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Despite extensive studies, strong localization of electromagnetic waves in three dimensions has
never been experimentally achieved. Stepping out of the paradigm of disordered systems, we carry
out microwave transport experiments in planar aperiodic Vogel spiral arrays of cylinders with high
dielectric permittivity. We characterize the electromagnetic modal structure in real space showing
mixtures of long-lived modes with Gaussian, exponential, and power law spatial decay. This unique
modal structure, which cannot be found in traditional periodic or disordered photonic materials,
is shown to be at the origin of strong localization of electromagnetic waves that survives even in a
three dimensional environment.

I. INTRODUCTION

A full understanding and control over electromagnetic
transport in photonic media is crucial for the efficient
design of optical structures, paving the way for many
applications [1]. Controlling light transport in photonic
structures involves the ability not only to understand,
but also to engineer the electromagnetic modes that such
structures can support. In the case of traditional pe-
riodic and disordered optical structures, light transport
and the underlying electromagnetic modal structure have
been extensively investigated over the years. In peri-
odic photonic structures the scattering of propagating,
extended electromagnetic waves from Bragg planes is re-
lated to the opening of photonic bandgaps at certain
frequencies [2]. In disordered optical systems the in-
terference of multiply scattered waves may lead to the
formation of exponentially localized states and eventu-
ally to the breakdown of light diffusion [3–5]. This ef-
fect, the optical counterpart of Anderson localization for
electrons in solids [6], strongly depends on dimension-
ality [7], and, in three-dimensional (3D) dielectric me-
dia, there is no unquestionable observation of light lo-
calization transition so far for disordered systems [8–11].
In two-dimensional (2D) media, when structural corre-
lations are introduced, as it is the case of hyperuniform
disordered materials [12], a richer transport diagram ex-
ists that include transparency, light diffusion, Anderson
localization, or full band gaps, depending on the fre-
quency [13–22].

As an alternative to periodic and disordered photonic
structures, aperiodic metamaterials designed by means
of deterministic mathematical rules have emerged as a
novel material platform for photonic devices [23–25]. In-
deed, these structures exhibit unique optical properties
that do not exist in either periodic or disordered pho-
tonic media, such as fractal transmission spectra [26, 27],
subdiffusive transport [28], and light localization transi-
tion [29]. From a technological point of view, these un-
usual optical properties have fostered the development
of functionalities that also cannot be found in conven-
tional periodic or disordered structures, including appli-
cations in lasing [30, 31], optical sensing [32–34], photo-
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FIG. 1. (a) Typical configuration of the experimental mi-
crowave setup. Cylinders are placed between two parallel alu-
minum plates separated by a distance h = 13 mm. A fixed
antenna (2) is placed at the origin of the reference system
(x, y) = (0, 0) while an other antenna (1) is positioned in the
center of the movable top plate (x, y). (b) Image of the 2D ar-
ray of dielectric cylinders. The top plate has been removed to
reveal the details of the sample. (c) Reflected |S11(ν)|2 (blue
line) and transmitted coefficients |S21(ν)|2 (orange line) for

the GA spiral at a given distance d =
√

x2 + y2 (x = 75 mm,
y = 75 mm) from the origin of the reference system.

detection [35], and optical imaging [36]. Among various
classes of deterministic aperiodic photonic media, Vogel
spiral arrays single out for its versatility and the possibil-
ity to tailor its structural order [37–39] and light-matter
interactions [40, 41]. The unusual optical properties of
aperiodic systems are enabled by their unique electro-
magnetic modal structure. For instance, recently it was
theoretically demonstrated that aperiodic Vogel spiral ar-
rays display a rich spectrum of long-lived and spatially
localized quasimodes with distinctive spatial decay forms,
namely Gaussian, exponential, and power law [42].
In the present article, we not only experimentally

demonstrate that these characteristic types of electro-
magnetic modes coexist in Vogel spirals, but also that
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this unique electromagnetic modal structure leads to un-
usual wave transport phenomena. Indeed, by conduct-
ing microwave transport experiments in Vogel spiral ar-
rays of cylinders with high dielectric permittivity, we un-
veil the consequences of this peculiar modal structure on
wave transport and localization. In particular, we show
that the presence of long-lived quasimodes with expo-
nential, power law and Gaussian spatial decays is at the
origin of a very slow decay of the electromagnetic energy
that propagates throughout the arrays. Furthermore, we
experimentally demonstrate that these localized modes
satisfy the Thouless criterion for Anderson localization
in random systems, despite the fact that the propaga-
tion medium is not disordered, and that the modes are
not necessarily exponentially localized in space. Finally,
and this is the main result of our paper, we demon-
strate the robustness of these long-lived modes against
the change in the dimensionality of the cavity, beyond
the 2D limit, preserving their spatial profiles and quality
factors even when the homogeneity of the electric field
in the z-direction is broken. Strong localization of light
in 3D is a long standing, sought-after goal in the field
of waves in complex media [9] that we experimentally
achieve not with uncorrelated disordered structures, as it
has been unsuccessfully tried for many years, but rather
with deterministic aperiodic systems.

II. EXPERIMENTAL SETUP

Our main sample consists of N = 390 cylindrical scat-
terers (dielectric permittivity ε ≃ 45, radius 3 mm and
height 5 mm) disposed in a cavity made of two paral-
lel aluminium plates which are separated by a distance
h = 13 mm [see Fig. 1(a)]. Cylinders are placed follow-
ing a Vogel spiral array of 140 mm radius with a planar
density ρ ≈ 0.65 cm−2 [see Fig. 1(b)] and each of them
is a Mie scatterer [18]. This lattice, often called Golden-
Angle spiral (GA spiral), is defined in polar coordinates
(r, θ), as rn = a0

√
n (a0 = 6.93 mm) and θn linked to

the golden number (see Appendix A). In order to ensure
an homogeneous electrical contact between the scatterers
and the bottom plate and thus a good reproducibility, we
covered the bottom plate with a self-adhesive thin plastic
film.

As sketched in Fig. 1(a), the electric field in the cav-
ity is mapped by the straight antenna (1) placed at the
center of the movable top plate. We measure all points
on a 5 × 5 mm2 grid, covering the disk region occupied
by the spiral plus one corner of the embedding square
[see, e.g., Fig. 2(a)], resulting in ∼ 3600 measured points
(see Appendix B). The presence of the second straight
antenna (2) at the center of the bottom plate defines
the origin of the system coordinates (x, y) = (0, 0) and
allows to measure both the complex reflection and trans-
mission signals S11(ν) and S21(ν), respectively, using a
Vector Network Analyzer (VNA). Note that both anten-
nas are linear and perpendicular to the plane of the cav-
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FIG. 2. Spatial modal structure and radial profile of repre-
sentative eigenmodes with characteristic (a)-(b) power law,
(c)-(d) exponential, and (e)-(f) Gaussian decay. Amplitude
maps are normalized such that max(|Eν |) = 1. Radial decays
(pink dots) are obtained by performing an azimuthal average

operation where r =
√

(x+ 5)2 + y2 i.e., r is measured from
the geometrical center of the spiral and expressed in mm. Dif-
ferent radial decays are discriminated by minimizing the sum
of squared residuals.

ity, thus imposing a transverse magnetic (TM) polariza-
tion (electric field perpendicular to the plane of the cav-
ity). For a height h = 13 mm, the empty cavity can be
completely considered as 2D below the cutoff frequency
νcut = c0/ (2h) ≈ 11.5 GHz, where c0 is the speed of
light in air. Beneath this threshold, just the fundamen-
tal transverse magnetic mode TM0 can propagate in air
and the field is invariant along the z-axis. Measured po-
sitions are scanned in a frequency range between 5.5 and
15 GHz meaning that both 2D and 3D regimes can be
investigated. Examples of the measured spectra |S21|2 as
well as |S11|2 are shown in Fig. 1(c) for a given distance
d between both antennas, where the geometrical center
of the spiral is placed at (x, y) = (−5mm, 0). Vanishing
transmission values (reflection values close to 1) at cer-
tain frequencies indicate the presence of bandgaps [43].
Outside of these gaps, the transmitted signal is a super-
position of peaks which are related with the resonances of
the system. The parameters of each resonance (frequency
ν, width δν and complex amplitude) are extracted by
means of the harmonic inversion technique as described
in Refs. [44, 45]. Later, by clustering the amplitudes of
the same resonance measured at all positions, the map
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of the electric field amplitude Eν(x, y) is obtained re-
vealing the spatial structures of each eigenmode of the
system [18].

