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Abstract—By allowing multiple users to transmit using the
same frequency band at the same time, non-orthogonal mul-
tiple access (NOMA) can support more users as compared to
orthogonal multiple access (OMA) given a fixed amount of
time-frequency resources. In this paper, we study the resource
allocation problem in the uplink of a single-cell network when
NOMA is enabled, where the maximum completion time of
serving all connected users is to be minimized. While such
an objective function minimizes the required time to serve
uplink users, the resource allocation problem is NP-hard. We
propose a serial collaborative optimization framework based
on simulated annealing (SA) to search for the optimal user
pairing and scheduling solution. Simulation studies show that
the proposed algorithm for NOMA scheduling can reduce the
maximum completion time by more than 30% when compared
against OMA scheduling and random NOMA user clustering.

Keywords—Non-orthogonal multiple access (NOMA), resource
scheduling, maximum completion time, serial collaborative opti-
mization, simulated annealing (SA).

I. INTRODUCTION

In 4G/5G wireless cellular systems, orthogonal frequency-
division multiple access (OFDMA) is used as the major radio
access technology. OFDMA is an orthogonal multiple access
(OMA) scheme that avoids intra-cell interference. Despite
its ease of implementation, OMA suffers from low spectral
efficiency when some bandwidth resources are allocated to
users with poor channel conditions [1]. With the rapid growth
of demand for mobile data network capacity and transmis-
sion speed, OMA based cellular systems are unable to keep
up with the applications in the next-generation radio access
technology [2], , and non-orthogonal multiple access (NOMA)
is considered to be a promising technique to overcome the
limitations of OMA and improve system performance [3]. In
contrast to OMA schemes, NOMA allows multiple users to
be superimposed on the same time-frequency resource block,
where successive interference cancellation (SIC) can be used
to separate signals from different users. As a result, the band-
width allocated to the users with poor channel conditions can
still be used by the users with strong channel conditions, which
can significantly improve the system’s spectral efficiency [4].

With higher sum capacity and enhanced spectrum efficiency,
NOMA provides support for more users’ communication
needs at the same time, thus having the potential to im-
prove quality-of-service (QoS) for a variety of communication
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applications. For delay insensitive services such as email,
rate constraints are relatively relaxed for individual users and
throughput (i.e., the sum of data rates delivered to all terminals
in a network) is the most broadly used criterion to evaluate
system performance. Over the past few years, this topic has
been already thoroughly explored by academia and industry
[5]–[8]. On the other hand, the explosive growth of the Internet
in recent years has also created many applications that are
sensitive to packet delays from end-to-end. In these cases, each
user must transmit a certain amount of information within a
certain period and maximizing the throughput is no longer
an appropriate strategy [9]. Given a number of requests from
multiple devices to transmit data packets of varying lengths,
efficient scheduling scheme is required to avoid long queuing
at the buffers of congested links.

In terms of delay optimization, the maximum completion
time (i.e., the makespan, denoted by Cmax) is a widely adopted
metric. Recently, completion time reduction in NOMA-
enabled systems has received attention in the research com-
munity. Specifically, the uplink NOMA scheduling problem of
minimizing Cmax is proven to be NP-hard [10], leading to high
computational complexity in conventional iterative methods.
To achieve completion time minimization, [11] proposed a
learning-based hybrid algorithm to jointly optimize time slot
and transmit power allocation. However, this work assumes
that there is only one frequency channel available, which does
not reflect most practical communication scenarios.

To solve this intractable problem within affordable time and
complexity, heuristic algorithms with performance guarantees
are preferred. Simulated annealing (SA) [12] is a metaheuristic
approach which seeks for the global optimum of a given
optimization problem. Compared to conventional iterative
methods, the advantages of SA include its easy implementation
and possibility of reaching the global optimal without being
trapped in a local optimum [13]. SA scheme can provide
satisfactory result with a relatively low number of iterations
[14], [15], which makes it suitable for hard optimization
problem.

