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A consensus protocol for functional 
connectivity analysis in the rat brain

Task-free functional connectivity in animal models provides an 
experimental framework to examine connectivity phenomena under 
controlled conditions and allows for comparisons with data modalities 
collected under invasive or terminal procedures. Currently, animal 
acquisitions are performed with varying protocols and analyses that 
hamper result comparison and integration. Here we introduce StandardRat, 
a consensus rat functional magnetic resonance imaging acquisition 
protocol tested across 20 centers. To develop this protocol with optimized 
acquisition and processing parameters, we initially aggregated 65 functional 
imaging datasets acquired from rats across 46 centers. We developed a 
reproducible pipeline for analyzing rat data acquired with diverse protocols 
and determined experimental and processing parameters associated with 
the robust detection of functional connectivity across centers. We show 
that the standardized protocol enhances biologically plausible functional 
connectivity patterns relative to previous acquisitions. The protocol and 
processing pipeline described here is openly shared with the neuroimaging 
community to promote interoperability and cooperation toward tackling 
the most important challenges in neuroscience.

Understanding the brain requires a multi-level approach across spatial 
and temporal scales. Distinct brain network features, as revealed by 
task-free functional magnetic resonance imaging (fMRI), play a cen-
tral role in the comprehension of healthy brain function and disorder 
mechanisms. This hemodynamic readout method relies on spontane-
ous fluctuations in the blood oxygenation level-dependent contrast 
signal to infer functional connectivity (FC) across the brain. Human 
neuroimaging has made great strides in understanding of the brain 
through open data-sharing initiatives focused on task-free fMRI data1–5. 
Nonetheless, animal models, particularly small rodents, continue to 
play an important role in neuroscience discovery, partly owing to 
the feasibility of performing invasive and terminal manipulations on 
genetically controlled animals6. For example, rats are commonly used 
in pharmacological studies, owing to similarities in drug metabolism, 
as well as in behavioral neuroscience, owing to their high proficiency in 
learning complex tasks. By leveraging the same neuroimaging methods 
and metrics obtained in humans, task-free neuroimaging in rodents 
may provide a translational bridge from the invasive methods possible 
only in animal models.

Human neuroimaging sharing initiatives have led to a standardi-
zation of fMRI acquisition protocols that aid in the dissemination, 
aggregation and reuse of data4,7,8. In contrast, preclinical neuroim-
aging essentially remains without harmonizing guidelines9. Animal 
data acquisitions are performed under diverse protocols that span 
different strains, restraint and anesthesia conditions, radiofrequency 
coil designs and magnetic field strengths. These impact the generali-
zation of the results and conclusions. Efforts to propose acquisition 
and/or pre-processing protocols rarely extend beyond the confines 
of single laboratories, thus limiting interoperability and widespread 
adoption9,10. Because of the potential of fMRI in rodents to study the 
biological basis for connectivity phenomena across the whole brain 
longitudinally11, an optimized consensus protocol could potentiate 
future scientific discoveries.

In this pre-registered study, we set out to aggregate and make 
publicly available representative datasets with various fMRI acquisition 
protocols in the rat and identify experimental parameters associated 
with robust and reliable FC detection. We curated the MultiRat_rest 
collection (646 rats from 65 datasets) representing protocols used  
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studies from other species12,13, we have freely released all data and the  
generated code.

Results
We aggregated the MultiRat_rest collection of unstandardized fMRI 
datasets representative of local site acquisition procedures (n = 65 
datasets and n = 646 rats). As expected, we found high heterogene-
ity in all experimental factors recorded, including rat characteristics 
(sex and strain, Fig. 1a,b, and age and weight, Extended Data Fig. 1), 
in-scan physiology (anesthesia/awake and breathing rates; Fig. 1c,e) and 