III. CONDUCTANCE IN VOGEL SPIRAL

Figure 2 shows the spatial modal structure of three
characteristic eigenstates found in the same experimental
GA spiral and their corresponding radial decay. Specifi-
cally, power-law, exponential, and Gaussian radial decays
have been identified by minimizing the sum of squared
residuals. Our experimental results demonstrate that Vo-
gel spirals support a rich variety of long-lived modes that
exhibit different spatial extent and radial decay profiles,
hence confirming recent theoretical predictions [42]. This
can be contrasted to disordered samples, where (Ander-
son) localized states are always characterized by an ex-
ponential radial decay (see Appendix C). The analyzed
long-lived modes found experimentally in this GA spi-
ral sample are distributed in three frequency windows
around ν ∼ 6.6 GHz (exponential, power-law and Gaus-
sian modes), ν ∼ 8.3 GHz and ν ∼ 11.2 GHz (Gaus-
sian modes) and are characterized by high quality factors
Q = ν/δν, i.e., low energy-loss ratios.
Dynamical electromagnetic transport properties can

be probed by measuring the temporal evolution of
the energy carried by a certain superposition of
modes by means of the transmission spectra as E =∑

all positions |F {S21 × Ff0,∆ω(ν)}|2, where F {·} repre-

sents the Fourier-transform and Ff0,∆ω(ν) a Gaussian
band pass filter of bandwidth ∆ω centered around f0.
Figure 3(a) displays the energy as a function of time for
three different filters centered around the frequency of
the modes extracted in Fig. 2 and with ∆ω = 0.01 GHz.
Within these frequency intervals, the presence of modes
with high quality factors leads to very slow energy dy-
namics. Assuming an exponential decay of the energy
with respect to time, E ∼ exp (−t/t0), one can fit a char-
acteristic decay time t0 that is closely related to the av-
erage width of the modes contributing to the transport
⟨δν⟩ ∼ 1/t0. Next, by repeating the previous analysis
in a systematic way, we compute the characteristic de-
cay time t0 as a function of the frequency [see Fig. 3(b)].
We focus on frequency ranges where the spatial structure
of the eigenmodes can be properly characterized by the
harmonic inversion/clustering methods. Here, t0-regions
associated with frequency windows containing exponen-
tial, power-law or Gaussian states (pink stripes) are char-
acterized by high peaks whose maximum values are of
the order of those found in disordered systems (see Ap-
pendix C), whilst t0-valleys correspond to short-lived, not
spatially localized states or band gaps.

The existence of band gaps can be investigated by ex-
perimentally extracting the density of states (DOS) that
is directly accessible from the intensity of the reflected

signal as DOS ≈ 1 −
〈
|S11|2

〉
all positions

[46, 47]. In
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FIG. 3. (a) Evolution of the energy as function of time for
three different frequency centers f0 and ∆ω = 0.01 GHz. (b)
Characteristic decay time t0 as a function of the frequency.
The total frequency range have been mapped by 472 frequency
filters spaced by ∆f = 0.02 GHz with ∆ω = 0.01 GHz.
(c) Experimental density of states (DOS). (d) Experimental
Thouless conductance ⟨g⟩ as a function of the frequency. The
dotted line indicates ⟨g⟩ = 1. Frequency windows with the an-
alyzed long-lived states (exponential, power-law or Gaussian)
or band gaps have been highlighted (violet or grey stripes, re-
spectively). Solid [dashed] lines in (b), (c) and (d) correspond
to the case h = 13 mm [h = 17 mm].