Aiming at minimizing the maximum completion time of
serving uplink users in a single-cell NOMA-enabled network,
we formulate the scheduling problem as a combinatorial opti-
mization problem with a discrete strategy set. The correlation
between user clustering (or, equivalently, user grouping) and
frequency channel allocation is taken by a serial collaborative
optimization. In the proposed scheme, the optimizations of



Fig. 1. User grouping in an uplink NOMA-based system,
where the base station is located at the middle point.

user clustering and channel assignment scheduling are carried
out in a separate manner, which significantly decreases the
computational complexity. Both steps are optimized by SA
but with independent parameter conditions. Numerical results
show that our proposed scheme reduces more than 30% of the
maximum completion time against heuristic OMA on average
in the considered simulation settings.

The rest of the paper is organized as follows. In Section II,
we describe the system model and problem formulation. In
Section III, we present the proposed solution and optimization
algorithm. In Section IV, we show the simulation result and
comparison. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the uplink of a single-cell NOMA network, where
K users request to transmit data packets of varying lengths
to the base station (BS), as shown in Fig. 1. The frequency
resource is equally divided into F frequency channels, where
each channel has a bandwidth of W Hz. The BS is equipped
with a single antenna and all the K users are single-antenna
devices. Each user has a maximum available transmission
power of Pmax. Also, each user k transmits a single data packet
of Lk bits in length with power pk.

The wireless links experience independent and identically
distributed block Rayleigh fading and additive white Gaussian
noise (AWGN), where the power spectral density of the
AWGN is denoted as N0. We consider power-domain NOMA,
where SIC at the receiver is used to decode signals from users
that are sent in the same time-frequency block. To minimize
the complexity of SIC, we assume that each frequency channel
can be simultaneously occupied by at most two users. Hence,
at most K/2 NOMA clusters can be formed, where each
NOMA cluster contains two users that concurrently transmit to
the serving BS via the same frequency channel. Without loss
of generality, K is assumed an even number, for otherwise we
can add one dummy user with 0 bit to transmit.

The channel gain between user k and the BS via channel
f ∈ F is denoted by hf

k , where F is the set of frequency
channels and the size of F , i.e., |F|, is equal to F . Specifically,
hf
k ≜ gfk/

√
dαk , where gfk ∼ CN(0, 1) is the Rayleigh fading

coefficient, dk is the distance between user k and the BS, and

α is the path loss exponent. For simplicity, we assume that for
any specific user k, the channel coefficient remains the same
regardless of the frequency channel selected [10], i.e.1,

|h1
k|2 = |h2

k|2 = · · · = |hF
k |2 = |hk|2. (1)

Users are sorted and indexed in ascending order according to
the channel conditions, i.e.,

|h1|2 ≤ |h2|2 ≤ · · · ≤ |hK |2. (2)

It is assumed that that perfect channel state information (CSI)
is available at BS and the channel coefficients are quasi-static.

When two users i and j transmit in NOMA mode, we
form a NOMA cluster (i, j) and perform scheduling based
on this NOMA cluster. The BS receives a linear superposition
of signals from these two users, i.e.,

yf = hi
√
pixi + hj

√
pjxj + w, (3)

where yf is the received signal on the f -th frequency channel,
xk is the normalized unit-power signal transmitted by user k
such that E[x2

k] = 1, and w denotes the noise received per
channel with power N0W . Suppose that user i is the strong
user with a higher SNR, i.e., pi|hi|2 > pj |hj |2. According to
the principle of SIC, the strong user i is decoded first, treating
user j’s signal as interference. After the strong user’s signal
is correctly decoded, the BS can regenerate the strong user’s
signal and remove that from the received composite signal.
Then, the BS can decode the weak user’s signal without co-
channel interference from the other user. For the first decoded
user (i.e., strong user i), the achievable data rate is given by