at 46 institutions. Based on the analysis of the MultiRat_rest  
collection, we devised a new consensus protocol and used it to aggregate 
the StandardRat collection (209 rats from 21 datasets). Pre-processing 
and confound correction were tailored to rodent data of different  
characteristics using a rodent-adapted fMRI pre-processing and analysis 
tool. Our primary outcome was the detection of plausible FC patterns 
corresponding to the biologically expected models. Collating data  
from 50 centers and 855 rats, we show that standardized acquisition 
and the associated pre-processing pipeline optimize the detection  
of distributed fMRI networks in rats. In line with large-scale 
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Fig. 1 | MultiRat_rest dataset description. a, Sex. b, Strain. c, Anesthesia.  
d, Magnetic field strength. e, Breathing rate as a function of anesthesia.  
f, Repetition time. g, Echo time as a function of magnetic field strength. h, Slice 
position for the examples. i, Example of representative raw functional images. 
Arrows indicate different susceptibility artifact-related geometric distortions 

in the amygdala. j, Successful anatomical (top) to standard (bottom) space 
registration. Red lines indicate the outlines of the standard image (top) and the 
anatomical (bottom). k, Successful functional (top) to anatomical (bottom) 
registration. Red lines indicate the outlines of the anatomical image (top) and the 
functional (bottom).
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Fig. 2 | FC specificity. a, Diagram illustrating the logic behind FC specificity. 
The sensory (barrel field, S1bf) area (blue) chiefly projects to the contralateral 
homotopic area (light blue) but not to the ACA area (purple). b, Example of 
temporal dynamics in the resting-state signal. Correlated signal between the 
ipsilateral and contralateral S1bf and anti-correlated signal from the ACA.  
c, Distribution of FC categories as a function of confound correction models. 
d, FC in left S1bf relative to specific (right S1bf) and non-specific (ACA) regions 
of interest using the global regression correction model. Dots represent 

scans (n = 638 rats); dotted lines indicate the thresholds used to delineate the 
categories. e, Distribution of connectivity categories as a function of anesthesia. 
Example of individual seed-based analysis maps for each connectivity category. 
f, Distribution of connectivity categories as a function of imaging sequence (EPI, 
echo-planar imaging; GE, gradient echo; SE, spin echo). Group-level FC incidence 
map (n = 65 datasets). g, Example of individual seed-based analysis maps for each 
connectivity category. a.u., arbitrary units; ROI, region of interest, WMCSFs, 
white-matter + cerebrospinal fluid.
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image acquisitions (magnetic field strength, sequence and sequence 
parameters; Fig. 1d,f,g). Notably, there was a large sex bias in favor 
of males (Fig. 1a). Similarly, the distribution of anesthesia protocols 
was also in line with current trends in the field (Fig. 1c)9. Despite the 
heterogeneous distribution of the acquisition parameters and ensuing 
image quality (Fig. 1g,h,i), 638 of 646 of the scans passed pre-processing 
quality control (one scan with excessive motion, one empty scan and 
six scans with failed image registrations; Fig. 1j,k and Extended Data  
Fig. 2). As further quality controls, we described temporal signal-to-noise 
(Extended Data Fig. 3) and motion parameters (Extended Data  
Fig. 4). Overall, we found that the aggregated datasets represent current 
rodent fMRI acquisition trends9. Moreover, given the low exclusion rate 
due to mis-registration, we concluded that the RABIES toolbox can be 
effectively employed to pre-process rat datasets despite widely vary-
ing acquisition parameters14. This paves the way for reproducible and 
interoperable data processing across sites.

We focused on examining FC in the sensory cortex, as sensory 
networks are robust to assess anesthesia effects in the anesthesia 
depth range typically used in fMRI15. More specifically, we evaluated 

the specificity of the connectivity of the S1 barrel field area (S1bf) 
using two complementary criteria as indexes of accurate FC identi-
fication (Fig. 2a,b)12. The first criterion was the strong connectivity 
between inter-hemispheric sensory cortices (barrel field, S1bf). Indeed, 
in both humans and animals, dating back to the original description 
of FC16, most networks, including sensory–motor networks, have a 
bilateral homotopic organization. The second criterion was a weak 
or anti-correlation between S1bf and the anterior cingulate area 
(ACA). The ACA is a major node in the task-negative rodent default 
mode network. Task-positive (as the S1bf-associated sensory net-
work17,18) and task-negative networks are generally non-correlated or 
anti-correlated19.

