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ABStRact. We study the problem of stabilization for the acoustic system with a spatially 

distributed damping. Without imposing any hypotheses on the structural properties of the 

damping term, we identify logarithmic decay of solutions with growing time. Logarithmic 

decay rate is shown by using a frequency domain method and combines a contradiction 

argument with the multiplier technique and a new Carleman estimate to carry out a special 

analysis for the resolvent. 
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1. Introduction 

 
We consider the following system of equations: 

 
u  + r + b u = 0,  in Ω R

+
,  

rt + div u = 0, in Ω × R
+
, 

(1.1) u  n = 0,  on Γ R
+
, 

 
u(0, x) = u

0
(x), r(0, x) = r

0
(x), x ∈ Ω, 

where Ω is a bounded domain in R
d
, d ≥ 2, with a smooth boundary Γ, div = ∇· is the 

divergence operator and b ∈ L∞(Ω), with b ≥ 0 on Ω and such that 

(1.2) ∃ b− > 0 such that b ≥ b− on ω. 

Here ω = stands for the open subset of Ω on which the feedback is active. As usual n denotes 
the unit outward normal vector along Γ. 

The system of equations (1.1) is a linearization of the acoustic equation governing the propa- 
gation of acoustic waves in a compressible medium, see Lighthill [21, 22, 23], where b u represents 
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a damping term of Brinkman type. This kind of damping arises also in the process of homog- 
enization (see Allaire [1]), and is frequently used as a suitable penalization in fluid mechanics 
models, see Angot, Bruneau, and Fabrie [4]. Our main goal is to prove the logarithmic decay of 
solutions of (1.1) with growing time. 

 

Let L
2
(Ω) denote the standard H∫ ilbert space of square integrable functions in Ω and its closed 

subspace L
2
 (Ω) = {f ∈ L

2
(Ω) : f (x) dx = 0}.  To avoid abuse of notation, we shall write 

Ω 

ǁ · ǁ for the L
2
(Ω)-norm or the L

2
(Ω)

d
-norm. 

Denoting H = (L
2
(Ω))

d
 × L

2
 (Ω), we introduce the operator 

 
0 

A = 
div 0 

m 
 

: D(A) = 
  

(u, r) ∈ H, (∇r, div u) ∈ H, u · 

n|Γ 

} 
= 0  ⊂ H → H, 

and    √
b

 

B = 
0

 ∈ L((L
2
(Ω))

d
, H), B∗ = 

   √
b 0 ∈  L(H, (L

2
(Ω))

d
). 

We recall that for u (L
2
(Ω))

d
 with div u L

2
(Ω), u n|Γ make sens in H−

1/2
(Γ) (see Girault- 

Raviart [13, Chp 1, Theorem 2.5]). 
 

Accordingly, the problem (1.1) can be recasted in an abstract form: 
  

(1.3) Zt(t) + Z(t) + ∗Z(t) = 0, t > 0, 
Z(0) = Z

0
, 

where Z = (u, r), or, equivalently, 

(1.4) 

 

Zt(t) = dZ(t), t > 0, 
Z(0) = Z

0
, 

with Ad = −A − BB∗ with D(Ad) = D(A). 

It can be shown (see [2]) that for any initial data (u
0
, r

0
) ( ) the problem (1.1) admits 

a unique solution 
(u, r) ∈ C([0, ∞); D(A)) ∩ C

1
([0, ∞); H). 

Moreover, the solution (u, r) satisfies, the energy identity 
∫ t ¨√ ¨2 

(1.5) E(0) − E(t) = 

with 

¨ ¨ 
¨   b u(s)¨ 

0 (L2(Ω))d 

ds, for all t ≥ 0 

(1.6) E(t) = 
1  

ǁ(u(t), r(t))ǁ
2  

, ∀ t ≥ 0, 
2 H 

where we have denoted 
s  

 
∫ ∫ 

⟨ (u, r), (v, p)⟩ H 
= 

(u(x).v(x) + r(x)p(x)) dx, ǁ(u, r)ǁH = 
 

 

|u(x)|
2 

+ r2(x) 
 

dx. 

 

Using (1.5) and a standard density argument, we can extend the solution operator for data 
(u

0
, r

0
) H. Consequently,  we associate with the problem (1.1) (or to the abstract Cauchy 

problems (1.3) or (1.4)) a semi-group that is globally bounded in H. 
 

As the energy E is nonincreasing along trajectories, we want to determine the set of initial 
data (u

0
, r

0
) for which 

(1.7) E(t) → 0 as t → ∞. 

Such a question is of course intimately related to the structural properties of the function b, 
notably to the geometry of the set ω on which the damping is effective. In fact, when the damping 
term is globally distributed Ammari, Feireisl and Nicaise [2] showed an exponential decay rate of 

Ω Ω 
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the energy by the means of an observability inequality associated with the conservative problem 
of (1.1). Besides, it is also shown that if the damping coefficient is not uniformly positive definite 
(i.e inf b(x) = 0) then the system (1.1) is not exponentially stable. In this paper we consider 

x∈Ω 

a damping  which is locally  distributed over the  domain Ω without  any  geometrical control 
condition in particular this including the case when the damping coefficient is not uniformly 
positive defined. So we expect to prove a weaker decay rate then given in [2].  More precisely, 
we prove a logarithm decay rate of the energy. Our approach is based in the frequency domain 
method which consist to prove an exponential loss on the resolvent estimate [7, 6, 10] where the 
main tool for establishing a such decay is the Carleman estimate. 

The theory of Carleman estimates for scalar equations is rather well developed by now. We 
refer to Hörmander [14] and Lebeau and Robbiano [17, 18, 19] for the second-order elliptic and 
hyperbolic PDE’s and to Isakov [15] second-order parabolic and Schrödinger operators. However, 
it turned out that Carleman estimates for systems in more than two variables are difficult to 
obtain and still somehow very limited: The first results to systems go back to then Carleman’s 
original work [9] which is written for a system in two independent variables, and we refer to 
Calderón [8] and Kreiss [16] for more relevant systems. Recently, Eller and Toundykov [11] have 
established a Carleman estimate for some first-order elliptic systems. This estimate is extended 
to elliptic boundary value problems provided the boundary condition satisfies a Lopatinskii-type 
requirement. In this paper we provide a Carleman estimate for a system of first-order which does 
not fit into the same framework as that of Eller and Toundykov [11]. Unlike their approach, our 
method is based into the Hörmander approach which is essentially based on the sub-ellipticity 
condition and the Gårding inequality in order to control the non-elliptical regions. 

The paper is organized as follows.  Section 2 summarizes some well known facts concerning 
the acoustic system (1.1). In section 3, we establish a new Carleman estimate needed for the 
stabilization problem of the system (1.1). In  Section  4,  we prove the  logarithmic stability  for 
the system (1.1). 

 

2. Preliminaries 

 
We start with a simple observation that the problem (1.1) can be viewed as a bounded (in H) 
perturbation of the conservative system 

  

(2.8) 
ut + ∇r = 0,   in Ω × R

+
, 

rt + div u = 0, in Ω × R
+
, 

which can be recast as the standard wave equation 

rtt − ∆r = 0. 

Consequently, the basic existence theory for (1.1) derives from that of (2.8). Hence Ad generates 

a C0-semigroup (S(t))t≥0 in H that is even of contraction because Ad is dissipative (see (1.5)). 

The first main difficulty is  that  the  operator Ad  possesses a  non-trivial (and  large) kernel 
that is left invariant by the  evolution.  Indeed if  (u, r)  belongs to  ker  d,  then  it is  solution of 
the “stationary” problem 

(2.9) ∇r + bu = 0, div u = 0,  in Ω. 

Thus multiplying the first identity of (2.9) by u and integrating over Ω yields 
∫ 

(∇r · u + b|u|2) dx = 0. 

By an integration by parts, using the fact that u is solenoidal and the boundary condition 

u · n = 0 on Γ, we get ∫ 

∇r · u dx = 0, 
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and therefore we obtain ∫ 

b|u|2 dx = 0. 

In other words, we have 

and coming back to (2.9), we find 

Accordingly, we have shown that 

 

 
u = 0 on supp b, 

 
∇r = 0. 

ker Ad = {(u, 0) ∈ D(A)  |  div u = 0,  u|supp b = 0,  u · n|Γ = 0}. 

For shortness set E = ker Ad and introduce also its orthogonal complement H0 in H. 

It is easy to check that 

⟨ Ad(w, s), (u, r)⟩ H = 0 for any (w, s) ∈ D(A), (u, r) ∈ E; 

in particular, the semi-group associated with (1.1) leaves both E and H0 invariant. Consequently, 
the decay property (1.7) may only hold for initial data emenating from the set H0. 

 

The following observation can be shown by a simple density argument: 

Lemma 2.1. The solution (u, r) of (1.1) with initial datum in D(Ad) satisfies 
 

2 

(2.10) E′(t) = − b |u| dx ≤ 0. 
 

Therefore the energy is non-increasing and (1.5) holds for all initial datum in H. 
 

As already shown in the above, the strong stability result (1.7) may hold only if we take the 
initial data 

(u
0
, r

0
) ∈ H0 = ker[Ad]⊥. 

There are several ways how to show (1.7), here we make use of the following result due to Arendt 
and Batty [5]: 

Theorem 2.1. Let (T (t))t≥0 be a bounded C0-semigroup on a reflexive Banach space X. Denote 
by A the generator of (T (t)) and by σ(A) the spectrum of A. If σ(A) ∩ iR is countable and no 
eigenvalue of A lies on the imaginary axis, then lim 

t→+∞ 
T (t)x = 0 for all x ∈ X. 

 

In view of this theorem we need to identify the spectrum of d lying on the imaginary axis, 
and we have according to [2]: 

• Suppose that |ω| > 0. If λ is a non-zero real number, then iλ is not an eigenvalue of Ad. 
• Suppose that |ω| > 0. If λ is a non-zero real number, then iλ belongs to the resolvent 

set ρ(Ad) of Ad. 

Now, Theorem 2.1 leads to 

Corollary 2.1 ([2]). Let (u, r) be the unique semi-group solution of the problem (1.1) emanating 
from the initial data (u

0
, r

0
)     H.  Let PE be the orthogonal projection onto the space E = ker[   d] 

in H, and let 

 
Then 

(w, s) = PE(u
0
, r

0
). 

 
ǁ(u, r)(t, ·) − (w, s)ǁH → 0 as t → ∞ 

 

We now state the main result of this article. We begin by a proposition on an estimate of the 
resolvent. 

Ω 

Ω 

∫ 
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Proposition 2.1. There exist C > 0 such that for every |µ| ≥ 1, and (f, g) ∈ H = (L
2
(Ω))

d
 × 

L
2
 (Ω), the solution (u, r) ∈ D(A) of (Ad + iµ)(u, r) = (f, g) satisfied 

(2.11) ǁ(u, r)ǁH ≤ Ce
C|µ|ǁ(f, g)ǁH, 

or equivalently 

(2.12) ǁ(Ad + iµ)−
1
ǁL(H) ≤ Ce

C|µ|. 

We recall the following result. 

Theorem 2.2. Let B a generator of  a  C0-semigroup  (T (t))t≥0  on , a Hilbert space. We 
assume 

(2.13) 

(2.14) 

(2.15) 

ǁT (t)ǁL(H) is uniformly bounded with respect t ≥ 0, 

B + iµ is invertible for every µ ∈ R, 

There exists C > 0 such that ǁ(B + iµ)−
1
ǁL(H) ≤ Ce

C|µ|. 

Then there exist C1 > 0 such that for all u ∈ D(B) we have 

 ǁBuǁH  
ǁT (t)uǁ    ≤ C , ∀ t ≥ 0. 

 

One has also, for every k ≥ 1 there exists C2 > 0 such that if u ∈ D(B
k
), we have 

B
k
u 

ǁT (t)uǁH ≤ C1 
ln

k
(3 + t) 

, ∀ t ≥ 0. 

A weak version of this theorem was first proven by Lebeau [17], next Burq [6] gives the precise 
statement. We also refer to Batty and Duyckaerts [7] for some generalizations. 

On H0 = ker[Ad]⊥, as seen above Ad + iµ is invertible on H0, in fact Ad is invertible on 
H0 and d + iµ is invertible on H for µ = 0. The semigroup is bounded as the norm on H is non-
increasing by (1.5). With Proposition 2.1, we can apply Theorem 2.2. We then obtain. 

Theorem 2.3. Let (u, r) be the unique semi-group solution of the problem (1.1) emanating from 
the initial  data (u

0
, r

0
)       (    ).  Let PE  be the orthogonal  projection  onto the space E  = ker[    d] 

in H, and let 

 
Then 

(w, s) = PE(u
0
, r

0
). 

 
ǁAd(u

0
, r

0
)ǁH 

 
 ǁ(u, r)(t, ·) − (w, s)ǁH ≤ C 

for some C > 0 independent of (u
0
, r

0
). 

ln(3 + t) 
, ∀ t ≥ 0,

 

 

Proposition 2.1 is obtained from Carleman estimates. We need two kinds of such estimates, 
first an estimate far away the boundary, second an estimate up to the boundary. Both estimates 
are proven in the next section. 

 
 

3. Carleman estimates 

 
Let Ω be an open bounded subset of R

d
.   Let (u, r) be a solution of the resolvent problem 

(A0 + iµ)(u, r) = (f, g) ∈ (L
2
(Ω))

d
 × L

2
 (Ω), that is 

 
(3.1) 

( 
−∇r + iµu = f in Ω, 

— div u + iµr = g in Ω. 
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τ 
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1 n x1 xn 1 n 

∀ ∈ 

 

Here we moreover assume that (u, r) are supported in K ⊂ Ω where K is a compact set. Taking 
the divergence of the first line and using that div u = iµr − g, we obtain 

(3.2) − ∆r − µ
2
r = iµg + div f in Ω. 

We have to give a Carleman estimate for the solution of this type of equation. This is done in 
Section 3.2. to do that we need some tools on pseudo-differential operators we recall below. 

 
3.1. Pseudo-differential operators. We start this section with some useful notations. If 
α = (α1, . . . , αn) ∈ N

n
 is a multi-index, we introduce the following notation: 

ξ
α
 = ξ

α1 . . . ξ
αn ,  ∂

α
 = ∂

α1 . . . ∂
αn ,  D

α
 = D

α1 . . . D
αn    and |α| = α1 + · · · + αn 

 

where Dk 
  ∂ 

= −i
∂x

 = −i∂xk . We denote by C ∞(V ) the set of functions of class C ∞ compactly 

supported  in  V .    For  a  compact  subset  K  of  R
n
,  we  note  by  C ∞(K)  the  set  of  functions 

in  C ∞(R
n
)  supported  in  K.   The  space  L

2
(V )  is  equipped  with  the  usual  norm  denoted  by 

u  0.  For  s     N we  set  H
s
(V ) =   u     D ′(V ); ∂

α
u     L

2
(V )     α      s  .  The  Schwartz space 

S (R
n
)  is  the  set  of  functions  of  C ∞ class  with  rapid  decay  rate.    Its  dual,  S ′(R

n
)  is  the 

set  of  temperate  distributions.   If  u  ∈  S (R
n
)  its  Fourier  transform  denoted  by  û  is  defined 

 

by  û(ξ)  = 

∫ 

e−
iy.ξ

u(y) dy  where  y.ξ  = 
Rn 

Σn 

 
i=1 

 

yiξi stands for the euclidean inner production in 

R
n
.  Let f and g be two smooth functions defined in V R

n
, we define the Poisson bracket 

Σn 

by {f, g} =  
j=1 

(∂ξj f.∂xj g  − ∂xj f.∂ξj g).    And  if  A  and  B  are  two  operators  we  define  there 

commutator by [A, B] = A ◦  B − B ◦  A. 

Definition 3.1. Let a( . , . , τ ) ∈ C ∞(R
n
 × R

n
) where τ ≥ 1 is a large parameter, such that for 

every muti-index α, β ∈ N
n
 we have 

α   β m−|β| n n 

|∂x ∂ξ a(x, ξ, τ )| ≤ Cα,β ⟨ ξ, τ ⟩  , ∀ x ∈ R , ∀ ξ ∈ R ,  ∀ τ ≥ 1, 

where we denoted by ⟨ ξ, τ ⟩  = 

(|ξ|2 

+ τ 
2
 

1 

) 2 . In this case we say that a is a symbol of order m and 

we  write  a ∈  S
m

.  We  c\all  principal  symbol[of  a ∈  S
m

  the  equivalence  class  of  a  in  S
m

/S
m−1

. 
τ τ τ τ 

We also define S−∞ = S
r
 and S

+∞ = S
r
. 

τ τ 

r∈R 

τ τ 

r∈R 

Definition 3.2. We define the pseudo-differential operator of order m by 
∫ 

    1  
a(x, D, τ )u(x) = Op(a)u(x) = 

(2π)n
 e

ix.ξ
a(x, ξ, τ )û(ξ) dξ, u S (R

n
), 

Rn 

where a ∈ S
m

. The set of the pseudo-differential operator of order m is denoted by Ψ
m

.  If 
τ τ 

A ∈ Ψ
m

, we denote by σp(A) his principal symbol. 

Remarks 3.1. Let s ∈ R for u ∈ S ′(R
n
) we set the following norm 

s s s 
ǁuǁτ,s = ǁΛτ uǁ0  with Λτ  := Op(⟨ ξ, τ ⟩   ). 

Hence we can define the corresponding space 

H
s
(R

n
) = {u ∈ S ′(R

n
) ; ǁuǁτ,s < ∞}. 

Theorem 3.1. Let s ∈ R and a(x, ξ, τ ) ∈ S
m

, then the operator Op(a) : H
s
 −→ H

s−m
  maps 

τ τ τ 

continuously and uniformly for τ > 1. 

Lemma 3.1.  Let  m ∈ R and  aj  ∈ S
m−j

  with  j ∈ N.  Then  there  exist  a ∈ S
m

  such  that 
τ 

 

∀ N ∈ N, a − 

 

ΣN 

 
j=0 

τ 

 

aj ∈ Sm−N −1. 

k 
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τ 

τ 

τ 

0 

0 

ϕ P  − Pϕ   

τ τ τ 

τ, 2 c 

We then write a ∼ 
Σ 

aj .  The  symbol  a  is  unique  up  to  S−∞ in  the  sens  that  the  difference  of 
j 

two symbols is in S−
M

 for all M ∈ N. Hence, we identify a0 with the principal symbol of a. 
′ ′ 

Theorem 3.2. Let a ∈ S
m

 and b ∈ S
m

 , then Op(a) ◦  Op(b) = Op(c) with c ∈ S
m+m

 which 
admits the following asymptotic expansion 

c(x, ξ, τ ) ∼ 
Σ 1  

∂
α
a(x, ξ, τ )∂

α
b(x, ξ, τ ). 

i|α|α! ξ x 

α 
′ ′ 

Theorem 3.3. Let a ∈ S
m

 and b ∈ S
m

 , then [Op(a), Op(b)] = Op(c) with c ∈ S
m+m

 −
1
 and 

τ τ τ 

principal symbol 
1 

σ(c)(x, ξ, τ ) = 
i 

{a, b}(x, ξ, τ ) 

which admits the following asymptotic expansion 
c(x, ξ, τ ) ∼ 

Σ 1   
∂

α
a(x, ξ, τ )∂

α
b(x, ξ, τ ) −    α α

 

i|α|α! ξ x 

α 

∂ξ b(x, ξ, τ )∂x a(x, ξ, τ )  . 

Theorem 3.4. Let a ∈ S
m

, then Op(a)∗ = Op(b) with b ∈ S
m

 which admits the following 

asymptotic expansion 
τ τ 

b(x, ξ, τ ) ∼ 
Σ     1     

∂
α

∂
α

ā(x, ξ, τ ). 

 

In  particular  we  have  σp(Op(a)∗) = ā. 

i|α|α! ξ    x 
α 

Theorem 3.5 (Gårding inequality). Let K be a compact subset of R
n
 and a(x, ξ, τ ) ∈ S

m
, of 

principal symbol am. We suppose that there exist C > 0 and R > 0 such that 

Re am(x, ξ, τ ) ≥ C⟨ ξ, τ ⟩ m, ∀ x ∈ K, ξ ∈ R
n
, τ ≥ 1, ⟨ ξ, τ ⟩  ≥ R. 

Then for any 0 < C′ < C there exists τ∗ > 0 we have 

Re(Op(a)u, u)L2(Rn ) ≥ C′ǁuǁ2  
m , ∀ u ∈ C ∞(K), τ ≥ τ∗. 

3.2. Local Carleman estimate away from the boundary. We set the operator 

P (x, D) = −µ
2
 − ∆, 

a real values function ϕ and then we define the conjugate operator by 

Pϕ(x, D) = e
τϕ

P (x, D)e−
τϕ

, 

where µ is a parameter that depends on τ , precisely we suppose that 

(3.3) c0τ ≤ |µ| ≤ c′ τ ∀ τ ≥ 1, 

for some constants c′ > c0 > 0. Then we have 

Pϕ(x, D)w = −µ
2
w − ∆w + 2τ ∇ϕ.∇w − τ 

2
|∇ϕ|2w + τ ∆ϕw 

whose symbol is given by 

σ(Pϕ) = |ξ|2 + 2iτ ∇ϕ.ξ − τ 
2
|∇ϕ|2 + τ ∆ϕ − µ

2
 

and with principal symbol pϕ given by 

pϕ(x, ξ, τ ) = |ξ + iτ ∇ϕ|2 − µ
2
 = |ξ|2 + 2iτ ∇ϕ.ξ − τ 

2
|∇ϕ|2 − µ

2
. 

We define the following self-adjoint operators 

 Pϕ + P ∗ 
Q2 = 

2 

∗ 

and   Q1 = 
ϕ

 
2i 

with principal symbols respectively 

q2(x, ξ, τ ) = |ξ|2 − τ 
2
|∇ϕ|2 − µ

2
 and   q1(x, ξ, τ ) = 2τ ∇ϕ.ξ. 

Noting that Pϕ = Q2 + iQ1 and pϕ = q2 + iq1. 
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∈ 

≥ 

∈ |∇   | 

{   } ≥ 

 

We assume that the weight function ϕ C ∞(R
n
, R) satisfies the following sub-ellipticity 

condition in K a compact set of R
d
, if 

(3.4) |∇ϕ| > 0 in K 

∀ (x, ξ, τ ) ∈ K × R
n
 × [1, +∞); pϕ(x, ξ, τ ) = 0 =⇒ {q2, q1}(x, ξ, τ ) ≥ C⟨ ξ, τ ⟩ 3 > 0. 

Note that the constant C does not depend on µ assuming (3.3). 

Remark 3.1. Noting that 

pϕ(x, ξ, τ ) = 0 ⇐⇒  |ξ|2 = τ 
2
|∇ϕ|2 + µ

2
 and ∇ϕ.ξ = 0. 

Lemma 3.2. Let ψ C ∞(R
n
, R) such that ψ > 0 in K. Then for λ large enough ϕ = e

λψ
 

satisfies the sub-ellipticity assumption in K. 
 

Proof.  We can assume that ψ    0, as we can add a constant to ψ and ϕ is multiplied by a 
constant β. Changing τ in τ/β we can see that sub-ellipticity condition is also satisfied for a 
different constant C. A straightforward calculation shows that 

{q2, q1}(x, ξ, τ ) = 4τ 

Using the fact that ϕ = e
λψ

 then we have 

  
tξϕ′′ ξ + τ 

  
2 t(∇ϕ)ϕ′′∇ϕ  . 

′ ′ ′′ ′′ 2 ′ ′ 
∇ϕ = λ∇ψϕ, ϕj  = λϕψj    and   ϕjk  = λϕψjk  + λ  ϕψjψk,  1 ≤ j, k ≤ n, 

therefore we obtain 
3    3

 
2 4 2   t ′′ −2  t ′′ −1 −2 2

  
{q2, q1} = 4τλ  ϕ λτ |∇ψ| + τ (∇ψ)

ψ 
∇ψ + |λϕ| ξψ ξ + λ |ϕ| |∇ψ.ξ| . 

Now if pϕ = 0 then |ξ|2 = τ 
2
|∇ϕ|2 + µ

2
 = τ 

2
λ

2
ϕ

2
|∇ψ|2 + µ

2
, which gives that 

−2  t ′′ ′′
  

2 2 −2    2
  2

 
2 −2

  
|λϕ| 

Besides, we have 

ξψ ξ ≥ −|ψ | τ |∇ψ| + |λϕ| µ ≥ −Cτ |∇ψ|  + λ . 

τ 
2
   

t
(∇ψ)ψ′′∇ψ ≥ −Cτ 

2
|∇ψ|2. 

Then it follows from these estimates that 
3    3

 
2 4 2   t ′′ −2  t ′′ 

{q2, q1} ≥ 4τλ  ϕ λτ |∇ψ|  + τ (∇ψ)ψ ∇ψ + 
|λϕ| 

ξψ ξ 

3    3 2 4 2 2 2  −2 

≥ 4τλ ϕ (λτ  |∇ψ|  − Cτ  |∇ψ|  − Cτ  λ ). 

Since |∇ψ| > 0 in the compact set K  then for λ large enough we have {q2, q1} ≥ Cλτ 
3
 > 0.  As 

|ξ| is comparable to τ on pϕ = 0, we obtain the result. Q 

Lemma 3.3. Let f and g be two real continuous functions defined in K such that f is positive 
on a compact subset K of R

d
 and verifies that 

∀ y ∈ K, f (y) = 0 =⇒ g(y) ≥ L > 0. 

We set hκ = κf + g, then for κ sufficiently large then hκ ≥ C for some constant C > 0. 

Proof. Let y0 ∈ K to prove the result we distinguish two cases. 
Case 1: We assume f (y0) = 0. Then according to the assumption made in this lemma we 
have hκ(y0) = g(y0) ≥ L. Then there exists a neighborhood of y0, Vy0 such that for y ∈ Vy0 and 
every κ > 0, hκ(y) ≥ g(y) ≥ L/2. Let κy0 = 1. 
Case 2: We assume f (y0) > 0. Since f and g are continuous, there exist Vy0 a neighborhood 
of y0  and C1, C2  > 0 such that f (y)  ≥ C1  and |g(y)|  ≤ C2  for all y  ∈  Vy0 .  Then for all 
κ ≥ (L + C2)/C1, hκ(y) ≥ L. Let κy0 = (L + C2)/C1. 

We cover K, by compactness argument, by a finite number of such neighborhoods Vy1 , . . . , Vyp 

with associated κj = κyj . Taking κ = max κj , we have hκ(y) L/2 on each Vyj , then on K. 
1≤j≤p 

This completes the proof. Q 
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| | | | ≥ 

0 

τϕ     α 2 τϕ 2 

c 

2 

τ,2 
2 

α 2 τϕ 2 

2 1 

2 1 

1 2 2 1 0 

1 2 2 1 

1 2 τ,2 

 

Lemma 3.4. Let V an open bounded subset of R
d
 and κ > 0. We suppose that ϕ verifies the 

sub-ellipticity assumption on K  and we set ρκ = κ(q
2
 + q

2
) + τ {q2, q1}. Then for κ large enough 

there exists C > 0 such that for all (x, ξ) ∈ K × R
d
 and τ ≥ 1 we have ρκ(x, ξ) ≥ C⟨ ξ, τ ⟩ 4 . 

Proof.  First we assume  ξ   large with respect τ , that is  ξ βτ  for β sufficiently large, to be 
fixed below. We have 
ρκ(x, ξ) = κ(q

2
 + q

2
) + τ {q2, q1} 

2 1 

= κ
 

2 2 2 2   
  2 2 2 2   t ′′ 4   t ′′ 

|ξ| − (τ |∇ϕ|  + µ ) + 4κτ (∇ϕ.ξ)  + 4τ ξϕ ξ + τ (∇ϕ) ϕ  ∇ϕ 

(3.5) 

  

= κ⟨ ξ, τ ⟩ 4     1 
− 

(τ 
2
(1 + |∇ϕ|2) + µ

2
) 

  2
 

⟨ ξ, τ ⟩ 2 
+ 4κτ 

2
(∇ϕ.ξ)

2
 + 4τ 

2
  

t
ξϕ′′ξ + τ 

4
  

t
(∇ϕ) ϕ′′∇ϕ 

′ 4 2 2 4 

≥ C ⟨ ξ, τ ⟩   − Cτ  |ξ|  − Cτ  , 

(τ 
2
(1 + |∇ϕ|2) + µ

2
) ′ if β is sufficiently large such that 

⟨ ξ, τ ⟩ 2 ≤ 1/2 and for some constants C , C > 0. 
If β is sufficiently large we obtain Cτ 

2
|ξ|2 + Cτ 

4
 ≤ C′⟨ ξ, τ ⟩ 4 /2, from (3.5) we obtain ρκ(x, ξ) ≥ 

C′′⟨ ξ, τ ⟩ 4, for C′′ > 0. This fixes β. 

Second we assume |ξ| ≤ βτ . As ρκ is homogeneous of degree 4 in (ξ, τ, µ), we can prove the 

estimate on K′ = {(x, ξ, τ, µ) ∈ K × R
d
 × [0, +∞) × R, |ξ|2 + τ 

2
 + µ

2
 = 1,  |ξ| ≤ βτ, c0τ ≤ |µ| ≤ 

c′ τ } taking into account of (3.3).  As K′ is a compact set, we can apply Lemma 3.3 by taking 

f = q
2
 + q

2
 and g = τ {q2, q1}.  This completes the proof. Q 

Theorem 3.6. Let Ω be an open bounded set of R
n
 and ϕ be a function that satisfies the 

sub-ellipticity assumption in K. Then there exist τ∗ > 0 and C > 0 such that 
Σ 

(3.6) τ 
3
ǁe

τϕ
rǁ2 + τ ǁe

τϕ
∇rǁ2 + τ −

1
 ǁe D  rǁ  ≤ Cǁe Prǁ . 

0 0 0 0 
α=2 

for all r ∈ C ∞(K), τ ≥ τ∗ and µ satisfying (3.3). 

This theorem is classical, and we can find in Hörmander [14]. Here we give a proof to be 
complete. 

 

Proof. Let’s take w = e
τϕ

r then Pr = f can be written as follow Pϕw = g = f e
τϕ

. Since 
g = Q2w + iQ1w and Q1 and Q2 are symmetric then we have 

2 2 2 

ǁgǁ0 = ǁQ2wǁ0 + ǁQ1wǁ0 + i(Q1w, Q2w) − i(Q2w, Q1w) 

= (Q2Q2w, w) + (Q1Q1w, w) + i(Q2Q1w, w) − i(Q1Q2w, w) 
 

(3.7) 
    = Q

2
 + Q

2
 + i[Q2, Q1] 

 
w, w . 

1 2 

We fix κ large enough such that the statement of Lemma 3.4 is fulfilled, then for τ sufficiently 

large satisfying κτ −
1
 ≤ 1 then from (3.7) we obtain 

(3.8) τ −
1
 
  

κ(Q
2
 + Q

2
) + iτ [Q , Q ]

 
w, w

   
≤ ǁgǁ2. 

Since the principal symbol of κ(Q
2
+Q

2
)+iτ [Q2, Q1] is given by ρκ(x, ξ, τ ) = κ(q

2
+q

2
)+τ {q2, q1} 

then from Lemma 3.4 we have ρκ(x, ξ, τ ) ≥ C⟨ ξ, τ ⟩ 4  therefore by Gårding inequality (Theorem 
3.5) it follows that 

Re κ(Q
2
 + Q

2
) + iτ [Q2, Q1]  w, w ≥ ǁwǁ . 

Combining this inequality with (3.8) we find 

(3.9) τ −
1
ǁwǁ2     ≤ ǁgǁ0. 

which reads 
(3.10) τ 

3
ǁwǁ2 + τ ǁ∇wǁ2 + τ −

1
 
Σ 

ǁD  wǁ  ≤ Cǁe f ǁ . 
0 0 0 0 

|α|=2 
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c 

c 

0 

c 

τ 

ǁ  ǁ ǁ ǁ ǁ ∇  ǁ 

0 0 ǁ 0 0 

0 0 0 ǁ 0 0 

0 0 

τϕ     α 2 3 2 2 −1 α 2 

 

Since we have 

e
τ ϕ

Djr = (Dj + iτ∂jϕ)w, e
τ ϕ

DjDkr = (Dj + iτ∂jϕ)(Dk + iτ∂kϕ)w, 

then we have 
(3.11) τ ǁe

τϕ
∇rǁ2  ≤ 3 2 2

  ǁwǁ  + τ ǁ∇wǁ 
 

and 

Σ 
(3.12) τ −

1
 

0 C  τ 0 0 

 

  
Σ 

ǁe D  rǁ  ≤ C τ  ǁwǁ  + τ ǁ∇wǁ  + τ ǁD wǁ   . 
0 

|α|=2 

0 0 0 

|α|=2 

Thus, estimate (3.6) follows by replacing (3.11) and (3.12) into (3.10). This concludes the 

proof. Q 

Theorem 3.7. Let Ω be an open bounded set of R
d
, let K ⋐ Ω and ϕ be a function that satisfies 

the sub-ellipticity assumption in K. Then there exist τ∗ > 0 and C > 0 such that 

τ 
3
ǁe

τϕ
rǁ2 + τ ǁe

τϕ
∇rǁ2  ≤ Cτ 

2
 
    

e
τϕ

gǁ2 + ǁe
τϕ

f ǁ2
 
 

for all r ∈ C ∞(K) which satisfies (3.2), τ ≥ τ∗ and µ satisfying  (3.3). 

From this theorem we can deduce this corollary. 

Corollary 3.1. Let Ω be an open bounded set of R
d
, let K ⋐ Ω and ϕ be a function that satisfies 

the sub-ellipticity assumption in K. Then there exist τ∗ > 0 and C > 0 such that 

τ 
3
ǁe

τϕ
uǁ2 + τ 

3
ǁe

τϕ
rǁ2 + τ ǁe

τϕ
∇rǁ2  ≤ Cτ 

2
 
    

e
τϕ

gǁ2 + ǁe
τϕ

f ǁ2
 
 

for all r, u ∈ C ∞(K) which satisfies (3.1), τ ≥ τ∗ and µ satisfying  (3.3). 

Proof. As r satisfies (3.2), with Theorem 3.7, we only have to estimate τ 
3
ǁe

τϕ
uǁ2. From the 

first equation of (3.1) we have τ 
3
ǁe

τϕ
uǁ2 4 τ 

3
ǁe

τϕ
µ−

1
(f + ∇r)ǁ2, which gives the result using 

(3.3). Q 

Proof  of  Theorem  3.7.  We  set  Pϕ  =  e
τ ϕ

P e−
τ ϕ

,  w  =  e
τϕ

r,  F   =  −e
τϕ

f   and  G  =  iµe
τϕ

g  + 
τe

τϕ
∇ϕ.f .  Then from (3.2) we have 

Pϕw = G + div(F ). 

Let K1 be such that K  ⋐ K1  ⋐ Ω and let χ ∈ C ∞(K1) be such that χ = 1 on K.  Setting 

v = χΛ−
1
w with Λτ = (τ 

2
 − ∆)

1/2
 and we write 

Pϕv = χΛ−
1
Pϕw + [Pϕ, χΛ−

1
]w = χΛ−

1
(G + div(F )) + [Pϕ, χΛ−

1
]w, 

τ τ τ τ 

then we find 

(3.13) ǁPϕ vǁ0 
  

≤ C  τ ǁGǁ0 + ǁF ǁ0 
  

+ ǁwǁ0 . 

Applying Estimate (3.9) in the proof of Theorem 3.6 to v then we obtain 
1 

2 ǁvǁτ,2 ≤ CǁPϕvǁ0 
We have v = Λ−

1
w + [χ, Λ−

1
]w then ǁwǁτ,1 4 ǁvǁτ,2 + ǁwǁ0. That together with (3.13) 

τ τ 
1 

 
 

2 ǁwǁτ,1 ≤ C τ −1 ǁGǁ0 + ǁF ǁ0 + ǁwǁ0  . 

Multiplying by τ which is chosen sufficiently large then we obtain 
1 

 
 

τ 2 ǁwǁτ,1 ≤ C (ǁGǁ0 + τ ǁF ǁ0) ≤ Cτ (ǁe gǁ0 + ǁe f ǁ0) . 

As w τ,1 is equivalent to τ e
τϕ

r 0 + e
τϕ

 r 0 arguing as in the proof of (3.11) we obtain the 

result of the theorem. Q 

−1 

τ − 

τ − 

τϕ τϕ 
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T,τ 

T,τ 

T,τ T,τ 

+ 

T,τ 

T,τ 

T,τ 

T,τ 

 

3.3. Local Carleman estimate at the boundary. In this section because the boundary, 
we use a tangential pseudo-differential calculus. This  calculus is completely analogous to  the 

one presented in Section 3.1 except that a function a(x′, xd, ξ′) is a symbol in (x′, ξ′) in the 
sense of Definition 3.1 where xd is a parameter and the estimates given in Definition 3.1 are 
uniform with respect xd. To avoid confusion we denote by S

m
 the class of tangential symbol 

of order m, OpT(a) the operator associated with the symbol a ∈ S
m

 . The class of operators 
associated with symbols in S

m
  is denoted by Ψ

m
  . We refer to [20] for details on these symbols 

and operators. We consider functions in a half space R
d−1

 × (0, +∞) = R
d
 , and we denote 

by ǁ.ǁ+ = ǁ.ǁL2(Rd )  the L
2
-norm and (., .)+ = (., .)L2 (Rd )  the associated inner product.  At 

+ 

the boundary xd = 0 we denote the L
2
-norm by |g|2 = 

∫ + 

Rd−1 |g(x′)|2dx′ and the inner product 

associated by (., .)∂ = (., .)L2(Rd−1). A set W = ω × Γ in R
d
 × R

d−1
 × R

+
 is called a conic 

open set, if there exist ω an open set in R
d
, and Γ an open set in R

d−1
 × R

+
 such that for all 

(ξ′, τ ) ∈ Γ and λ > 0 then (λξ′, λτ ) ∈ Γ. For s ∈ R we denote by Λ
s
 the tangential operator 

defined by Λ
s
 = OpT(⟨ ξ′, τ ⟩ s). 

We recall the following microlocal Gårding inequality obtained, for instance, by applying 
sharp Gårding inequality. 

Theorem 3.8 (Microlocal Gårding inequality). Let K be a compact set of R
d
 and let W be a 

conic open set of R
d
 ×R

d−1
 ×R

+
 contained in K ×R

d−1
 ×R

+
. Let also χ ∈ S

0
 be homogeneous 

of order 0 (for ⟨ ξ′, τ ⟩  ≥ 1) and be such that supp(χ) ⊂ W. 

Let a(x, ξ′, τ ) ∈ S
m

 , with principal part am homogeneous of order m. If there exist C0 > 0 
and R > 0 such that 

Re am(x, ξ′, τ ) ≥ C0 ⟨ ξ′, τ ⟩
m

 , (x, ξ′, τ ) ∈ W,  τ ∈ [1, +∞), ⟨ ξ′, τ ⟩  ≥ R, 

then for any 0 < C1 < C0, N ∈ N, there exist CN and τ∗ ≥ 1 such that 
m/2 2 −N 2 

Re  OpT(a)OpT(χ)u, OpT(χ)u  +  ≥ C1ǁΛT,τ  OpT(χ)uǁ+ − CN ǁΛT,τ  uǁ+, 

for u ∈ S (R
d
) and τ ≥ τ∗. 

As we want to change the variables in order to have a  flat boundary which is  convenient to 
do the computations, we use the language and usual tools of Riemannian geometry. In this 
framework the gradient and divergence operators keep forms we can follow after a change of 
variables. Our purpose is to use these tools locally and we do not use mani fold to ols as charts, 
atlas and etc. To fix the notation, let V  be an open set in R

d
. Let g(x) = 

  
gij (x) 
  1≤i,j≤d 

be a 
positive symmetric matrix called the metric, we denote by g−

1
(x) = g

ij
(x) the inverse 

of g(x). For a smooth function r, we denote by (∇gr(x))
i
 
Σ 

= 1≤j≤d g
ij

 

1≤i,j≤d 

(x)∂xj r(x)  the gradient 
of r. We have ∇gr(x) ∈ TxV , this means that ∇gr is a tangent vector field. 

For u(x) = u
1
(x), . . . , u

d
(x) a smooth tangent vector field, we define the divergence operator 

by 
Σ

 

divg u(x) = 
−1/2 

det g(x) 
 
 

1≤j≤d 

∂xj 
det g(x)  

1/2
u

j
(x)  . 

For a smooth function r and a smooth tangent vector field u, we have 
Σ 

(3.14) divg(ru) = r divg u + g(∇gr, u), where g(∇gr, u) = 

1≤i,j≤d 

 
gij(∇gr)

i
u
j
. 

For two smooth functions r1 and r2 we have 

(3.15) ∇g(r1r2) = r1∇gr2 + r2∇gr1. 

It is well-known that there exist coordinates (called normal geodesic coordinates) such that the 
boundary is defined locally by xd = 0, the open set Ω ∩ V is defined by xd > 0, the metric g is 
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j 

d d −1/2 1/2 

d 

1/2 τϕ 

d 

xd xd d 

s+1/2 1/2 s s+1 s s 

 

such  that  gid  = gdi  = 0  for  i = 1, . . . , d − 1  and,  gdd  = 1.  We  denote  by  g̃ = (gij)1≤i,j≤d−1  the 
metric g on xd fixed. 

We can define on each manifold xd = const the gradient and divergence operators associated 

with g̃ and for r  a smooth function and ũ = (u
1
, . . . , u

d−1
) a smooth vector field on xd = const, 

we have 

(∇g˜r)
i
 = 
Σ 

 
1≤j≤d−1 

g
ij

∂x  r  for i = 1, . . . , d − 1,    divg̃ ũ = (det g̃)−
1/2

 
Σ 

 
1≤j≤d−1 

 
∂xj 

    
(det g̃)

1/2
u
j
   . 

In  such  coordinates,  we  have  det g  =  det g̃.   The  gradient  and  divergence  operators  take  the 
following form. 

(3.16) ