN architectures: ResNet18 and
MobileNetv3. To obtain the pruned backbones, we em-
ployed a batch size of 128 and used Stochastic Gradient
Descent (SGD) as the optimizer with a momentum of 0.9
and a weight decay of 10−4. The learning rate of 0.1 is
decayed with a cosine-annealing schedule during the train-
ing duration of 90 epochs. For all the experiments we have
employed M = 4 and we progressively decrease α by 0.25.

Results. The results are shown in Table 1, where all the
experiments are averaged over three seeds. We observe that
for the three datasets, we consistently observe an improve-
ment in the performance when compared to employing the
dense model, with Top-1 gains up to the 8%. Interestingly,
we observe that the chosen values of α are extremely low, in
the order of 0.01. This clearly indicates that having sparser
backbones (which exhibit as well maximum entropy on the
target task) improves performance.

Ablation on α and computation estimation. We con-
duct an ablation study where we employ all pruned en-
coders (having hence a study for different values of α) using

Table 2. FLOPs and memory for backpropagation (↓) on VLCS.

Model Frozen FLOPs (M) Mem. Foot. (MB)

ResNet18 ✓ 0.16 0.03
✗ 30.03 131.49

MobileNet-v3 ✓ 0.41 0.08
✗ 229.05 48.23

ResNet18 and the target dataset CIFAR-100. Fig. 3 shows
the results of this ablation study, where all the points are
averaged on three different seeds. We observe that the ac-
curacy on the test set reaches its peak in correspondence
with the maximum entropy, calculated on the target train
set. This further validates our thesis that training an off-the-
shelf pruned model selected using ENTROPI is advanta-
geous. We remark that the achieved performance is still far
from the baselines as we constrain our optimization prob-
lems to be at an extremely low memory budget. Table 2
compares FLOPs and back-propagation memory footprint
for the tested architectures on VLCS. We clearly observe
that in our challenging setup, where we are allowed only
to tune the classification head, the memory footprint re-
quired is extremely low, in the order of tens of kB, while
for full fine-tuning, we are required even hundreds of MB.
This makes the proposed approach suitable in the most ex-
treme contexts, like embedded AI or even TinyML [9].

4. Conclusions

In this paper, we conducted a study on transfer learning
scenarios, aiming to identify an effective pruning strategy
for enhancing performance in the target task. Our key find-
ing was that among the models from the source task, the
one with the highest activation entropy consistently outper-
formed others in the target task. Building on this obser-
vation, we introduced the ENTROPI algorithm. To vali-
date the effectiveness of the proposed approach, we con-
ducted extensive experiments on diverse models, including
ResNet18 and MobileNetv3, and tested on various target
datasets: CIFAR-100, VLCS, and PACS. The results con-
sistently showcased the superiority of transfer learning from
the entropy-pruned model, highlighting the potential of our
approach in data-limited transfer learning tasks, and paving
the way to the employment of large architectures for down-
stream tasks adaptation directly on IoT devices.
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