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Liquid Sloshing Damping in an Elastic Container

It is proposed to investigate in this paper the damped vibrations of an incompressible liquid contained in a deformable tank. A 
linearized formulation describing the small movements of the system is presented. At first, a diagonal damping is introduced in the 
reduced equations of the hydroelastic sloshing problem. We obtain a non-classically damped coupled system with a damping matrix 
that is not symmetric. Then, by projecting the system onto its complex modes, the frequency and time responses for different type of 
loads are built. A numerical application is illustrated on a test case.

Keywords: hydroelasticity, sloshing, damping, complex modes, modal synthesis, time response, frequency response.

1 Introduction

Space structures, such as satellites, probes, or space stations
generally contain large amounts of liquids, which can be propel-
lants, cooling liquids, etc. The motion of these liquids can influ-
ence the vibrational behavior of the main structure and can
potentially disturb the trajectory controller or the stabilization pro-
cedures. For instance, a flutter analysis with sloshing effects is
studied in Ref. [1].

Although the liquid sloshing phenomenon has been studied for
many years [2–4], it is still a vibrant topic [5,6]. Among the
numerous possible approaches of this problem, the one we pro-
pose here is adapted to study fluid-structure coupled vibrations of
small amplitudes and particularly the modal analysis of deforma-
ble structures containing liquids. There exists, indeed, a need for
some industrial sectors such as aerospace, building, transport, etc.
(where consequences of the liquid movements can be dramatic) to
estimate the evolution of the inner liquid eigenmodes and eigen-
frequencies of such systems, right from the design phase.

This study is in line with previous works that have been done in
this field by the authors [7–9].

The accurate modeling of all the dissipative sources in the liq-
uid (viscosity, capillarity, wetting, contamination, etc.) would
require solving the Navier-Stokes equation in time domain. How-
ever, this approach is not adapted when only the vibrational
behavior of the system is required. For this reason, we would like
to extend to damped systems the fluid potential approach, which
is generally used to treat linearized and undamped fluid-structure
coupled problems.

In Sec. 2, we first present a linearized formulation of the
hydroelastic problem with sloshing for an incompressible and
inviscid fluid under gravity contained in an elastic tank. Then, we
introduce a Caughey damping in the conservative matrix equation
of the fluid. We obtain a dissipative coupled problem with a non-
classical damping matrix. We link the modal damping coefficients
of the fluid to their physical meaning in Sec. 3.

In Sec. 4 we use the complex eigenmodes properties to reduce
the associated state-space problem. We give in Sec. 5 an expres-
sion of the time response and frequency response of the coupled
system using a modal synthesis method for different types of
loads. Finally, we apply this formulation to a test case in Sec. 6.

2 Coupled System Equations of Motion

2.1 Nondissipative Fluid. Let us consider a homogeneous,
inviscid, incompressible liquid (and thus irrotational) with small
amplitude vibrations around the equilibrium position. The system
is supposed to be at a constant temperature and in a uniform grav-
ity field. We are reminded of the local dynamic equations and
initial conditions (see Eqs. (1a)–(1f) and Fig. 1) [10,11]. To dis-
cretize the problem, we write the weak formulation multiplying
Eq. (1a) by a test function du and integrating on XF.
Cu ¼ u 2 H1ðXFÞ

� �
is the admissible space of regular functions

DuðM; tÞ ¼ 0 in XF (1a)

@u

@n
¼ u:n in R (1b)

@u

@z
¼ �

€u

g
�

1

AðCÞ

ð

R

u:n dR in C (1c)

ð

C

udC ¼ 0 (1d)

uðM; t ¼ 0Þ ¼ uini (1e)

_uðM; t ¼ 0Þ ¼ u0
ini (1f )

– uF is the fluid displacement.
– u: displacement potential of the fluid with uF ¼ ru.
– €u: second derivative of u with respect to time.
– u: displacement vector of the structure.
– n: outwards unit normal to the interface R.
– z: vertical coordinate.
– (M, t): space and time variables.
– R: fluide-structure interface.
– Ru: fixed interface.
– XF: fluid volume.
– C: free surface.
– AðCÞ: free surface area.

u and C�
u ¼ u 2 Cu=

Ð
C
udC ¼ 0

� �

8t 2 R
þ;9u 2 C�

u;8du 2 C�
u :