RSIC,j
i = W log2

(
1 +

pi|hi|2

pj |hj |2 +N0W

)
= W log2

(
1 +

piγi
pjγj + 1

)
, (4)

where γi ≜ |hi|2/(N0W ). Next, the second decoded user
(weak user j) can enjoy the interference-free transmission so
the achievable rate of user j equals to ROMA

j , i.e.,

ROMA
j = W log2

(
1 + pj |hj |2

N0W

)
= W log2(1 + pjγj). (5)

With the above, the required transmission time of user j on
any frequency channel f in OMA is given by

τj =
Lj

ROMA
j

. (6)

Two users within a NOMA cluster start transmitting at the
same time. As illustrated in Fig. 2, the time required to finish
the transmission of the two-user NOMA cluster (i, j) depends
on which user finishes sending its packet first, i.e.,

ui,j =

τj , if Li

RSIC,j
i

< τj (case 1),

τj +
Li−RSIC,j

i τj
ROMA

i
, otherwise (case 2).

(7)

Note that in the above case 1, the required transmission time
of the NOMA cluster is the same as that of the weak user j,

1Fixing the NOMA user clustering, the remaining scheduling problem is
still NP-hard even with the assumption in (1); see Section II-B.



Fig. 2. Illustration of the processing time of two users in a
NOMA cluster.

since user j may have a long packet to send and/or the OMA
data rate of user j is low. In case 2, the transmission rate
of the strong user i has the opportunity to be from RSIC,j

i to
ROMA

i when the weak user j finishes transmission. While some
signaling may be needed to realize such a data-rate increase,
here we use the model in case 2 of (7) to study the potential
gain using NOMA in ideal situations, ignoring any potential
overhead that may be necessary in practice.

It is evident from (4) and (5) that within a NOMA cluster
(i, j), by letting the strong user i transmit at a power level
pi = Pmax, the processing time of user i (τi in OMA or,
when using NOMA, Li

RSIC,j
i

in case 1 or ui,j in case 2) will be
minimized. While pj affects the processing time of users i and
j and would be subject to optimization, the value of pj and the
user clustering decision are intertwined. Specifically, the user
clustering decision needs to take the users’ power and channel
gain profiles into account, such that finding a suitable weak
user to form a cluster with a strong user is similar to adjusting
the transmission power of the weak user in an existing NOMA
cluster. Thus, we let pk = Pmax,∀k, in the rest of the paper.

In the following, we introduce the two essential elements
of the makespan-minimization problem with NOMA.

A. Cluster Establishment

Denote l ∈ L as a particular clustering scheme that groups
the K users into θ(l) clusters, where L is the set of all feasible
clustering methods and each cluster may contain either one or
two users, i.e., K/2 ≤ θ(l) ≤ K. For any pair of users i and
j, one observes that

τi + τj ≥ ui,j , (8)

where the proof of (8) is detailed in Appendix A. Equation
(8) suggests that if users i and j are transmitting on the
same frequency channel, then using NOMA to serve the two
users will never prolong the completion time on that channel
as compared to OMA. While it is possible to reduce the
maximum completion time of the network if ui,j takes the
form of case 2 and users i and j are scheduled on different
channels2, allowing a cluster to have a single user enlarges
|L| and may increase the complexity of solving the NOMA
scheduling problem. Encouraged by the benefit of NOMA as
shown in (8), we assume that when using NOMA, each cluster
contains two users and K/2 clusters are formed.

Given a user grouping scheme, the processing time of every
cluster can be determined by (7). We can index the clusters

2This can happen if ui,j > τi, ui,j > τj , and when scheduling users i
and j using OMA, both user i and user j can finish earlier than the case
when scheduling the NOMA cluster (i, j).

by m ∈ {1, 2, · · · , K/2} and sort them according to the
descending order of the time required to finish the transmission
for each cluster, denoted by um, such that

u1 ≥ u2 ≥ · · · ≥ uK/2. (9)

B. Spectrum and Time Resource Allocation

After the user clustering is determined, the remaining
scheduling problem belongs to the class of parallel machine
scheduling that is NP-hard [16], where each NOMA cluster
requires a single transmission on one of the F identical but
independent frequency channels.

Denote s ∈ S as a particular scheduling scheme that
allocates the two-user clusters to the F frequency channels,
where S is the set of all feasible scheduling schemes. A
scheduling scheme s can be represented by a size-K2 tuple
whose elements indicate the destination channel for each
cluster. Specifically, the m-th cluster is labeled to transmit
using the s(m)-th channel, i.e.,

1 ≤ s(m) ≤ F, m ∈ {1, 2, · · · , K/2}. (10)

We impose the following constraints when performing the
scheduling:

1) A channel, when scheduled to carry uplink data signals
from users, will keep busy until all scheduled trans-
missions are completed. In other words, we ignore the
impact of any packet header or signaling that may exist
in a particular communication protocol.

2) No cluster is allowed to occupy more than one frequency
channel at the same time.

3) Once the transmission for a user starts in a particular fre-
quency channel, the scheduler is not allowed to interrupt
it until its completion.

While removing the second and the third constraints may
provide further space for minimizing the maximum comple-
tion time, a more complicated communication protocol and
scheduling algorithm would be needed if those constraints are
not imposed. We leave the study of uplink NOMA scheduling
without the above constraints to a future work.

Given the above settings, the time needed to complete
the transmission at channel f is given by the sum of the
completion times of the clusters that are allocated to the same
channel, i.e.,

Cf =
∑

m∈Mf

um, (11)

where Mf ≜ {m | s(m) = f} is the set of clusters that are
allocated to channel f .

Assume that the transmissions at all the channels start at
time zero. The maximum completion time of the NOMA
system is defined as the time required to finish transmission
in all the channels, as depicted by Fig. 3, i.e.,

Cmax = max
f∈F
{Cf}. (12)

Our goal is to find the optimal user clustering and channel
schedules that minimize the maximum completion time of the



Fig. 3. Multi-channel scheduling for NOMA clusters.

NOMA system, i.e.,

(l∗, s∗) = argmin
l∈L,s∈S

{Cmax(l, s)}. (13)

III. OPTIMIZATION AND SOLUTION

A. Complexity Analysis

The problem in (13) is of combinatorial nature with a
finite discrete strategy set. The total number of user clustering
schemes is given by

|L| = K!

2K/2(K/2)!
=

Π
K/2
i=1 (K/2 + i)

2K/2
> (K/4)K/2, (14)

where the inequality is true because in Π
K/2
i=1 (K/2+i)

2K/2 , there are
K/2 terms in the numerator that are no smaller than K/2. As
for the total number of channel scheduling schemes |S|, note
that the transmission order of the clusters in a channel does not
affect the completion time. Therefore, |S| can be calculated
by the Stirling number of the second kind, i.e., S(K/2, F )
[17]. A lower bound on S(K/2, F ) can be obtained as

S(K/2, F ) > FK/2−F , (15)

where Appendix B details the proof. As a result, the size of
the strategy set of our problem is lower bounded as

|L × S| > (K/4)K/2FK/2−F . (16)

Equation (16) suggests that the size of the strategy set for
NOMA optimization scales up exponentially as the number of
channels and serving users in the system increase. Therefore,
exhaustive search for optimal solution is computationally
expensive even for moderate K and F .

One class of approximation algorithms is stochastic search
with iterative improvement [18]. This local search method
works by continuously exploring the neighborhood of a so-
lution in order to find a better solution. When there is a gain,
the current solution is replaced by the new one. However, the
NP-hardness nature of a problem can limit the performance
of conventional stochastic search because such algorithms can
be trapped by local minima. Besides, purely random search is
known to be slow for convergence and may not be practical
for the application in our context.

B. Simulated Annealing

1) Preliminary: The core mechanism of simulated anneal-
ing (SA) is based on the analogy of ideal crystal formation in
thermodynamics. In the controlled annealing process, the dis-
ordered configuration of particles in high energy system grad-
ually rearranges into regular crystalline solid state with low
energy [6]. SA algorithm mimics this metallurgical method
to minimize the objective function by a series of guided
probabilistic random search in the strategy set.

In general, a SA follows the procedures below:
1) Select a starting point x0 and initialize from a high

temperature setting.
2) Perturb the current placement to a new state. If the

change is accepted, the current state is updated to the
new one. This process is repeated in an iterative manner,
until thermodynamic equilibrium is reached with current
temperature.

3) The temperature is then lowered, before carrying out a
new series of transformation (state transitions).

4) The above loop continues until a freezing point or preset
termination condition is reached.

Note that in an iteration, SA may not always select the
next state that corresponds to a better solution as compared
to the current state. In particular, the next state that exhibits
as a worse solution than the current state can be chosen
probabilistically [12]. In the minimization problem, a next
state that decreases the objective function will be accepted;
on the other hand, a next state that increases the objective
function also has a chance of being accepted with a probability
determined by a given acceptance function.

Note that the variability of the candidate solution and
randomness of new state acceptance decrease as the parameter
called the temperature T drops (cooling). Specifically,

1) When T → ∞ (high-energy system), it behaves like a
purely random walk that is always moving to a successor
chosen uniformly at random from the entire strategy set.

2) When T → 0 (low-energy system), it degenerates into a
deterministic iterative improvement scheme that refuses
any moves towards worse objective values. Note that it
can get stuck on a local minimum.

3) At an intermediate temperature, the SA algorithm inter-
mittently accepts the transformations that increase the
objective function. This provides for the system to be
pulled out from a local minimum.

2) Sampling Method: Sampling method is the core of SA
algorithm, which governs the behavior of iteratively updating
the current state depending on the evaluation of candidate
states. There are two mainstream sampling methods for the
trial point selection and acceptance test [19].

1) Gibbs Sampler Algorithm (GS): Denote N as the state
set. At a temperature T , the sampler will evaluate all the
possible candidate state x ∈ N and then selects a new
state according to the following probability distribution:

p(x) =
e−U(x)/T∑

x′∈N e−U(x′)/T
(17)

where U(·) is the evaluation or cost function.



2) Metropolis-Hasting Algorithm (MH): This sampling al-
gorithm randomly selects a candidate state x′ from N
and evaluates the change to the cost function:

∆U = U(x′)− U(x). (18)

If the state transition leads to a decrease in the cost, it is
unconditionally accepted. If the transition would cause
an increase to the cost function, the new state will be
accepted with the following probability, i.e.,

paccept(x
′) = e−∆U/T . (19)

When |N | is large, the computational complexity of GS
for each state update is far above the MH algorithm.
Therefore, we use MH for our problem. We conduct
multiple iterations at each temperature stage in MH in
order to compensate its possible deficiency due to the
locally incomplete sampling performed per iteration.

3) Cooling Schedule: Cooling scheme would affect the
convergence speed and the quality of the SA optimization. Em-
pirically, the temperature should decrease gradually by stages
to enforce regularities of the system. It can be proven that SA
converges asymptotically to the optimal solution. However,
such convergence requires exponential time [13]. Hence, in
practice, faster cooling schedules are used, with which SA
does not guarantee to converge exactly to the global optimum
and thus provides an approximate solution. According to
the SA sampling mechanism, randomness of state selection
and the tolerance for bad move would be decreased with
temperature drop. Therefore, an appropriate cooling scheme
should be able to initially search the space for global minima
and later, as the system cools down, converge on a solution
with proper accuracy [20]. Annealing too fast is likely to result
in defects. On the other hand, annealing too slow will lead to
a large number of iterations taken for convergence. Hence, to
strike a balance between the convergence speed and optimality,
we adopt the following geometric cooling scheme in our work:

Tn+1 = βTn, Tn = T0β
n, 0 < β < 1, (20)

where T0 is the initial temperature, β is a tunable parameter
which controls the temperature drop rate, and n is the index
for the temperature cooling schedule.

The SA algorithm for our problem is shown in Algorithm 1.
Specifically, with a fixed temperature value, a number of I
iterations are conducted. The number of new state acceptance
within each I iterations is recorded by η, and the frequency
of new state acceptance, calculated as η · I−1, is compared
against a threshold value “minMove”. If η · I−1 < minMove,
it is considered that the steady state is reached (also known as
the thermodynamic balance), and the SA algorithm terminates
with the output x∗. Otherwise, the temperature is reduced
according to (20), and another I iterations will be performed
using the new temperature. The SA algorithm will also termi-
nate if a preset maximum number of iterations is reached.

C. Serial Collaborative Optimization

In our problem, every feasible solution consists of a user
grouping scheme combined with a channel scheduling scheme,

Algorithm 1 SA Optimization Algorithm (MH)
1: Initialization:
2: x← x0 starting state
3: T ← T0 initial temperature
4: x∗ ← x the best solution found so far
5: repeat
6: for i = 1 to I do
7: η ← 0 reset counter for new state acceptance
8: Randomly generate x′ in the neighborhood of x
9: if U(x′) < U(x) then accept it

10: else
11: accept it with probability exp

(
−U(x′)−U(x)

T

)
12: end if
13: if x′ is accepted then
14: state transition x← x′

15: increase the counter η ← η + 1
16: if U(x) < U(x∗) then
17: update the best solution ever found x∗ ← x
18: end if
19: end if
20: end for
21: until η · I−1 < minMove
22: Output: x∗

which are correlated with each other, i.e.,

x = (l, s). (21)

Instead of treating user clustering and resource allocation as
a joint union [21], our proposed serial collaborative method
decomposes the problem into two separate parts; see Fig. 4.
Such a decomposition can significantly reduce the search space
in each SA loop and, therefore, reduce the overall computa-
tional complexity. Note that both SA loops are implemented
according to Algorithm 1 with different parameters.

Fig. 4. Structure of SA-based serial collaborative optimization.

1) SA Loop 1 for Cluster Establishment: In this step, we
perform SA optimization for user grouping scheme to mini-
mize the sum of the processing time of all clusters. A candidate
solution can be generated by the following procedure:

1) Randomly select two clusters and split them to four
users.

2) Reassemble them into two different clusters. Define Nl

as the neighborhood set of any clustering scheme l. The
size of Nl can be found as

|Nl| = 2×
(
K/2
2

)
=

K(K − 2)

4
, (22)

where
(
K/2
2

)
= (K/2)(K/2−1)

2 .



The utility function is selected as the sum of the processing
time of all clusters, i.e.,

∑0.5K
m=1 um. While such a utility

function is not equal to the objective function in (13), the
utility function minimizes a measure of the processing time
of all the clusters which will then impact the maximum
completion time for any given schedule.

2) SA Loop 2 for Channel Allocation: With the user clus-
tering obtained in SA loop 1, the processing time of every
cluster is fixed. The remaining problem is how the tasks are
distributed over the available frequency channels. In this step,
we perform SA optimization for channel scheduling scheme
to minimize the makespan (i.e., maximum completion time).

A candidate solution can be generated by randomly select-
ing two clusters in different frequency channels and swapping
their position. The number of candidate solutions is maximal
when clusters are equally distributed among the available
frequency channels. Define Ns as the set of neighborhood
of a scheduling scheme s. Therefore, the size of Ns has the
following upper bound, i.e.,

|Ns| ≤
(
F
2

)
×
⌈
K

2F

⌉2

≤
(
F
2

)(
K

2F
+ 1

)2

=
1

8
(K + 2F )

2
(1− 1

F
).(23)

The utility function for SA loop 2 is selected as the maximum
completion time, i.e., maxf∈F Cf .

3) Initialization: In both SA loops, the state generation
schemes allow that every single state can be reached from
any other state in a number of moves. Therefore, the initial
solution can be selected randomly to start the iterative search.

IV. SIMULATION AND NUMERICAL RESULTS

A. Simulation Experiment Design

To test performance, we produce the simulation results
by randomly generating 1000 network topologies and then
averaging the makespan from all the topologies. Specifically,
in each topology, each user is randomly scattered within a
bounded annular region centered at the BS, where the user-
BS distance dk is between 100 meters and 1000 meters.
The maximum allowed user transmission power is set to be
Pmax = 23 dBm. The path loss exponent is set to α = 3. The
packet size of each user is randomly chosen in ranges that are
specified in Table I. Parameters related to the SA algorithm
can be found in Table II.

In order to provide some benchmark results in comparison
with the serial collaborative algorithm, the maximum comple-
tion time is also evaluated for random NOMA clustering (i.e.,
randomly select two users for each cluster) as well as con-
ventional OMA scheme scheduled by the longest-processing-
time-first (LPT) rule. The LPT rule is a heuristic method for
the NP-hard identical machine scheduling problem [16]. The
LPT rule works as follows:

1) Order the jobs (i.e., the users in this paper’s context) by
descending order of their processing time.

2) Schedule each job in this sequence into a machine (i.e.,
a frequency channel) in which the current flowtime (total
processing time of the scheduled jobs) is the shortest.

Table I: Parameter settings for network topology generation

User-to-BS distance 100m ≤ dk ≤ 1000m
Max device transmit power Pmax = 23 dBm (0.2W )

Noise spectral density N0 = −174 dB/Hz
Path loss exponent α = 3

Bandwidth per channel W = 180 kHz

Data packet size (in bits)
[104, 108], [104, 105],

or [104, 4× 104]

Table II: Parameter settings for SA

SA Parameters SA Loop 1 SA Loop 2
T0 150 100
I 200 200

minMove 5% 5%
β 0.95 0.95

Fig. 5. Makespan versus K/F ratio (F = 2).

The LPT heuristic tries to place the shorter jobs towards the
end of a schedule, where they can be used for balancing the
loads. In the worst case, the makespan of LPT schedule is no
longer than 4/3 times that of the optimal schedule [16], i.e.,

Cmax(LPT)
C∗

max

≤ 4

3
− 1

3F
, (24)

where Cmax(LPT) is the makespan obtained by LPT.

B. Numerical Results

We firstly compare the results of the proposed algorithm
against brute-force search in small networks, where F = 2
and K ∈ {4F, 5F, 6F, 7F}. In these scenarios, the NOMA-
SA algorithm always finds the optimal clustering scheme that
minimizes the sum of processing time that is evaluated in
SA loop 1. When comparing the makespan, Fig. 5 indicates
that the NOMA-SA algorithm succeeds in finding solutions
that perform very closely to global optima, and OMA-SA can
increase the makespan by 22% as compared to NOMA-SA.

The makespan versus K for F = 4, 8, and 12 are depicted
in Fig. 6, Fig. 7, and Fig. 8, respectively, where the packet size
of each user varies randomly from 104 bits to 108 bits. Note
that “RAND” in the figures refers to random user clustering,
such that the SA loop 1 optimization is not performed but



Fig. 6. Makespan versus the number of users (F = 4).

Fig. 7. Makespan versus the number of users (F = 8).

Fig. 8. Makespan versus the number of users (F = 12).

the SA loop 2 for scheduling optimization is performed. As
shown by the figures, the NOMA scheme optimized by our
SA-based serial collaborative method outperforms the conven-
tional OMA scheme in terms of the makespan. Specifically, in
Fig. 8, the proposed NOMA approach reduces the makespan
by about 10% as compared to OMA-SA when K = 36.
Moreover, given a fixed amount of frequency channels, the
system performance gain of NOMA over OMA in terms of
the maximum completion time increases significantly with the
growing number of users. This can be demonstrated again
by Fig. 8, where the benefit of NOMA against OMA-SA
increases significantly from 10% to about 32% when K = 90.
A possible reason is that with the increase of concurrent users,

Fig. 9. Reduction on Cmax achieved by NOMA using SA
as compared to OMA-SA versus K/F ratio under different
allowable package length variations, where F = 4.

the channel profiles are more diverse, which allows more
user grouping choices in NOMA that result in more efficient
utilization of the limited spectral resources. The performance
of NOMA with random user pairing is even worse than
conventional OMA scheme. This result reveals the importance
of proper user grouping on the system performance of NOMA-
enabled network. In addition, the performance gap between
SA algorithm and LPT rule for OMA scheduling is about 2%,
showing that the main performance gain of NOMA against
OMA comes from the user clustering.

Fig. 9 shows the reduction in makespan by applying the
proposed NOMA SA approach as compared to OMA-SA,
where F = 4 and the packet size of each user varies within
different ranges. We see that the benefit of NOMA against
OMA increases as the number of users in the system increases.
Moreover, the benefit of NOMA is more significant when the
packet size variation is larger. Specifically, the reduction in
makespan due to NOMA is about 16% when K/F = 16 and
the packet size varies from 104 bits to 4× 104 bits, but about
24% reduction in makespan is achieved when the packet size
varies from 104 bits to 108 bits for the same K/F .

The number of iterations before the termination of Algo-
rithm 1 for both SA loop 1 and SA loop 2 in Fig. 9 are recorded
as follows. Specifically, when the packet size varies from 104

bits to 108 bits, SA loop 1 converges in a maximum of 15200
iterations, and SA loop 2 converges in a maximum of 17400
iterations. These two maximum iteration numbers increase to
26400 and 33200, respectively, when the packet size variation
range is changed to [104, 4×104]. Fig. 10 and Fig. 11 showcase
the sum of processing time as evaluated in SA loop 1 and the
maximum completion time as evaluated in SA loop 2 for a
random network topology, respectively, where K = 100 and
F = 10. We can see that the utility functions fluctuate but
then converges as the number of iterations increases.

V. CONCLUSION

In this paper, we have proposed a SA-based serial col-
laborative optimization algorithm to minimize the maximum
completion time of serving multiple uplink users that transmit
packets of different lengths in a multi-channel NOMA system.



Fig. 10. Convergence result in SA loop 1.

Fig. 11. Convergence result in SA loop 2.

We formulated the problem as a combinatorial optimization
problem, analyzed its complexity and decomposed it into two
separate parts. Simulation results have shown the convergence
of the proposed algorithm. Moreover, the proposed algorithm
is able to find clustering and scheduling solutions for NOMA
that, on average, reduce the maximum completion time for
more than 30% as compared to the OMA counterpart.

APPENDIX A
PROOF OF (8)

As shown in (7), the expression of ui,j has two forms. When
ui,j takes the form of case 1,

τi + τj − ui,j = τi =
Li

ROMA
i

≥ 0. (25)

When ui,j takes the form of case 2,

τi + τj − ui,j = τi −
Li

ROMA
i

+
RSIC,j

i τj
ROMA

i

=
RSIC,j

i τj
ROMA

i

≥ 0

(26)

because RSIC,j
i , τj , and ROMA

i are all non-negative. The proof
completes since (25) and (26) prove (8).

APPENDIX B
A LOWER BOUND ON THE STIRLING NUMBER OF THE

SECOND KIND

The number of ways of partitioning a set of n elements into
k non-empty sets. Denoted by S(n, k), Stirling numbers of the
second kind obey the following recurrence relation:

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). (27)

We can obtain a lower bound for S(n, k) as follows:

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

> kS(n− 1, k)

= k(S(n− 2, k − 1) + kS(n− 2, k))

> k2S(n− 2, k) (28)
> kn−kS(k, k) (29)
= kn−k, (30)

where (28) follows because S(n− 2, k − 1) ≥ 0, and (29) is
obtained by repeating the argument that leads to (28).
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