FC was evaluated for each animal and divided into four categories 
based on these two criteria referred above: specific, non-specific, 
spurious and no connectivity. Five confound correction models were 
tested (Supplementary Table 2 and Fig. 2c). The global signal regres-
sion (GSR) nuisance model was the one that performed the best for 
specific connectivity detection (40.8% of the animals with specific 
connectivity, 11.8% as non-specific, 13.6% as spurious and 33.9% as 
containing no detectable FC; Fig. 2c,d,g). To test the generalizabil-
ity of the specificity metric to other networks, we implemented the 
same quality control metric to the cingulate cortex, a node of the 
rodent default mode network, which uncovered lower connectivity 
specificity (22.1%; Extended Data Fig. 5). Because network inference 
is often assessed at the group level rather than at the individual level, 
we performed a one-sample t-test per dataset to estimate the inci-
dence of contralateral connectivity detected within groups, relative 
to the S1bf seed as well as three other seeds (Fig. 3). Up to 70% of the 
65 datasets presented limited evidence of contralateral connectivity 
relative to the seeds, and 50% of the datasets captured the features 
of a larger sensory network at the group level. We conclude that rat 
datasets do not capture FC equally, similar to what we reported in the 
mouse12. We also found that GSR enhances the incidence of specific 
connectivity of S1bf seeds, so we decided to use this confound model 
for the remainder of our analysis.

Our observations underline the need for an improved acquisi-
tion protocol to maximize individual-level inferences to potentiate 
discovery in experimental network neuroscience. To address this, 
we evaluated parameters associated with increased specificity inci-
dence in the MultiRat_rest collection. Because our analysis relied on 
categorical data, we tested for differences against the expected fre-
quency distribution of the four connectivity categories as a function of 
anesthesia and sequence categories using the χ2 test. Medetomidine/
isoflurane anesthesia combination condition was enriched in scans cat-
egorized as specific (Fig. 2e; 92/187 scans, χ2 test connectivity category ~  
anesthesia: φ = 0.27, degrees of freedom (dof ) = 15, g = 92.38, 
P = 3.5 × 10−13). The use of gradient echo imaging sequence was also 
associated with higher specificity incidence (Fig. 2f; 241/568 scans, 
χ2 test connectivity category ~ sequence: φ = 0.11, dof = 3, g = 16.00, 
P = 0.001). Based on these observations, we devised an anesthesia pro-
tocol derived from dataset ds01031 (9/10 specific scans) and an imaging 
sequence based on ds01028 (8/10 specific scans), acquired on a 4.7T 
mid-field system. The sequence selection is justified as it allows for the 
detection of specific connectivity on one of the lower-field systems 
used in this collection and should also perform well for higher-field 
systems. We optimized relevant sequence parameters (echo time, flip 
angle and bandwidth) as a function of field strength (Supplementary 
Table 1). We hypothesized that this protocol would enhance functional 
specificity while being compatible with lower-field systems that con-
tinue to represent a relevant share of the systems used (Fig. 1d)9.

Using this consensus protocol, we curated the StandardRat 
collection of 21 datasets obtained across 20 centers. This consisted 
of n = 209 rats (93/116 female/male), mainly Wistar (189/209), aged 
~2 months (Extended Data Fig. 6). Dataset acquisitions were performed 
at magnetic field strengths ranging from 4.7T to 17.2T. Pre-processing 
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was performed similarly to the unstandardized dataset. In total, 207 
of 209 scans passed quality assurance (two discards due to image 
mis-registration). Interestingly, despite the same anesthesia protocol 
being used, the respiratory rates reported at the start of fMRI acquisi-
tion differed as a function of rat strain (Fig. 4a,b; analysis of variance 
breathing rate ~ rat strain, η2 = 0.24, F195,2 = 31.17, P = 1.8 × 10−12). Finally, 
there was only a negligible effect on the temporal signal-to-noise ratio 
as a function of magnetic field strength (Fig. 4c; linear regression 
temporal signal-to-noise ratio ~ field strength, coefficient = 0.53 [−0.23, 
1.30], r2 = 0.01, dof = 201, T = 1.37, P = 0.17).