ð

XF

DududXF ¼ 0 (2)

The time t is considered as a parameter and the test function du
does not depend on this parameter. Using Green formula and
Eqs. (1b)–(1d) we obtain
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8t 2 R
þ;9u 2 C�

u;8du 2 C�
u :

ð

XF

ru:rdudXF þ
1

g

ð

C

€ududC�

ð

R

ðu:nÞdudC ¼ 0

with: uðM; 0Þ ¼ uini; _uðM; 0Þ ¼ u0
ini (3)

We introduce the operators F , S, and C defined as follows (with
qF the mass density of the fluid):

Fðu; duÞ ¼ qF

ð

XF

ru:rdudXF (4)

Sð€u; duÞ ¼
qF
g

ð

C

€ududC (5)

Cðu; duÞ ¼ qF

ð

R

ðu:nÞdudC (6)

which are, respectively, associated to the liquid kinetic energy,
the sloshing potential energy of the liquid, and the fluid-structure
coupling operator. Then, Eq. (3) can be rewritten as

Fðu; duÞ þ Sð€u; duÞ ¼ Cðu; duÞ (7)

We can show that F and S are symmetric and positive bilinear
forms. The coupling operator also occurs in the weak formulation
of the structure supposed slightly damped

8t 2 R
þ; 9u 2 C�

u;8du 2 C�
u :

Kðu; duÞ þ DSð _u; duÞ þMð€u; duÞ þ Cðdu; €uÞ ¼ f ðduÞ

with: uðM; 0Þ ¼ uini; _uðM; 0Þ ¼ u
0

ini (8)

Cu ¼ u 2 H1ðXSÞ
3

n o
is the admissible space of regular functions

u and C�
u ¼ u 2 Cu=u ¼ 0 on Ruf g. DS is the damping operator

of the structure (with constant coefficients), M is the mass opera-
tor, and f represents the linear operator of external forces applied
to the structure. K is the elastogravity operator that contains the
stiffness operator and prestresses operators associated with gravity
[11,12].

After discretization of theweak formulations (3) and (8) by the finite
element method, wewrite/ andU the nodal unknowns ofu and u

KU þ DS
_U þM €U þ C €/ ¼ f (9)

F/þ S €/� CTU ¼ 0 (10)

/ðM; 0Þ ¼ /ini;
_/ðM; 0Þ ¼ /

0

ini (11)

UðM; 0Þ ¼ Uini; _UðM; 0Þ ¼ U
0

ini (12)

with U ¼ 0 on Ru and bTU ¼ 0, which is the discretized form of
the constraint

Ð
C
udC ¼ 0. K, M, DS, F, S, and C are the matrices

associated with the operators of the same name.

2.2 Dissipative Fluid. We propose here to introduce the fluid
damping directly in the matrix equation instead of in the local
Eqs. (1). Hence, in Eq. (10), we introduce a viscous damping ma-
trix DF. We suppose here that dissipative phenomena do not intro-
duce new coupling effects between the liquid and structure
deformation.

KU þ DS
_U þM €U þ C €/ ¼ f (13)

F/þ DF
_/þ S €/� CTU ¼ 0 (14)

/ðM; 0Þ ¼ /ini;
_/ðM; 0Þ ¼ /

0

ini (15)

UðM; 0Þ ¼ Uini; _UðM; 0Þ ¼ U
0

ini (16)

We will not build the matrix DF introducing a physical modeling
of damping but we suppose that a diagonal damping model is suit-
able to model this damping operator proposed by Caughey [13]. F
and S play the role of the stiffness operator and mass operator of
the fluid, respectively; by analogy with Caughey, the matrix DF

takes the form

DF ¼
Xm�1

j¼0

cjðFS
�1ÞjS (17)

where m can be chosen arbitrarily. The matrix DF written this way
is symmetric and is diagonalizable on the basis of the real sloshing
eigenmodes of the fluid.

2.3 Projection on the Sloshing Modes

2.3.1 Decomposition of the Fluid Potential. It is possible to
approximate the damped response of the liquid u with good accu-
racy using a linear combination of the sloshing modes ui com-
pleted by a quasi-static response of the fluid us to the structure
deformation [10,11].

uðM; tÞ ¼ usðuðM; tÞÞ þ
Xn

i¼1

jiðtÞuiðMÞ (18)

ji is the general coordinate associated to /i. Using /s and /i the
nodal unknowns of us and ui, Eq. (18) can be written as

/ ¼ /s þ Uj (19)

where U is the modal matrix containing the n selected modes
/if gi2 1;n½ �½ �. j is the vector containing the general coordinates ji

associated to these modes.

2.3.2 Sloshing Modes. The harmonic movements of an
incompressible heavy fluid in a rigid motionless cavity are called
sloshing modes. They are the solutions uiðM; tÞ ¼ uiðMÞ cosðxitÞ
of Eq. (1) when u ¼ 0 (fixed wall condition)

Dui ¼ 0 sur XF (20a)

@ui

@n
¼ 0 in R (20b)

@ui

@z
¼

x2
i

g
ui in C (20c)

ui 2 C�
u (20d)

where xi is the real eigenpulsation associated with ui.
Then, using Eq. (7), the sloshing modes are obtained from the

first-order eigenvalue problem associated with the following var-
iational formulation:

9ðui;xiÞ 2 C�
u �R=8du 2 C�

u;Fðui; duÞ � x2
i Sðui; duÞ ¼ 0

(21)

Fig. 1 Description of the system and notations
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As introduced in Sec. 2.1, the bilinear forms F and S being sym-
metric and positive, there exists an infinite set of solutions
ðui;xi � 0Þ that form a basis for the space C�

u. Once normalized,
those solutions verify the orthogonality conditions:

Fðui;ujÞ ¼ qF

ð

XF

rui:rujdXF ¼ lidi;j (22)

Sðui;ujÞ ¼
qF
g

ð

C

uiujdC ¼
li
x2

i

di;j (23)

which can be writen in the discretized form

U
TFU ¼ � ¼

.
.

.
0

li

0 .
.

.

0

BB@

1

CCA (24a)

U
TSU ¼ �X�2 ¼

.
.

.
0

li
x2

i

0 .
.

.

0

BBB@

1

CCCA (24b)

X and � are diagonal matrices that contain, respectively, the pul-
sations xi and the modal masses li. U is the modal matrix intro-
duced in Eq. (19).

In order to express the damping term U
TDFU we can first dem-

onstrate, reasoning by recurrence, the following relation:

U
T FS�1
� �i

¼ X
2i
U

T (25)

Then, using the expression of the damping matrix DF in Eq. (17)
we have

U
TDFU ¼

Xm�1

i¼0

aiU
T FS�1
� �i

SU

¼ �
Xm�1

i¼0

aiX
2ði�1Þ

(26)

To simplify relation (26), we will consider the following:

8i 2 ½1::n�; 2fi ¼
1

xi

Xm�1

j¼0

ajx
2j
i (27)

where fi is the modal damping coefficient associated with ui.
Written in a matrix form, expression (27) gives

2Z ¼ X
�1
Xm�1

i¼0

aiX
2i (28)

where Z is a diagonal matrix containing the coefficients fi. We
deduce from (26) and (28) an expression of UTDFU

U
TDFU ¼ 2�X�1Z (29)

2.3.3 Quasi-Static Solution. We choose a quasi-static solu-
tion us ¼ u0, which is the hydrostatic response of the fluid.1

From Eq. (1) we get the local equations verified by u0

Du0 ¼ 0 sur XF (30a)

@u0

@n
¼ u:n in R (30b)

@u0

@z
¼ �

1

AðCÞ

ð

R

u:n dR� u0
ini in C (30c)

u0 2 C�
u (30d)

with the same approach from Eq. (7), we write the weak formula-
tion associated with these local equations:

9u0 2 C�
u=8du 2 C�

u;Fðu0; duÞ ¼ Cðu; duÞ (31)

2.3.4 Conjuguate Relations Between u0 and ui. Applying the
Green formula on u0 and ui we obtain the following relation:
ð

XF

u0Dui � uiDu0ð ÞdX ¼

ð

@XF

u0 rui:nð Þ � ui ru0:nð Þð Þdr

(32)

Then, using (30) and (20) we have

0 ¼

ð

C

u0

@ui

@z
� ui

@u0

@z

� �
dCþ

ð

R

u0

@ui

@n
� ui

@u0

@n

� �
dR

0 ¼

ð

C

u0

x2
i

g
uidC�

ð

R

uiu:n dR

(33)

We deduce from expression (33) the first conjuguate relation

Sðu0;uiÞ ¼
1

x2
i

Cðu;uiÞ (34)

Moreover, if we consider in Eq. (31) du ¼ ui 2 C�
u, we obtain

the second conjuguate relation

Fðu0;uiÞ ¼ Cðu;uiÞ (35)

Finally, both expressions can be written in the discretized form

U
TS/0 ¼ �X�2

U
TCU (36a)

U
TF/0 ¼ U

TCTU (36b)

We deduce from (17), (25), and (36), an expression of the damp-
ing term U

TDF/0

U
TDF/0 ¼

Xm�1

i¼0

aiU
T FS�1
� �i

S/0

¼
Xm�1

i¼0

aiX
2i
U

TS/0

¼
Xm�1

i¼0

aiX
2ði�1Þ

U
TCU

¼2X�1ZUTCU

(37)

2.3.5 Reduced Equations. We now introduce Eq. (19) in Eqs.
(13) and (14). With Eqs. (24), (29), (37) and the conjugate rela-
tions (36), we obtain the reduced equations for the fluid and the
structure. The hydrostatic response u0 being a linear function of
the structure displacement u, we define the operatorMF

0

MF
0 ðu; duÞ ¼ Cðu0ðuÞ; duÞ (38)

We call MF
0 the added mass operator as it has all the properties

of a mass operator. The discretized form of Eq. (38) is given in

1In Ref. 10, Morand and Ohayon also propose to use u1, the solution of the

hydroelastic problem without gravity.
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Ref. 10. Introducing the unknown ðU;jÞ of the coupled problem
projected on the sloshing modes we have

K 0

0 �X2

� 	

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
bK

U

j

� �

|fflffl{zfflffl}
w

þ
DS 0

�2XZ t
U

tC 2�XZ

� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bD

_U

_j

� �

|fflffl{zfflffl}
_w

þ
M þMF

0 �CU

�tU tC �

� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bM

€U

€j

� �

|fflffl{zfflffl}
€w

¼
f

0

� 	

|ffl{zffl}
bF

(39)

where MF
0 is the matrix associated with the operatorMF

0 .
We will write in the rest of this article the stiffness, the damp-

ing, and the mass of the coupled system with the symbol ^. Then,
Eq. (39) can be written as

bKwðtÞ þ bD _wðtÞ þ bM €wðtÞ ¼ bFðtÞ

wðM; 0Þ ¼ wini ¼
Uini

jini

 !

_wðM; 0Þ ¼ w0
ini ¼

U0
ini

j0ini

 !
(40)

w being the unknown of the coupled system and bF the associated
force. We deduce jini and j

0
ini from the relation (19).

3 Damping Coefficient Estimation

In this section, we build the matrix Z, linking the modal damp-
ing coefficients fi to their physical meaning and the different dis-
sipative phenomenon in the fluid.

The coefficients fi can be expressed as a function of the energy
dissipation in each mode i. Assuming that the damping is small
(fi � 1), by analogy with a one-degree-of-freedom system, we have

fi ’
�DEi

4pEi

(41)

with DEi the loss of energy during a period by the mode i and Ei

the total energy of the mode. This total energy can be calculated
as the maximum of the kinetic energy of the fluid (or the maxi-
mum of the potential energy). It is then possible to demonstrate
that [10]

Ei ¼
1

2
qFx

2
i

ð

XF

ðruiÞ
2
dX ¼

1

2

qFx
4
i

g

ð

C

u2
i dC ¼

1

2
lix

2
i (42)

In Ref. [14], Henderson and Miles enumerate the different sources
of liquid surface-wave damping

– viscous dissipation at the fluid-structure interface,
– viscous dissipation in the interior fluid,
– viscous dissipation at the free surface, and
– capillary hysteresis at the contact line (triple line between
gas, liquid, and solid)

Among these sources, we will consider, first, the viscous dissi-
pation in the interior fluid DEX and at the fluid-structure interface
DER. Thus, we will have in Eq. (41)

DEi ¼ DER

i þ DEX

i (43)

To calculate the modal damping coefficients, we use a modal
strain energy approach (MSE). This method consists in assuming
that the damped and undamped sloshing modes are sufficiently

similar in order to use the eigenmodes and eigenpulsations
ð/i;xiÞ of the conservative problem to estimate the energy loss
associated to the damped modes [15,16].

To justify this hypothesis, we follow the reasoning in Ref. [17]
which presents a study of the velocity field in a weakly viscous
and incompressible fluid in a deformable container. We can show
that the fluid velocity v can be written as

v ¼ rvþ rotA (44)

where v and A are, respectively, scalar and vector potentials. This
decomposition is also called the Helmholtz decomposition. The
existence and unicity of such potentials are discussed in Ref. 18.
Then, we use the perturbation theory to approximate the full solu-
tion v and develop the weakly damped potentials as a series in the
small parameter � with

� ¼
l�

L
(45)

where L is the characteristic length of the problem and l� repre-
sents the characteristic length of viscous phenomenon

l�ðxÞ ¼

ffiffiffiffiffi
2�

x

r
(46)

� being the kinetic viscosity coefficient of the fluid. The first-
order development is obtained by truncating the series:

v ¼ v0 þ �v1 þ oð�Þ et A ¼ A0 þ �A1 þ oð�Þ (47)

Then, inserting Eq. (44) with the development Eq. (47) in the
linearized Navier Stokes equation [17] we can show that rotA0

decays exponentially when the study point moves away from
the container’s wall. When the viscosity � tends to 0 (� tends to
0), the velocity field of the viscous liquid tends to the velocity
field of an inviscid liquid everywhere except in the boundary
layer at the fluid-structure interface (whose thickness also tends
to 0). Hence, for small displacements, the weakly damped fluid
can be considered as quasi-irrotational except in the boundary
layer. However, this region is sufficiently thin to consider that
the volume of the irrotational fluid and the total fluid volume
can be confused [19,20].

3.1 Viscous Dissipation at the Fluid-Structure
Interface. The viscous dissipation of the liquid in contact with
the solid walls is generated in the boundary layer. The boundary-
layer thickness is sufficiently thin and we can calculate the proper-
ties of the flow with a good accuracy considering that the walls
are locally planar and the flow is assumed to be parallel to the
walls. It is then possible to estimate an average of the energy lost
during a period of oscillation by viscous effect in the boundary
layer [14]:

DER

i ¼ �
qp

2
l�ðxiÞx

2
i

ð

R

ðruiÞ
2
dS (48)

3.2 Viscous Dissipation in the Interior Fluid. Although the
viscous dissipation at the fluid-structure interface and the viscous
dissipation in the interior fluid are respectively proportional to �
and �2, their contributions are sometimes comparable [21,22].
Adding this dissipative term can improve the comparison of the
damping coefficients calculated with the corresponding analytical
result (see Sec. 3.3). It is possible to estimate an average of the
energy lost during a period of oscillation by viscous effect in the
interior fluid (which is considered as incompressible and irrota-
tional) by Refs. [22] and [23]
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DEX

i ¼ �
qp

2
l2�ðxiÞx

2
i

ð

@XF

r ðr/iÞ
2

� 
� n dS (49)

3.3 Validation. We consider here the test case proposed
by Henderson and Miles [14]: a small cylindrical container (di-
ameter: 5:532 cm, height: 3:80 cm), which is also studied in
other articles [19,21]. An exemple of a sloshing mode is pre-
sented Fig. 2 and a comparison between the analytical results
from [19] and the numerical results obtained from a finite
element calculation of the integrals in Eqs. (48) and (49) is
given by Table 1. We notice a good approximation between
the two approaches.

4 Nonsymmetric Quadratic Eigenvalue Problem

4.1 Laplace Transform. The matrices bM, bD, and bK of Eq.
(31) are now entirely built and we now want to calculate w. Using
the Laplace transform we have

L wðtÞ½ � ¼ wðsÞ (50)

L _wðtÞ
h i

¼ swðsÞ � wini (51)

L €wðtÞ
h i

¼ s2wðsÞ � swini � w0
ini (52)

L bFðtÞ
h i

¼ bFðsÞ (53)

Then, we obtain from (40)

s2 bM þ s bDþ bK
� 

wðsÞ ¼ bFðsÞ þ ð bDþ s bMÞwini þ bMw0
ini|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Initial Conditions

(54)

A costly way to obtain wðsÞ consists in solving this linear matrix
system for each desired s. We will prefer here a faster way to calcu-
late wðsÞ and wðtÞ using a modal synthesis method (Secs. 4 and 5)

by computing first the eigenmodes of the eigenvalue problem asso-
ciated with Eq. (54). We will finally compare both approaches.

4.2 Eigenvalue Problem and Properties. We consider now
the second-order eigenvalue problem associated with Eq. (54); the
left and right eigenvalue problems can be written as

Find ðxi; piÞ=ð bMp2i þ
bDpi þ bKÞxi ¼ 0 xi 6¼ 0 (55a)

Find ðyi; piÞ=y
�
i ð
bMp2i þ

bDpi þ bKÞ ¼ 0 yi 6¼ 0 (55b)

xi, yi, and pi are, respectively, the right and left eigenvectors, and
the associated eigenvalues. y�i is the conjuguate transpose of
yi � pi, xi, and yi are generally complex.

First, we will present some noteworthy properties of the
second-order eigenvalue problem (also called quadratic eigen-
value problem) [24,25]. Then we will consider the first-order
state-space representation of the system. The results are used in
Sec. 5 to calculate the time response and frequency response.
bK and bM are real and symmetric matrices of size N � N. The

properties of the eigenvectors and eigenvalues will depend more
particularly upon the property of the damping matrix bD. In our
case, bD is a real and nonsymmetric matrix. Thus, the eigenvectors
xi and yi, and solutions of the quadratic eigenvalue problems will
be different and do not necessary diagonalize simultaneously the
three matrices bK, bM, and bD.

Let us introduce the polynomial matrix of degree two PðpÞ (p is
a complex variable)

PðpÞ ¼ p2M þ pDþ K (56)

We denote by SðPÞ the spectrum of PðpÞ with

SðPÞ ¼ p 2 C; detðPðpÞÞ ¼ 0f g (57)

SðPÞ is the set of eigenvalues of PðpÞ and detðPðpÞÞ is the associ-
ated characteristic polynomial which is defined by [24]

detðPðpÞÞ ¼ detðMÞp2N þ lower order terms (58)

Consequently, when M is nonsingular, PðpÞ has 2N finite eigen-
values in C. When M is singular, PðpÞ has r eigenvalues in C

with r < 2N and 2N � r infinite eigenvalues. Moreover, PðpÞ may
have two distinct eigenvalues having the same eigenvector, in that
case, the number of independent eigenvectors will be inferior to
2N [24,26].

Because bK, bD, and bM are real, the spectrum of PðpÞ is symmet-
ric about the real axis of the complex plane: The eigenvalues are
either real or occur in complex conjugate pairs. Complex eigen-
values are associated with vibrational modes and real ones can be
related to supercritical damping (damping ratio above 1) or a par-
ticular constitutive law of the material. Because we consider here
only weakly damped cases, we will only consider complex con-
juguate solutions.

A common technique consists in employing the first-order
state-space representation of the system. From a quadratic eigen-
value problem we obtain a generalized eigenvalue problem which

Table 1 Comparison between damping coefficients obtained
analytically and numerically

Mode number Finite element results (10�3) Analytical results (10�3)

1–2 5.0 4.9
3–4 6.2 6.1
5 2.9 2.9
6–7 7.1 7.1
8–9 7.8 7.8

Fig. 3 Test tank. Height: 2m, Radius: 2m.

Fig. 2 Example of a sloshing mode
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is of first order but has twice the size of the initial problem. We
consider the variable H, given by

HðM; tÞ ¼
wðM; tÞ
_wðM; tÞ

� �
(59)

Thus, the problem in Eq. (40) can be written as

B _HðM; tÞ � AHðM; tÞ ¼ C

HðM; 0Þ ¼ Hini ¼
wini

w
0

ini

 !
(60)

with

B ¼ � bK 0

0 bM

� 	
A ¼ 0 � bK

� bK � bD

� 	
C ¼

0
bF

� 	

As bD is not symmetric, A is not symmetric either. Left and right
eigenvalue problems associated with Eq. (60) can be written as

Find ðXi; piÞ=ðpiB� AÞXi ¼ 0 Xi 6¼ 0 (61)

Find ðYi; piÞ=Y
�
i ðpiB� AÞ ¼ 0 Yi 6¼ 0 (62)

By analogy with Eq. (56) we define the polynomial matrix Q

QðpÞ ¼ pB� A (63)

There are many ways to build the matrices A and B, indeed, the
one we chose makes Q an equivalent of P; we have

PðpÞ 0

0 IN

� 	
¼ EðpÞQðpÞFðpÞ (64)

where IN is the identity of size N. EðpÞ and FðpÞ are 2N � 2N
matrices with constant nonzero determinants [24]. Then, regard-
ing Eq. (64), we notice that the spectrum of Q and P are the same.
Moreover, with A and B written with this form, eigenvectors (Yi,
Xi) can be expressed as functions of (xi, yi, pi)

Xi ¼
xi
pixi

� �
Yi ¼

yi
�piyi

� �
(65)

Indeed, developing Eqs. (61) and (62) with the relations (65), we
obtain on the top block the problems in Eqs. (55a) and (55b).

In the rest, we define the modal matrix x of size N � m (m being
the number of modes calculated and m < 2N) containing the
eigenvectors xi, solutions of Eq. (55a) with positive imaginary
part. Similarly, y contains the left eigenvectors yi with positive
imaginary part and k is the diagonal matrix that contains the m
corresponding eigenvalues. Let X and Y be the modal matrices

containing the selected eigenvectors Xi and Yi; we can then write
using Eq. (65)

X ¼
x �x
xk �x�k

� 	
Y ¼

y �y
y�k �yk

� 	
(66)

We consider here the case where M is a singular matrix and
rankðPðpÞÞ ¼ N (P is said to be regular). Moreover, all the eigen-
values of P are considered as semisimple,2 then, the eigenvalues
of Q are semisimple too and the matrices A and B are diagonaliz-
able (see lemma 5 in Ref. 2). The eigenvectors Xi and Yi are said
to be bi-orthogonal in the sense that

Y�BX ¼ R ¼
r 0

0 �r

� 	
and Y�AX ¼ RL ¼

rk 0

0 �r�k

� 	
(67)

5 Time Response and Frequency Response

We now solve Eq. (60) by using the Laplace transform with

L HðtÞ½ � ¼ HðsÞ (68)

We write a solution of the state equation H as a linear combina-
tion of the right eigenvectors Xi multiplied by modal coordinates
Qi as follows:

HðsÞ ¼ XQðsÞ ¼
X2m

i¼1

XiQiðsÞ (69)

Then we have

L _HðtÞ
� �

¼ sHðsÞ �Hini ¼ sXQðsÞ � XQini (70)

L FðtÞ½ � ¼ FðsÞ (71)

Pre-multiplying Eq. (60) by Y� and using the relation (69)
between H and X yields

Y�ðsB� AÞXQðsÞ ¼ Y�BHini þ Y�CFðsÞ (72)

The relations previously described in Eq. (67) simplify Eq. (72)
and we have

QðsÞ ¼ ðsI2N � LÞ�1R�1 Y�BHini þ Y�CFðsÞð Þ (73)

We then deduce HðsÞ from Eq. (69)

HðsÞ ¼ XðsI2N � LÞ�1R�1 Y�BHini þ Y�CFðsÞð Þ (74)

Fig. 4 Comparison between the frequency responses in displacement of the point A from 0 to
6Hz in the radial direction for an excitation at the same point and in the same direction

2Let a be the algebraic multiplicity of the eigenvalue pi, a is the order of the cor-

responding zero in detðPðpÞÞ. The geometric multiplicity b of pi is the dimension of

the associated characteristic subspace. For a semisimple eigenvalue we have: a ¼ b.
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The relations between H and w are given by Eq. (60). Then, by
developing Eq. (74), it is possible to give an expression of wðsÞ
using the modal matrices x and y

wðsÞ ¼ � bKT1wini þ bMT2w
0
ini þ T2FðsÞ (75)

with

T1 ¼ xðsI � kÞ�1r�1y� þ �xðsI � �kÞ�1
�r�1

�y� (76)

T2 ¼ xðsI � kÞ�1r�1
ky� þ �xðsI � �kÞ�1

�r�1 �k�y� (77)

The first two terms of Eq. (75) will give (in the time domain) the
free response of the system to an initial perturbation (in displace-
ment and velocity). The third term depends on the load type and
will give (in the time domain) the transitory and forced response
of the system.

The frequency response between the entry node k and the exit
node l is given by Eq. (78) considering zero initial condition and
s ¼ ix, where x is the pulsation of excitation

wklðxÞ ¼ ET
k ðxðixI � kÞ�1r�1

ky� þ �x ixI � �k
� ��1

�r�1 �k�y�ÞEl

(78)

where Ei is a column vector composed of zeros and a single coef-
ficient equals to 1 on the line number i (each node and direction of
the system can be associated with a unique number).

It is also possible to obtain from Eq. (75) the time response
using the inverse Laplace transform. This response can be written
(using zero initial conditions) as

wðtÞ ¼ L�1 wðsÞ½ � ¼ 2Re

ðt

0

xekðt�sÞr�1
kyFðsÞds

� �
(79)

This expression can be calculated analytically for a simple excita-
tion type (harmonic or Heavyside for instance); using the classical
form of a sum we have

Harmonic excitation: FðtÞ ¼ F0 cosðxtÞ

wðtÞ ¼ Re
X2m

i¼1

pixiy
�
i

ðix� piÞri
F0ðe

ixt � epitÞ

!
(80)

Heavyside excitation: FðtÞ ¼ F0HðtÞ

wðtÞ ¼
X2m

i¼1

xiy
�
i

ri
F0ðe

pit � 1Þ
(81)

6 Test Case

In order to apply this formulation to a test case, we consider a
cylindrical container made of steel full of water and elastic. The
tank bottom is fixed so that the rigid body movements are
removed. The excitation is made at the point A on the top edge of
the tank and in the radial direction (see Fig. 3). We study here the
displacement of point A in the radial direction.

6.1 Frequency Response. In Sec. 5, we give the frequency
response expressed with the complex modes of the coupled sys-
tem xi and yi. These modes are computed in NASTRAN with the
complex Lanczos algorithm. We compare this modal method with
the direct frequency response, which serves as reference solution,
given by

wklðxÞ ¼ ET
k �x2 bM þ ix bDþ bK
� �1

El (82)

Fig. 5 Time response of point A in the radial direction for a harmonic excitation at the frequency f15 0.63Hz and a Heavyside;
F05 600N
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Figure 4 presents a comparison between the direct frequency
response and the responses obtained by modal synthesis with the
complex modes and the real modes (the real modes are obtained
considering bD ¼ 0 in Eq. (55)). We notice that the modal synthe-
sis performed using complex modes gives a good approximation
of the direct frequency response for low frequency modes (i.e.,
sloshing modes) and hydro-elastic modes (from 2 Hz).

6.2 Time Response. From expressions (80) and (81), we rep-
resent the displacement of the point A as a function of time for dif-
ferent type of excitation: harmonic or Heavyside (see Fig. 5). The
harmonic excitation is at frequency f1 ¼ 0:99 Hz, which is close
to a sloshing frequency of the liquid.

We also represent, in Fig. 6, the transitory response of the fluid
for the same harmonic load (sketched by the black arrow in Figs.
3 or 6(a)) with the same amplitude and at frequency f1 (in those
pictures the structure is hidden) and the colors represent the fluid
pressure variations. In the first snapshot, the fluid is at rest. From
Fig. 6(b), we can see the fluid starting to be excited by the force
applied on the top edge of the cylinder.

7 Conclusion

The linearized formulation we present here is adapted for small
excitation amplitudes and for the use of a modal approach (it is
not directly applicable to another sloshing problem, for instance
the nonlinear problem of slosh-induced impact pressure in a ship
cargo tank [6]).

We first build the coupled fluid-structure system, introducing a
diagonal damping model for the incompressible fluid. The associ-
ated eigenvalue problem is quadratic with a nonsymmetric damp-
ing operator. The properties of its eigenmodes are presented.
Then, we project the reduced coupled system on its complex
modes. The computed eigenmodes are not orthogonal and do not
diagonalize the matrices bM, bK, and bD. However, using a particular

state-space representation, it is possible to find properties of bi-
orthogonality of the left and right eigenmodes of the system, and
solve the problem with a modal synthesis approach.

Thus, a method to compute the linearized time response or the
frequency response of a dissipative and nonsymmetric coupled
system is proposed. This formulation allow us to compute with
good accuracy those responses for any point of the structure or the
fluid, for different excitation types, in a faster way than a matrix
inversion for all frequency steps or using an iterative time integra-
tion scheme.
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