Johan Bertrand
email: johan.b@orange.fr

Arda Yigit
email: arda.yigit@unistra.fr

Sylvain Durand
email: sylvain@durandchamontin.fr

Embedded Event-based Visual Odometry

Keywords: Event-based odometry, embedded robotics, DVS, spiking Hough transform

This paper presents an event-based visual pose estimation algorithm, specifically designed and optimized for embedded robotic platforms. The visual data is provided by a neuromorphic vision sensor. The fully event-based proposed approach is based on Spiking Neural Networks and a modified Hough transform. The method is developed to detect a square visual feature. The multi-thread algorithm is implemented on a Raspberry Pi, the well-known single-board computer used on many embedded platforms, that is connected to a Dynamic Vision Sensor (DVS) through its USB interface. Validation is done on two different experimental platforms and highlights the ability of the odometry algorithm to determine the relative pose of a robot with respect to a square target, in the aim to be integrated in an event-based visual servoing in a future work.

I. INTRODUCTION

Visual servoing [START_REF] Hutchinson | A tutorial on visual servo control[END_REF], [START_REF] Chaumette | Visual servo control. I. Basic approaches[END_REF] consists in controlling the pose of the end-effector of a robot using the information provided by a vision sensor. It is an active field of research in robotics for the development of autonomous robots. Paradigms have been developed and the interpretation of information provided by the camera is quite easy, but remains very computationally intensive. Moreover, even if the scene is not moving, the information flow will be the same, which leads to redundancy of the information and computation power losses. The use of highspeed cameras is even more challenging since they require greater communication and processing bandwidth. Therefore, new methods are mandatory especially for embedded systems where the computational power is limited.

An event-based vision sensor, like the Dynamic Vision Sensor (DVS) [START_REF] Lichtsteiner | A 128×128 120dB 15µs latency asynchronous temporal contrast vision sensor[END_REF], [START_REF] Delbruck | Activity-driven, event-based vision sensors[END_REF], is a good candidate as a replacement of traditional cameras. Rather than integrating light intensity at a fixed frame rate to transmit an image of the scene, the DVS measures the local intensity changes and sends the position of the pixel asynchronously, at the moment the change occurs. This new way of acquisition results in a smaller latency and a smaller amount of transmitted information. This new technology brings, however, some inconveniences. In particular, new methods have to be devised for processing the eventbased visual information and only few algorithms exist for now, compared to the classical computer vision field. Eventbased visual odometry algorithms with robotics application are addressed here in particular, where the aim is to estimate the pose of a robot over the time with the information provided by visual sensors. In [START_REF] Conradt | A pencil balancing robot using a pair of AER dynamic vision sensors[END_REF], [START_REF] Conradt | An embedded AER dynamic vision sensor for low-latency pole balancing[END_REF], [START_REF] Delbruck | Fast sensory motor control based on event-based hybrid neuromorphic-procedural system[END_REF], a stand-alone vision-based pencil balancing system using two DVSs was presented, based on a Hough transform for line estimation. In [START_REF] Mueggler | Event-based, 6-DOF pose tracking for high-speed maneuvers[END_REF], an offline event-based 6-degrees of freedom (DoF) pose tracking was presented, where the pose of a high-speed unmanned aerial vehicle is post processed on a computer. Furthermore, Hough transform was also used to estimate the pose of a known black square on a white wall. In [START_REF] Kim | Simultaneous mosaicing and tracking with an event camera[END_REF], [START_REF] Kim | Real-time 3D reconstruction and 6-DoF tracking with an event camera[END_REF], [START_REF] Kim | Real-time visual SLAM with an event camera[END_REF], event-based Simultaneous Localization and Mapping (SLAM) algorithms were addressed. In [START_REF] Rebecq | Real-time visualinertial odometry for event cameras using keyframe-based nonlinear optimization[END_REF], event-based real-time visual-inertial odometry algorithms was developed, where information from an Inertial Measurement Unit (IMU) is merged with the DVS one to both gain in precision and compensate the well-known deviation of the gyroscopic sensor.

Nonetheless, for event-based vision algorithms that have been developed, very few of them are ready to be implemented on an embedded platform. The robot goalie in [START_REF] Delbruck | Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor[END_REF], a robot stopping balls, is among the few robotics projects which could work online on a Raspberry Pi 4 without any modification of the algorithm, due to the low computation power required to execute the event-based algorithm. However, there is no odometry algorithm required in this project and the project was originally driven by a computer over a USB link. In [START_REF] Kim | Real-time 3D reconstruction and 6-DoF tracking with an event camera[END_REF], an event-based 3D reconstruction and localisation algorithm is proposed for 6-DoF tracking. It is implemented on an i7 processor equipped with an Nvidia GPU for online computation. In [START_REF] Rebecq | Real-time visualinertial odometry for event cameras using keyframe-based nonlinear optimization[END_REF], [START_REF] Vidal | Ultimate SLAM? combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios[END_REF], an embedded pose estimation algorithm is presented using visual inertial odometry combined with a Kalman filter, a DVS and an IMU. Even if the article mentions that the algorithm could work on smartphone CPU, one iteration takes about 8.23ms to be processed on an Intel Core i5 CPU, without taking into account the latency of the communication.

In the present work, a novel fully event-based odometry algorithm is developed for 6-DoF pose estimation, using only a DVS. The proposed algorithm was specifically designed and optimized for an embedded platform, i.e. a Raspberry Pi, with the objective to be integrated in an event-based feedback control loop in the sequel. It is validated experimentally for pose estimation of both a planar suspended cable robot and an aerial manipulator. The rest of the paper is organized as follows. Section II introduces preliminaries about spiking Hough transform on which the proposal is based. The fully event-based visual odometry algorithm, designed to detect a square visual feature, is detailed in Section III. Section IV describes some optimizations for an online running and realtime execution on an embedded platform. Section V introduces the experimental setups and gives some experimental results that validate the proposal. Section VI concludes the paper and gives some directions for future research.

II. PRELIMINARIES A. Spiking neuron

A neuron is a mathematical function used as an elementary unit in artificial neural networks. Such artificial neurons receive one or more weighted inputs that are combined with their internal state, an optional threshold using an activation function (typically with a sigmoid shape), and produce an output in order to solve problems in the same way that a human brain would, generally without any prior knowledge.

In addition, a spiking neuron incorporates the concept of time into its operating model. In particular, an integrate-andfire spiking neuron (like in [START_REF] Seifozzakerini | Event-based Hough transform in a spiking neural network for multiple line detection and tracking using a dynamic vision sensor[END_REF] for instance) is an event-based artificial neuron whose output does not change continuously, but rather emits a spike only when its so-called potential, that is decaying over time, reaches a given value. In fact, input positive/negative events (coming from a DVS here) are respectively increasing/decreasing the potential of the neuron, until a threshold value is reached. At this specific time, the neuron emits a positive/negative spike respectively, resets its potential and enters in a refractory period for a determined amount of time. During this period, the neuron's potential cannot change. After this period of time, the neuron is ready to take input events again.

B. Hough transform

Hough transform is a feature extraction routine commonly used in computer vision to detect lines. The technique consists in transforming each point in the Cartesian coordinates of the images, where lines have to be detected, to a curve in the Hough parameter space. The intersection of multiple curves in the Hough space defines a local maximum. Then, local maximum coordinates are the parameters of the line in the original image. Several methods can be used, like slope-origin or rho-theta parameterization in the case of a line extraction algorithm [START_REF] Duda | Use of the Hough transformation to detect lines and curves in pictures[END_REF]. Note that Hough transform can also be used to extract other features, like circles or ellipsoids.

In particular, the proposal is based on a spiking Hough transform [START_REF] Seifozzakerini | Event-based Hough transform in a spiking neural network for multiple line detection and tracking using a dynamic vision sensor[END_REF].

III. FULLY EVENT-BASED VISUAL ODOMETRY ALGORITHM

This section presents the first contribution of the paper: a fully event-based 6-DoF pose estimation algorithm. The method detailed in this paper is based on the detection of the edges of a square, but the method could be extended to other geometrical forms. The different steps of the algorithm are summarized as follows:

a. A noise filter in order to minimize the number of events to be processed; b. An undistortion of the position of the event, to correct the optical imperfections; c. A modified spiking Hough transform to identify the lines in the camera sight, inspired from [START_REF] Seifozzakerini | Event-based Hough transform in a spiking neural network for multiple line detection and tracking using a dynamic vision sensor[END_REF]; d-e. A strategy to update the line parameters; f. A pose finding algorithm to determine the position of the camera, based on the detected lines of the square. These steps are described from now on.

A. Background Activity Filter

Noise elimination is essential when using DVS. Indeed, the more noise, the more computation time and the more latency. In our case, a Background Activity Filter (see [START_REF]jAER: Java tools for address-event representation (AER) neuromorphic processing[END_REF]) has been chosen for its small computation time and sufficient performances.

B. Event undistortion

With conventional cameras, the undistorted image is computed by changing the undistorted coordinate to the distorted coordinate and averaging the resulting value if the distorted coordinates are subpixels. In the case of DVS, it is not possible to do so, because the events can not be averaged, and an event can not be split in multiple parts. Therefore, the distortion coefficients of the radial distortion model were determined during the calibration process, based on the work of [START_REF] Mueggler | Lifetime estimation of events from dynamic vision sensors[END_REF]. Then, the undistortion is done according to the pinhole model. All the coordinates of the pixels were computed and stored inside a lookup table. The results are illustrated in Fig. 1.

C. Spiking Hough-like transform

Once the events are filtered and undistorted, the next step is to convert their position from Cartesian to Hough coordinates. The lines (of the square to detect) are described in polar representation (d, θ) instead of linear representation (a, b) to avoid problems with vertical lines. Each point in the image gives a sine shape in the Hough space. The origin of the polar system is the center of the image (umax 2 , vmax 2). This way, all lines could be represented as (d, θ) or (-d, θ + π). Thence, the Hough space can be reduced to

(d = [-d max , d max], θ = [0, π]) or (d = [0, d max], θ = [0, 2π]
), with d max the maximum distance of a point from the center. In the present case: Fig. 2: Neuron potential evolution (in blue) and spikes generation (in red) of a classical spiking neural network, for a decay coefficient λ = 500, a potential threshold of 12 and no refractory period.

d max = u max 2 2 + v max 2 Time [s]
The second reduction seems to be more convenient because the space can be represented as a cylinder, whereas the first reduction turns the space into a more complex shape, which implies more computation time.

The Hough parameter space is discretized and a neuron is associated to each discrete point. Thereby, when the Hough parameter space is visualized as a picture, like in Fig 3, each pixel represents one neuron potential. When an event occurs from the DVS (after filtering and undistortion), all the neurons in the path of the corresponding curve in the Hough parameter space are affected and get their potential increased by 1. Whatever the polarity of the event, the potential of the neuron is increased by 1. Once a spike occurs, because the potential of a neuron becomes greater than a given threshold, the neuron can not emit for a predetermined duration. An example of a neuron potential change and the resulting spikes is described in Fig. 2. The chosen decay function of the potential between spikes is f (∆t) = exp(-λ • ∆t), with λ the decay coefficient.

When a spike is emitted, the corresponding neuron is considered to be a local maximum candidate in the Hough space (i.e. a candidate for the parameters of one of the four lines of the square to detect) and a line update is triggered.

Sometimes, a DVS pixel is emitting a lot of events in a few microseconds, resulting in the Hough space in a highvalue sine curve, whose neurons can produce spike noise. The method to detect lines and track a square, thereafter described, is not able to eliminate enough noise to take account the interesting spikes. Thereby, to avoid the emission of too many spikes on such a burst of events from one DVS pixel, we suggest checking that the spiking neuron is not a peak in the Hough space (i.e. a local maximum with a neighborhood of steep declining potentials). If the spiking neuron is not a peak, then the spike is not emitted and the neuron potential is not reset. Instead, its potential value keeps decaying during a refractory period in which the neuron cannot emit spikes anymore. By doing this, neurons of the high-value sine curve would not emit spikes anymore since they are not a peak but rather they are part of a continuous curve whose neurons have all a high-value potential. The peak finder method will be detailed in the sequel (section IV-D).

Once the four peaks in the Hough space (i.e. the four lines of the square) are detected, they are tracked and updated at each emitted spike.

D. Initial line detection

In order to detect the square position, the first step is to find its four lines. The used approach was to compare the Hough position (θ, d) of the emitted lines. The angle between two lines is first checked: 0 < (θ 1 -θ 2) < θ i , then the distance:

|d 1 -d 2 | < d i ,
where the values used for comparison have been determined during tests (θ i = π/18 and d i = 8). If the line belongs to an already saved identified line, the line parameters are updated. If it does not, emitted line is compared with the already detected lines to see if it can be a candidate's new line. To be a candidate line, the line should be either close to parallel and far from more than a determined number of pixels from the detected lines, or be perpendicular to those.

E. Line parameters update

To update the line parameters, a forgetting factor G ∈ [0, 1] is applied. The lower the G, the less the emitted spike will impact the parameters of the lines. The value G = 0.12 has been determined during tests.

When a saved line (θ s , d s) is updated with an emitted line (θ e , d e), several cases are to be considered. Indeed, due to the cyclic property of the used space (i.e. a cylinder), specific cases have to be considered. The following examples illustrate the possible problems: This is a common and easy configuration, illustrated by the red crosses in Fig. 3. The lines are directly close to each other in the Hough space. In this case, the following equations are applied:

θ updated s = G • θ e + (1 -G) • θ s d updated s = G • d e + (1 -G) • d s (1)
Then, it results L updated s = (1.2012, 15.308). One can notice that the line L s is now closer to L e . The bigger is the forgetting factor G, the closer the new saved line L s is to the emitted one L e .

Case 2:

L s = (θ s , d s) = (0, 0.01) L e = (θ e , d e) = (3.12, 0.14)

In this second configuration, the lines are parallel and close to each other, but they are shifted around π in the Hough space. This case is illustrated by the yellow crosses in Fig. 3. The procedure is then the following:

if -G • d e + (1 -G) • d s < 0: θ updated s = G • θ e + (1 -G) • ((θ s -π)%(2π)) d updated s = G • d e -(1 -G) • d s (2)
otherwise: This last case involves the cyclic property of the angle axis in the Hough space, illustrated by the green crosses in Fig. 3. Here, the distance and the angle are computed using equation (1) where 2 • π is subtracted to the biggest angle. If the angle results in a negative number, then 2 • π is added. For example, G • θ e + (1 -G) • θ s = -0.0384, so L updated s = (6.2448, 11.068).

θ updated s = G • ((θ e -π)%(2π)) + (1 -G) • θ s d updated s = -G • d e + (1 -G) • d s (3)

F. Pose estimation algorithm

Once the line events were correctly managed, a Perspectiven-Point (PnP) algorithm has to be selected. Such algorithm consists in finding the pose of a camera with the n points identified on the image, which belong to a known object. Various algorithms are available and can be chosen depending on the requirements of the project it will be implemented on. In our case, we used a modified iterative POSIT algorithm [START_REF] Dementhon | Model-based object pose in 25 lines of code[END_REF] to determine the pose of the camera: the four points given by intersection of the four lines in the Hough space give the position and orientation of the camera on its own axes.

Without loss of generality, a planar visual feature is used in the present work (i.e. a square) combined to an iterative POSIT algorithm, therefore, only a 4-DoF estimation will be possible. However, this is generally enough for a large number of robotic applications. Furthermore, either a 3D object or another PnP algorithm should allow a 6-DoF pose estimation, but with an increase of the computing time in return (this also explains our choice).

IV. OPTIMIZATIONS FOR AN EMBEDDED ALGORITHM

The second contribution of the paper is to make the fully event-based visual odometry algorithm (see Section III) implementable on an embedded platform, with an online running and real-time execution. Therefore, multiple threads and routine optimizations are proposed here.

A. Experimental setup

The implementation has been written in C++ to ensure the computation time optimization on a Raspberry Pi 4B, which is the embedded single-board computer used in the present work. Moreover, the program has been developed using condition variables to keep the event-based architecture of the proposal. The Raspberry Pi communicates with an embedded DVS (eDVS from iniVation [START_REF] Conradt | An embedded AER dynamic vision sensor for low-latency pole balancing[END_REF]), through its USB interface at a baudrate of 4 Mbps.

B. Multithreading

The program is split in four threads:

• I/O thread: manages the inputs and outputs of the user to control the program. It handles the external communication and manage all the other threads. • Communication thread: handles the communication between the DVS and the Raspberry Pi. This thread applies the background activity filter directly after the reception of events over the USB link, and transfers the resulting events to the Hough thread. • Hough thread: computes the filtered events of the communication thread to apply the modified spiking Hough transform. The emitted spikes are then transferred to the PnP thread. • PnP thread: determines the positions of the lines and their intersections to compute the pose estimation algorithm. The structure is detailed in Fig. 4.

C. Pre-computation

Commonly used sines, cosines and exponentials are computed at the beginning of the program and stored in RAM to improve the computational speed. In the same way, the sinusoidal coordinates generated after the undistorsion of the emitting pixel coordinates of the DVS are computed and saved inside an array. The program will then directly find the neuron coordinates to increase, depending on the coordinates of the original event.

D. Local peak finder and partial computation

This section describes the local peak finder strategy, added to the spiking Hough transform (section III-C) to avoid too many spikes in case of a burst of events for one pixel of the DVS. A peak is defined as a local maximum with a neighborhood of steep declining potentials. The idea is to check if the spiking neuron is a peak in the Hough space. If it is not a peak, the spike is not emitted. Besides, the neuron potential is not reset but rather keeps its potential value and keeps decaying during a refractory period. The potential is not reset to prevent an adjacent neuron to become a peak. To test if the neuron is a peak, a checking zone of 7 × 7 pixels was determined to be optimal to avoid spike noise without needing too much computing resources.

The routine is described in Fig. 5 for the case of the high-value sine curve of a bursting DVS pixel. Each square represents a neuron in the Hough space and the non-white square (red and green neurons) depicts the sine curve of the neurons with a high-value potential. The green neuron in the center is the currently studied neuron. The numbers inside the neurons denote the order in which the neurons will be run through by the routine. This spiral-like pathway is optimized such that only one index (x or y) changes at each step, reducing the computation time.

The routine stops when a neuron with a potential higher than expected is found in the neighborhood, meaning that the studied neuron is not a peak. For the studied neuron not to be a peak, the conditions on the neighborhood neuron potentials are:

• in the orange 3 × 3 zone, the potential of the neurons has to check the relation V neurons > V studiedN euron ; • between the yellow 5 × 5 zone and the orange 3 × 3 zone, the neurons potential has to check the relation V neurons > G 5 • V studiedN euron , with G 5 < 1; • between the green 7 × 7 zone and the yellow 5 × 5 zone, the neurons potential has to check the relation V neurons > G 7 • V studiedN euron , with G 7 < G 5 . The values G 5 = 0.9 and G 7 = 0.8 have been determined during tests. Then, the checking zone is shifted to the next candidate on the sine curve.

Note that instead of computing the potential decay of all the neurons at every Hough space update, the time at which the last decay happened for each neuron is saved. applied to the neuron when its potential value is needed. For that, the peak finder was hard-coded to compute the values around the studied neurons one after another.

E. Computing time

After those optimizations, the global process time of the program as well as the computing time of the different parts of the algorithm have been measured. They are summarized in Table I. The Hough thread time is mainly depending on the peak finder algorithm. The minimum time computation of this thread is achieved when the interpreted event does not lead

V. EXPERIMENTAL RESULTS

Once the algorithm was implemented and validated on datasets, it was tested on different robots to highlight its limits and advantages. The tests were made with a 25 × 25 cm black square visual feature on a 1 × 1 m white background. Those dimensions ensure a 20×20×20 cm working space located at 60 cm from the target, which was enough for the tests. Note that the measurements obtained with the proposed algorithm are not used in a feedback control strategy in this preliminary (open-loop) work, they are only compared with a ground truth.

A. 1-DoF planar suspended cable driven parallel robot

The first tests were made on a planar suspended cable driven parallel robot, called PiSaRo3 [START_REF] Sellet | Active damping of parallel robots driven by flexible cables using cold-gas thrusters[END_REF]. It is a 3-DoF robot, suspended with three nylon cables. Each cable is attached to a winch that is driven by a Dynamixel XM430-W210-R motor mounted on the end-effector of the robot. Note that the motion of the PiSaRo3 robot was restricted to only 1 DoF here, i.e. the vertical translation, by attaching all the cables to the anchoring structure so that they are vertical and parallel and the same speed signal is sent to the three winches.

The low open-loop dynamics of the PiSaRo3 robot is a perfect study-case for preliminary tests of the proposed algorithm. Indeed, this robot behaves like a second-order oscillating system, with a low damping coefficient and an oscillation period of about 1.8 s. The eDVS was mounted on the robot as well as the Raspberry Pi used to compute online the algorithm, see Fig. 6a. A LED was also added to light up the observed black square, see Fig. 6b.

The experimental results presented in Fig. 7 show the openloop response of the robot relative to the square target. Its position (i.e. altitude) determined by the embedded eventbased odometry algorithm is compared with a ground truth, obtained thanks to a remote 500 Hz camera. The ability of the algorithm to determine the relative position of the robot is clearly validated. Some limitations can be highlighted, like the offset of position and the non-detection of low dynamic movements. The offset comes from the PnP algorithm, and the low dynamics is directly related to the parameters applied in the modified spiking Hough transform.

B. 6-DoF omnicopter with elastic suspension

Further tests were made on a suspended aerial manipulator, called DextAir [START_REF] Yiǧit | Preliminary study of an aerial manipulator with elastic suspension[END_REF]. This robot is an omnidirectional multirotor vehicle composed of 6 pairs of coaxial contra-rotating

Fig. 1 :

 1 Fig. 1: Undistortion results.

Case 1 :

 1 L s = (θ s , d s) = (1.2, 15.2) L e = (θ e , d e) =(1.21, 16.1)

Fig. 3 :

 3 Fig. 3: Representation of the different possible cases for the line update method.

Fig. 4 :

 4 Fig. 4: Summarized thread organization in real-time mode.

Fig. 5 :

 5 Fig. 5: Illustration of the peak finder routine in spiking Hough space.

(a)

 a PiSaRo3 robot with the eDVS and its LED (b) PiSaRo3 robot facing the black square sight

Fig. 6 :

 6 Fig. 6: PiSaRo3 robot setup to test the embedded event-based odometry algorithm.

TABLE I :

 I Comparison of computation time for the different threads of the embedded algorithm.

ACKNOWLEDGMENT

This work is part of the e-VISER project (ANR-17-CE33-0008) funded by the French National Research Agency. The authors would like to thank J. Gangloff and L. Cuvillon for their contribution in this project.

propellers and suspended by a spring to a robotic carrier. The robot will be excited only on 4 of its DoF. This system has a greater dynamics than the PiSaRo3 robot. Moreover, the vibrations of this robot in open loop generate events, which are useful in the present case to help better detect the lines of the square target. The eDVS and the Raspberry Pi were mounted on the robot, see Fig. 8.

The experimental results are depicted in Fig. 9. They confirm the ability of the proposed algorithm to track the pose of a robot on 4 DoF. A video of the test with the outputs of the algorithm is available at this address: https://youtu.be/A-4 eaXw9p4. The same video is also available in slow motion (4 times slower): https://youtu.be/-WMl37JRbfk. However, limitations have been identified. The position on X and Y axes seems to be very sensitive to vibrations compared to the Z axis (i.e. the altitude) or the rotation around this axis (i.e. the yaw angle). This issue is mainly due to the PnP algorithm. An error on the X and Y axes appeared during the rotation of the camera because of the tracking of the lines.

VI. CONCLUSION AND DISCUSSIONS

The validation of the fully event-based visual odometry algorithm proposed in this paper, specifically designed and optimized for an embedded (Raspberry Pi) platform, was demonstrated with two robotic applications. The pose of the robot relative to a planar target was estimated and compared to a ground truth in both cases.

During the different tests, some issues and ways of improvement have been identified:

• Another PnP algorithm and/or another visual feature with at least four non-coplanar points (like 3D-pyramids) should be used to reduce the error in position and to have a full 6-DoF pose estimation. • The use of the USB link on the eDVS currently introduces a latency of about 1 ms maximum. A SPI or UART communication would reduce this latency and improve the communication bandwidth. • The tracking algorithm sometimes takes too much time to follow the lines. Other alternatives should be studied to try to correct this issue.

• The parameter values of the modified spiking neurons could be tuned to obtain better results. • A fusion of data with the model of the robot could improve the low-velocity movements which are not detected by the proposed algorithm. Nonetheless, next step will be to implement and test this embedded pose estimation algorithm in an event-based feedback control loop, like visual servoing of a robotic system.

Note that the code of the embedded event-based odometry algorithm is open-source and available using this link: https://github.com/Blabla51/Embedded-Event-based-Visual-Odometry.