The objective of the StandardRat study was to improve the detec-
tion of specific connectivity in the individual datasets. We found that 
61.8% of the scans were categorized as exhibiting specific connectiv-
ity (Fig. 4d) against 40.8% in the MultiRat_rest dataset with unstand-
ardized acquisitions (Extended Data Fig. 8a) when using GSR (χ2 test 
connectivity category ~ dataset collection: φ = 0.13, dof = 3, g = 33.01, 
P = 3.2 × 10−7). The difference remained when we compared datasets 
from centers that contributed to both collections exclusively (χ2 test 
connectivity category ~ dataset collection: φ = 0.17, dof = 3, g = 28.37, 
P = 3.0 × 10−6). This is going against the notion that the StandardRat 
collection outperforms due to characteristics of the contributing 
laboratories (for example, magnet type or strength and greater expe-
rience in data collection). Intriguingly, we could not establish a field 
strength effect on connectivity specificity (χ2 test connectivity cat-
egory ~ field strength: φ = 0.19, dof = 12, g = 14.89, P = 0.25), suggesting 

that acquisition systems are not the limiting factor in this protocol. 
We conclude that the newly standardized protocol outperforms, on 
average, previously used protocols within the community for the 
detection of biologically plausible connectivity patterns. Finally, to 
explore whole-brain connectivity patterns, we examined connectivity 
incidence at the dataset level for four selected seeds (Extended Data  
Fig. 7) and group independent component analysis (Fig. 4e and 
Extended Data Fig. 10). We found improvement in distal connectivity 
detection at the dataset level compared to the MultiRat_rest dataset as 
well as evidence for previously described rodent networks spanning 
across the whole brain20.

Intriguingly, there remained differences in the connectivity pat-
terns between datasets from the StandardRat collection. Indeed, five 
of 21 datasets achieved 90% specificity or higher. This underlines the 
potential of our protocol but also the need to understand what fac-
tors hamper other datasets. We next sought to identify the variables 
associated with greater incidences of specific connectivity patterns. 
Notably, we could not establish strain, sex or magnetic field strength 
effects, suggesting that the protocol is applicable for a large range of 
conditions (Supplementary Table 3). Next, we examined breathing 
rate and temporal signal-to-noise ratio as indicators of acquisition 
variability (Extended Data Fig. 9). Overall, scans with breathing rates 
ranging from 84 to 114 breaths per minute (bpm) and cortical temporal 
signal-to-noise ratio >53 achieved higher incidences of connectivity 
specificity among the StandardRat collection. These provide the first 
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line of evidence to refine the StandardRat protocol by identifying 
practices that can further enhance connectivity outcomes. The impor-
tance of these observations will require confirmations in new datasets, 
preferably across multiple centers, before the StandardRat protocol 
can be updated with new guidelines.

Discussion
In summary, we curated two dataset collections (MultiRat_rest and 
StandardRat), analyzed them and made them an open-access resource. 
To our knowledge, these are the largest rodent fMRI datasets currently 
available. We developed and deployed a pre-processing and confound 
correction strategy generalizable to most scans and every dataset. 
Using information from the MultiRat_rest collection, we provide use-
ful population parameter estimates to enhance the comparison of rat 
fMRI datasets. We proposed and evaluated a new standardized protocol 
and found that this consensus acquisition and pre-processing pipeline 
outperformed the previous acquisitions for connectivity specificity. 
To allow replication and to inspire new analyses, we release all raw and 
processed data to the broader community.

On average, the standardized protocol yielded improvements 
over previous acquisitions gathered in the MultiRat_rest collection. 
However, individual-level inferences remain limited to 61.8% of the 
scans acquired. For comparison, we estimated 55% specificity in the 
7T Human Connectome Project dataset (based on 184 scans) using 
the same quality assurance metrics5. This underlines the importance 
of implementing sound quality assurance metrics based on assump-
tions of biologically plausible FC. Improving output quality, through 
understanding the factors leading to successful acquisitions, enhanced 
protocols, pre-processing or nuisance regression models, would lead to 
tangible outcomes capable of further potentiating future data acquisi-
tions and reducing animal use by reducing discards.