Fig. 3(c), we plot the DOS, where two band gaps are
observed (grey stripes). The two lower band edges are
populated by Gaussian states [48], while no modes are
found by the harmonic inversion/clustering methods in
the band gaps, except for the peaks at the center of the
first band gap that are a signature of defect modes of
the system. Additionally, an increment in the number of
states supported by the system is observed above νcut.

The Thouless conductance, defined as g = δν/∆ν
(where ∆ν is the spacing between consecutive reso-
nances), is a key quantity in localization theory and
it is used as a fundamental criterion for Anderson lo-
calization in disordered systems. Indeed, the Thouless
criterion establishes that Anderson localization occurs
for g < 1 [49–51]. Using the two previously intro-
duced quantities (DOS and t0), we extract experimen-
tally the average Thouless conductance [see Fig. 3(d)] as
⟨g⟩ ∼ ⟨DOS⟩∆f/(t0∆f) where ⟨DOS⟩∆f is the average
density of states over the frequency interval ∆f . Fig-
ure 3(d) experimentally demonstrates that non-random
systems can fulfil the Thouless criterion for Anderson
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localization, originally conceived to characterize localiza-
tion in disordered structures, again confirming theoreti-
cal predictions [29]. Our findings confirm that not only
eigenmodes characterized by an exponential spatial de-
cay can satisfy the Thouless condition, as it occurs for
disordered systems, but also other modes with different
spatial decay forms, such as algebraic and Gaussian de-
cays. To the best of our knowledge localized, long-lived
modes that fulfil the Thouless criterion in non-random
arrays with non-exponential spatial decays have never
been experimentally observed so far. This result demon-
strates experimentally the unique modal structure that
aperiodic Vogel spirals support, leading to unusual prop-
erties of wave transport and localization. The existence
of long-lived modes with different decay types in the same
system means that these distinct classes of modes will
have different sensitivity to the sample boundaries. As a
result, these classes of modes exhibit different evolution
of the transport quantities with respect to the system
size, as shown in the following section.

IV. SCALING ANALYSIS

To investigate how the transport quantities as well as
the modes are affected by the boundaries of the spiral,
the experiment is repeated for 12 different configurations,
and for each one of them, the number N of cylinders
in the array is reduced according to N = 390 − 34 × i
(i = 0, 1, · · · , 11). In Fig. 4, we show [(a) and (b)] the
characteristic decay time t0, [(c) and (d)] the normalized
density of states, and [(e) and (f)] the average Thouless
conductance ⟨g⟩ as a function of the number of cylin-
ders and frequency in two frequency windows containing
the analyzed long-lived modes (from 6 to 7 GHz and from
10.5 to 11.5 GHz). The spatial structure of three different
eigenmodes with characteristic (g) power-law, (h) expo-
nential, and (i) Gaussian decays found by the harmonic
inversion/clustering methods are also shown in Fig. 4.
Note that below a certain threshold N [(g) N ≃ 84, (h)
N ≃ 186, (i) N ≃ 288], the number of resonances recov-
ered by the harmonic inversion is found to be insufficient
to form a cluster and subsequently to reveal the spatial
structure of the modes. Around ∼ 6.6 GHz, Fig. 4(a) and
(e) show that the localization signatures earlier analyzed
(high t0 values and ⟨g⟩ < 1) remain unperturbed even
for lattices with a reduced number of cylinders N ≃ 84,
while Fig. 4(c) shows that the density of states start to
lose its structure and becomes flat below N ≃ 152. Here
the leaking of the wave out of the spiral is driven by the
absence of certain cylinders needed to support the long-
lived modes. This fact is illustrated by the power-law and
exponential modes [see Fig. 4(g) and (h), respectively]
which cannot be recovered by our analysis whenever the
typical system size becomes smaller than the noticeable
modal size when N ≃ 84 and N ≃ 186, respectively.
At higher frequency, Gaussian modes are found to have
larger sizes, and are therefore more sensitive to changes
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FIG. 4. (a)-(b) Characteristic decay time t0 as a function of
the frequency and of the number of cylinders. The total fre-
quency range has been mapped by 47 frequency filters spaced
by ∆f = 0.02 GHz with ∆ω = 0.01 GHz. (c)-(d) Experimen-
tal normalized density of states (DOS). (e)-(f) Experimental
Thouless conductance ⟨g⟩. Spatial modal structure as a func-
tion of the number of cylinders of modes with (g) power-law
(ν = 6.586 GHz), (h) exponential (ν = 6.646 GHz), and (i)
Gaussian (ν = 11.357 GHz) radial decay. The grey circles
show the boundary of the samples.
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in the system boundaries so that they can only exist for
larger systems N ≥ 288. This value of N also determines
a critical value above which Gaussian modes with high
t0 (⟨g⟩ < 1) values disappear [Fig. 4(b)]. Nevertheless,
the DOS remains unperturbed even for smaller systems
(N ≃ 186).

V. 2D/3D TRANSITION

It should be noted that, up to this point, all long-lived
modes shown have been found below the 2D cutoff fre-
quency in air (νcut ≈ 11.5 GHz), so the electromagnetic
field is confined in the plane of the array. In order to
study the robustness of GA spiral modes with respect to
the dimensionality, the distance between both aluminium
plates is increased from h = 13 mm to h = 17 mm imply-
ing a new cutoff frequency νcut ≈ 8.8 GHz. As a result
the electromagnetic field is actually three-dimensional
beyond this frequency. Then previous experimental pro-
cedure and data analysis are repeated, thus the charac-
teristic decay time t0, the DOS, and the average Thou-
less conductance ⟨g⟩ are extracted and correspond to the
dashed lines depicted in Fig. 3(b), (c) and (d), respec-
tively. t0 displays remarkable similarities in both cases,
being just differentiated by a decrease of the charac-
teristic peaks related to the first localization region (at
∼ 6.6 GHz) and the formation of a new peak in the first
band gap. The appearance of this peak can be also ob-
served in the DOS, where the size of the first band gap
has been considerably reduced in its upper part. Ad-
ditionally, the presence of new modes at lower frequen-
cies leads to the population of the second band gap that
has completely disappeared, confirming their 3D char-
acter. Nevertheless, ⟨g⟩ still drops by around one order
of magnitude near ∼ 11.2 GHz, keeping its shape in all
frequency windows containing long-lived modes.

In the last part of this work we focus in the highest-
frequency window in which long-lived exist (∼ 11.2 GHz),
and which occurs beyond the new cutoff frequency. Here
the presence of long-lived modes previously predicted by
the analysis of t0 and ⟨g⟩ is verified by the Harmonic
inversion/clustering methods. Four different Gaussian
modes corresponding to this frequency band are shown
in Fig. 5 for both cavity sizes [(a)-(c) h = 13 mm and
(b)-(d) h = 17 mm]. High quality factors confirm the
existence of long-lived modes even in the case where the
2D confinement of the electromagnetic field is not due to
the geometry of the cavity. Indeed, Fig. 5 experimentally
proves the robustness of Gaussian long-lived modes in
Vogel spirals against the situation in which the electric
field is inhomogeneous in the z direction. This result also
experimentally confirms previous numerical findings [29]
that demonstrate the existence of localized, long-lived
3D electromagnetic modes supported by 2D Vogel spirals
arrays precisely for ρc20/ν

2 > 3.5, corresponding to ν <
12.9 GHz in our experimental system.
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FIG. 5. Spatial modal structure of two Gaussian long-lived
modes at∼ 11.2 GHz with frequencies [quality factors] (a) ν =
11.346 GHz [Q = 5294], (b) ν = 11.396 GHz [Q = 3899],
(c) ν = 11.35 GHz [Q = 5170] and (d) ν = 11.401 GHz
[Q = 4159] and a distance between plates (a)-(c) h = 13 mm
and (b)-(d) h = 17 mm. Amplitude maps are normalized such
that max(|Eν |) = 1.

VI. CONCLUSION

In conclusion, we have experimentally revealed the spa-
tial modal structure supported by quasi-two-dimensional
arrays of dielectric cylinders placed according to ape-
riodic Vogel spirals, and its impact in wave transport.
We showed that these lattices support a unique modal
structure where long-lived modes with different radial de-
cay types (exponential, power-law and Gaussian) coexist,
confirming recent theoretical predictions [42]. We also in-
vestigate the impact of these peculiar modal structure on
microwave transport properties by means of the tempo-
ral evolution of the energy as well as the characteristic
decay time t0 (related with the average resonance width
⟨δν⟩), the density of states, and the Thouless conduc-
tance. This analysis reveals that Vogel spirals exhibit
very slow energy dynamics. Indeed, we show that in fre-
quency windows containing long-lived modes the values
of t0 are similar to those found in the Anderson localized
regime in traditional 2D disordered systems. In these
same frequency windows the Thouless criterion for An-
derson localization is shown to be fulfilled despite the
lack of disorder and the presence of non-exponentially
localized modes. Long-lived modes supported by Vogel
spiral are also proven to be robust against the change
in the dimensionality of the cavity, from 2D to 3D, so
that they remain essentially unperturbed and preserve
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their spatial profiles and quality factors even when the
homogeneity of the electric field in the z-direction is bro-
ken. Thus, without disorder, our results embark on the
long-standing quest for Anderson localization of light in
3D.
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Appendix A: Definition of Vogel spirals

Vogel spirals are defined by their polar coordinates
(r, θ) as

rn = a0
√
n,

θn = nα,
(A1)

where n = 1, 2, . . . is an integer, a0 is a positive con-
stant, and α is an irrational number. The scaling factor
a0 sets the particle separation while α is the divergence
angle and determines the constant aperture between suc-
cessive point. The angle α is specified as a function of the
irrational number ξ as α = 2π [1− frac(ξ)] where frac(ξ)
is the fractional part of ξ. When α is irrational, point
patterns are characterized by a lack of both translational
and rotational symmetries.

In this work, we focus in the Golden-Angle (GA) Vo-
gel spiral, also known as “sunflower spiral”, which is
obtained by considering ξ as the golden number ξ =
(1 +

√
5)/2 leading to α ≈ 2.4 (137.508◦) also called the

“golden angle”. Experimentally, 12 samples consisting
of N = 390 − 34 × i (i = 0, 1, · · · , 11) cylinders are
placed and measured for different heights of the cav-
ity (h = 13 and 17 mm are presented in this work).
All samples are characterized by the same scaling fac-
tor a0 = 6.93 mm and their centers are always located at
(x, y) = (−5 mm, 0) where the central antenna sets the
origin (x, y) = (0, 0). Figure 6 shows the 12 different GS
experimentally studied in this work.

Appendix B: Experimental map

Experimental measurements are carried out over a
surface determined by a circle of 160 mm radius cen-
tred in the origin (x, y) = (0, 0). In order to observe
the electric field out of the lattice, we superimpose a

N = 390 N = 356 N = 322

N = 288 N = 254 N = 220

N = 186 N = 152 N = 118

N = 84 N = 50

50 mm

N = 16

FIG. 6. Golden-Angle spiral arrays consisting of N cylinders
created with a0 = 6.93 mm and ξ = (1 +

√
5)/2. The black

dot sets the position of the fixed antenna with respect to the
cylinder pattern.

165 mm size square with corners at (x, y) = (0, 0),
(x, y) = (165 mm, 0), (x, y) = (0, 165 mm) and (x, y) =
(165 mm, 165 mm). The resulting area is mapped in a
regular 5× 5 mm2 grid unit cell. Figure 7 shows the ex-
perimental map used to scan the cavity where each grey
point represents a measured point and the orange circle
the space occupied for the array of cylinders (N = 390).
The total of measured positions is n = 3675.
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FIG. 7. Experimental map used to scan the cavity (grey
dots). Orange circle indicates the position of the array of
cylinders (GA spiral with N = 390).
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FIG. 8. Image of the 2D disordered array of dielectric cylin-
ders. The top place has been removed to reveal the details of
the sample.

Appendix C: Disordered system

For the sake of comparison, besides the main analysis
carried out in the GA spiral, we also study the modal
structure and microwave transport in a traditional dis-
ordered systems (DS). The disordered point pattern is
generated using the software developed in [15] and con-
siders a set of N = 388 packing hard disks of radius
R = 3.25 mm enclosed into a circle of radius 140 mm,
thus the planar density is constant respect to the GA spi-
ral case (ρ ≈ 0.65 cm−2, see Fig. 8). Here, R = 3.25 mm
is the size of our experimental cylinders plus the size
of the tube used to place the cylinders. The cavity is
mapped using the same experimental map (see Fig. 7)
in the same frequency range (from 5.5 GHz to 15 GHz)
than the GA spiral case. Both reflected and trans-
mitted signals are measured. Data analysis to obtain
the eigenmodes of the systems (via the harmonic inver-
sion/clustering method), the characteristic decay time t0
(via the Fourier transform), the Density of States (via
the reflected signal) and the Thouless conductance ⟨g⟩
(via t0 and the ⟨DOS⟩) is performed as explained in the
main text.

Figures 9[(a), (d), (g) and (j)] show four eigenmodes
found by means of the harmonic inversion/clustering al-
gorithms in the DS. Since disordered systems lack of a
center (in contrast to Vogel spirals), their eigenmodes are
not centered in the system. This makes the field ampli-
tude spatial autocorrelation [see Fig. 9(b), (e), (h) and
(k)], defined as

Cor(Eν) =
∣∣∣F−1

{
|F{Eν}|2

}∣∣∣ , (C1)

the most suitable quantity to study the radial decay [see
Fig. 9(c), (f), (i) and (l)] [5]. As it can be observed, all
eigenmodes present large quality factors Q and a clear
exponential radial decay of their autocorrelation func-
tions no matter their spatial extension, frequency, the
position of their center, or the amplitude distribution

with respect to the center of the mode, as expected.
The localization lenght ξloc is extracted by assuming
Cor(Eν) ∝ exp (−r/ξloc).

The characteristic time t0, the DOS and the average
Thouless conductance ⟨g⟩ are computed and plotted in
Fig. 10[(a), (b) and (c), respectively]. Similarly to the
GA spiral case, t0 varies from flat valleys to high peaks.
Nevertheless, in contrast to the GA spiral case, no band
gap can be clearly observed in the DOS. The maxima t0-
values found in the GA spiral case are t0,M = 40.84 ns,
t0,M = 33.02 ns and t0,M = 30.11 ns for the first and
second confined regions, respectively, while in the disor-
dered case t0,M = 40.58 ns. Hence we conclude that the
characteristic energy decay time in disordered and aperi-
odic Vogel spiral structures is of the same order. Finally,
the average Thouless conductance shows a fast decay of
around one order of magnitude in the frequency windows
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FIG. 9. Spatial modal structure, field amplitude spa-
tial autocorrelation and radial profile of representative eigen-
modes in a DS. Amplitude maps are normalized such that
max(|Eν |) = 1, thus max[Cor(Eν)] = 1. Radial decays (pink
dots) are obtained by performing an angular average in the
autocorrelation space (r is measured from the well defined
autocorrelation center).
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FIG. 10. (a) Characteristic decay time t0 as a function of
the frequency. The total frequency range have been mapped
by 472 frequency filters spaced by ∆f = 0.02 GHz with
∆ω = 0.01 GHz. (b) Experimental density of states (DOS).
(c) Experimental Thouless conductance ⟨g⟩ as a function of
the frequency. The dotted line indicates ⟨g⟩ = 1.

where exponential eigenmodes are found by the harmonic
inversion/clustering method.
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