Notably, our new protocol relies on light sedation to restrain 
the animals. Although optimized for fMRI, this protocol may not 
generalize to other procedures, such as electrophysiology. We also 
found that existing awake restraining protocols, on average, lead to 
a lower incidence of specific connectivity patterns (Extended Data  
Fig. 8b). A previous report indicated similar values in a dataset in awake 
rats21, which we confirmed with pre-processing using the RABIES 
pipeline (Extended Data Fig. 8b). Due to the impact of anesthesia on 
networks9,10, it remains central to develop awake imaging as an alterna-
tive. However, these protocols should be examined through the lens 
of quality control metrics to ensure that plausible connectivity pat-
terns are achieved consistently. Furthermore, physiological factors, 
such as heart rate, were scarcely reported. This limited our ability to 
examine the possible contribution of these factors on connectivity 
outcomes. We take this opportunity to encourage the community to 
acquire these data and report them in ensuing publications. Finally, 
the acquisition sequence in StandardRat is designed to run on many 
systems. The effectiveness of new sequences should be examined 
against the current protocol—for example, isotropic resolution22 or 
multiband acquisition23.

Our project’s methodological and conceptual advancements 
are the first step toward large multi-site rat neuroimaging acquisi-
tions. Coordinated open-science projects in neuroimaging and other 
disciplines are transforming the scientific landscape24. Through the 
concerted efforts of our centers and potentiated by a substantially 
improved protocol, rat functional brain imaging is set to tackle urgent 
questions in neuroscience and mental health research.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-023-01286-8.
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Methods
Pre-registration
This study was pre-registered (https://doi.org/10.17605/OSF.IO/
EMQ4B). The following are notable deviations. We used the SIGMA 
rat template25 instead of the Papp et al. template26, owing to fewer 
artifacts, additional relevant assets and improved in vivo contrast. 
Some datasets had field of view cropped to ease image registration. 
Some datasets had time series cropped to ease the computational 
load. We used temporal signal-to-noise instead of signal-to-noise ratio, 
as these were shown to be correlated12. Detailed deviations are listed 
here: https://github.com/grandjeanlab/MultiRat.

Animals
All acquisitions were performed after approval from the respective 
local and national ethical authorities. Participating laboratories were 
instructed to provide n = 10 rat imaging acquisitions consisting of one 
anatomical and one resting-state functional run. Exclusion criteria were 
unsuitability for RABIES pre-processing (for example, dedicated image 
reconstruction needs and restricted field of view). The MultiRat_rest 
collection consists of n = 65 datasets from 46 research centers and 
n = 646 rats (141/505 female/male). StandardRat consists of n = 21 data-
sets and n = 209 rats (93/116 female/male) from 20 research centers. 
For comparison, 224 scans (n = 39 rats) from a single-center awake rat 
dataset were included21. Exclusions were based on the following criteria: 
image misregistration (Extended Data Fig. 2), excessive motion and 
missing or corrupted data.

Standardized fMRI acquisition protocol
The standardized protocol was determined based on the outcomes 
of the analysis of MultiRat_rest and used to acquire the StandardRat 
dataset. Acquisitions were performed chiefly in ~2-month-old 
free-breathing Wistar rats, mixed sex, and anesthetized using 4% iso-
flurane and 0.05 mg kg−1 medetomidine subcutaneous (s.c.) bolus for 
induction and 0.4% isoflurane and 0.1 mg/kg/h medetomidine s.c. for 
maintenance. Imaging with a gradient-echo echo-planar imaging tech-
nique was conducted 40 minutes after anesthesia induction, with rep-
etition time = 1,000 ms, echo time/flip angle/bandwidth defined as a 
function of field strength (Supplementary Table 1), repetitions = 1,000, 
matrix size [64 × 64], field of view 25.6 × 25.6 mm2 and 18 interleaved 
axial slices of 1 mm with 0.1-mm gap. The full protocol is available here: 
https://github.com/grandjeanlab/StandardRat.

Data pre-processing and confound correction
Scans were organized according to the BIDS format27. Pre-processing 
was performed on each scan session separately using a reproducible 
containerized software environment for RABIES 0.3.5 (Singularity 
3.7.3–1.el7, Sylabs)14. The pre-processing was performed using auto-
box28, N4 inhomogeneity correction29, motion correction29, a rigid 
registration between functional and anatomical scans29, non-linear reg-
istration between anatomical scan and template and a common space 
resampling to 0.3 × 0.3 × 0.3 mm3. A volumetric image registration and 
brain masking workflow was developed to address discrepancies in 
brain size, image contrast and susceptibility distortions that are found 
in rodent images. Visual inspection was performed on pre-processing 
outputs for all scans for quality control. Five confound correction 
models were tested, using three approaches based on ICA-AROMA30, 
white matter and ventricle signal or GSR (Supplementary Table 2). 
These were done together with motion regression, spatial smoothing to 
0.5 mm3, a high-pass filter of 0.01 Hz and a low-pass filter of either 0.1 Hz 
or 0.2 Hz. The ICA-AROMA method was adapted from humans to rats 
by using dedicated rat cerebrospinal fluid and brain edge masks and 
by training the classifier parameters based on a set of rodent images. A 
visual inspection of the components and their classifications indicated 
that less than 5% of the plausible signal components were erroneously 
labeled as noise.

Data analysis
To determine FC in individual rats, seed-based analysis was per-
formed with RABIES in template space using spherical seeds of 
0.9-mm diameter located on the S1bf and the ACA, caudate-putamen 
and primary motor area. Functional connectivity was calculated as 
the Pearson’s correlation coefficient between regional time courses. 
Functional connectivity specificity was defined relative to the left 
S1bf seed, using the contralateral right S1bf region of interest as the 
specific region of interest and the ACA as the non-specific region 
of interest12. FC was evaluated for each animal and divided into 
four categories: specific (rS1bf left to right > 0.1 AND rS1bf left to ACA < 0.1); 
non-specific (rS1bf left to right > 0.1 AND rS1bf left to ACA > 0.1); no (rS1bf left to right 
[−0.1, 0.1] AND rS1bf left to ACA [−0.1, 0.1]); and spurious connectivity 
(remaining cases). To assess connectivity specificity in the default 
mode network, the same approach was implemented with a seed 
in the ACA. The specific region of interest was located in the ACA 
(3.3 mm posterior to the seed), and the non-specific region of inter-
est was located in the S1bf. To assess whole-brain connectivity, group 
independent component analysis was performed with n = 20 com-
ponents using Nilearn (https://github.com/grandjeanlab/MultiRat/
blob/master/assets/nifti/canica_resting_state_clean.nii.gz). Com-
ponents’ biological plausibility was assessed using criteria defined 
in Zerbi et al.20. For comparison against humans, the same quality 
control metric was implemented on the 7T Human Connectome 
Project dataset5. The FIX-denoised scans (n = 184 participants) were 
bandpass corrected (0.01–0.1 Hz) and smoothed (2.5 mm2) using 
3dTproject. Regions of interest were positioned in the sensory cortex  
and ACA.

Statistics and reproducibility
Sample size was determined on the basis of the available datasets 
forming this collection. No randomization was applied. Data col-
lection and analysis were not performed blinded to the conditions 
of the experiments. One-sample t-test voxel-wise maps and group 
independent component analysis were estimated using Nilearn 
0.7.1 (ref. 31). Comparisons between FC specificity and categorical 
variables (for example, magnetic field strength, strain and sex) 
were determined using χ2 tests, as implemented in SciPy 1.6.2  
(ref. 32). Continuous variables (for example, mean framewise displace-
ment (MFW)) were transformed into six categorical bins to allow 
comparison with χ2 tests. Linear regression and analysis of variance 
were performed using Pingouin 0.5 (ref. 33). Individual seed-based 
maps are represented as color-coded overlays thresholded at r > 0.1. 
Given the emphasis on detection of FC and the factors that affect it, 
we mitigated against false negatives by applying a liberal thresh-
old of Puncorrected < 0.05 to the one-sample t-test maps, following 
pre-registration specifications. This thresholding is justified because 
we did not want to exclude any datasets with weak potential traces of 
FC. Slice positions are indicated in millimeters relative to the anterior  
commissure.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw datasets are available here: unstandardized resting-state 
fMRI (MultiRat_rest) (https://doi.org/10.18112/openneuro.ds004114.
v1.0.0); standardized resting-state fMRI (StandardRat) (https://
doi.org/10.18112/openneuro.ds004116.v1.0.0). The pre-processed 
volumes, time series and quality control files are available here: 
https://doi.org/10.34973/1gp6-gg97. Image pre-processing, con-
found correction and connectivity analysis were performed 
using RABIES 0.3.5 (https://github.com/CoBrALab/RABIES  
(ref. 14).
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Code availability
Jupyter notebooks demonstrating the analysis code are available under 
the terms of the Apache-2.0 license (https://github.com/grandjeanlab/
MultiRat; https://doi.org/10.5281/zenodo.7614670).
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Extended Data Fig. 1 | Age and weight distributions. Age (a) and weight (b) distribution for the rats in the MultiRat_rest collection.
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Extended Data Fig. 2 | Quality control examples. Failed quality controls for anatomical to template registrations (a) and functional to anatomical registrations (b). 
The top rows are the moving objects, bottom rows are the reference objects. The red lines indicate the outlines of the other object. Four slices along the sagittal, axial, 
and coronal axis are shown for each case.
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Extended Data Fig. 3 | Temporal signal-to-noise ratio. Temporal signal-to-noise ratio in the sensory cortex (tSNR S1) in the MultiRat_rest dataset collection as a 
function of (a) magnetic field strength, (b) repetition time, (c) echo time, (d) temporal signal-to-noise ratio in the striatum.
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Extended Data Fig. 4 | Framewise displacement. MFW in the MultiRat_rest dataset collection as a function of (a) strain, (b) anesthesia, (c) breathing rate, (d) maximal 
framewise displacement.
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Extended Data Fig. 5 | FC in the default-mode network. The reference seed is positioned in the anterior cingulate cortex (Fig. 2a), the specific region-of-interest is 
positioned 3.3 mm posterior in the cingulate cortex and the nonspecific region-of-interest is positioned in the S1bf.
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Extended Data Fig. 6 | StandardRat dataset description. a. Strain. b. Sex. c. Field strength. d. Weight. e. Breathing rate as a function of MFW. f. FC specificity as a 
function of confound correction models.
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Extended Data Fig. 7 | FC incidence. Incidence of FC at the group level in the StandardRat collection for four selected seeds (n = 21 datasets, n ~ 10 subjects per 
dataset). Connectivity incidence is improved in the StandardRat collection relative to MultiRat_rest (Fig. 3).
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Extended Data Fig. 8 | Between-datasets connectivity comparisons. FC category comparison between MultiRat_rest and StandardRat (a) and between the awake 
datasets of MultiRat_rest and the awake dataset from Lui et al. 2020 (b).

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-023-01286-8

Extended Data Fig. 9 | Connectivity specificity as a function of breathing rate 
and signal-to-noise ratio. FC specificity as a function of binned breathing rate 
(a) AND temporal signal-to-noise ratio (b) in the StandardRat collection. The 
percentage of each condition is size and color-coded. High levels of connectivity 
specificity were achieved in scans where the breathing rates were in the 84 to 114 

bpm range. Similarly, higher connectivity specificity incidences were found when 
the cortical temporal signal-to-noise ratio was > 53. These observations support 
the notion of an optimal breathing rate when applying the StandardRat protocol, 
along with temporal signal-to-noise ratio and movement targets.
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Extended Data Fig. 10 | Group independent components analysis. Plausible independent components overlapping with known rodent networks, obtained after 
group-level decomposition with n = 20 components. Labels are based on the SIGMA anatomical atlas.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Paravision v5, v6, v7, v360

Data analysis RABIES 0.3.5, Nilearn 0.7.1, SciPy 1.6.2, Pingouin 0.5, github.com/grandjeanlab/multirat

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
 

- Unstandardized resting-state fMRI (MultiRat_rest) (https://doi.org/10.18112/openneuro.ds004114.v1.0.0);  
-Standardized resting-state fMRI (StandardRat) (https://doi.org/10.18112/openneuro.ds004116.v1.0.0).  
- The preprocessed volumes, time-series, and quality control files (https://doi.org/10.34973/1gp6-gg97). 
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender na

Population characteristics na

Recruitment na

Ethics oversight na

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size n = 10 per dataset. This value is based on pre-existing data availability in the participating laboratories

Data exclusions Unsuitability for preprocessing (e.g., dedicated image reconstruction needs, restricted field-of-view), image misregistration, excessive motion, 
and missing or corrupted data

Replication All dataset and code is released under permissive licenses to allow replication of the analysis

Randomization The study consist of an analysis after the acquisition of the data. Randomization is not applicable. 

Blinding The experimenter was blind to the origin of the data during the analysis

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Rats; Sprague Dawley, Long Evans, Wistar, Fischer 344, Lister Hooded; 0 to 20 months

Wild animals No wild animals were used
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Reporting on sex Sex effect was tested

Field-collected samples No field collected sampled were used

Ethics oversight This study was approved by the authorities of:  
Radboudumc, The Netherlands; 
Univ. Grenoble Alpes, France; 
The University of Western Australia, Australia; 
University of Queensland, Australia; 
Brigham and Women's Hospital, USA; 
McGill University, Canada; 
University Hospital Münster, Germany; 
University of Florida, USA; 
University of Eastern Finland, Finland; 
German Primate Center - Leibniz Institute for Primate Research, Germany; 
Icahn School of Medicine at Mount Sinai, USA; 
Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; 
École polytechnique fédérale de Lausanne, Switzerland; 
Universidad Nacional Autónoma de México, Mexico; 
The University of Edinburgh, UK; 
King's College London, UK; 
Pennsylvania State University, USA; 
Tohoku University, Japan; 
Max Planck Institute for Biological Cybernetics, USA; 
University and ETH Zurich, Switzerland; 
Trinity College Dublin, Ireland; 
University of Antwerp, Belgium; 
University Medical Center Utrecht, Netherlands; 
The University of North Carolina at Chapel Hill, USA; 
University of Barcelona, Spain; 
Ghent University, Belgium; 
Yale University School of Medicine, USA; 
University of Nottingham, UK; 
Institute of Automation, Chinese Academy of Sciences, China; 
University of Cambridge, UK; 
Amsterdam UMC location University of Amsterdam, Netherlands; 
CEA Saclay, France; 
FAU Erlangen-Nürnberg, Germany;  
Champalimaud Centre for the Unknown, Portugal; 
University of Guelph, Canada; 
Emory University/Georgia Institute of Technology, USA; 
Istituto di Ricerche Farmacologiche Mario Negri,IRCCS, Italy; 
Novartis Institutes for BioMedical Research, Switzerland; 
Ruhr University Bochum, Germany; 
Northeastern University, USA;

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type resting-state

Design specifications One run and one session per subject. 

Behavioral performance measures na

Acquisition

Imaging type(s) functional

Field strength 3 to 17.6T

Sequence & imaging parameters Gradient and spin echo echo-planar imaging

Area of acquisition Whole-brain

Diffusion MRI Used Not used
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Preprocessing

Preprocessing software RABIES 0.3.5 default parameters

Normalization ANTs 2.3.5

Normalization template SIGMA rat template

Noise and artifact removal RABIES 0.3.5 default parameters

Volume censoring na

Statistical modeling & inference

Model type and settings Chi-square test between categorical data

Effect(s) tested Differences in the expected distribution of the functional connectivity categories

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Effect size and confidence intervals

Correction na

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson's correlation
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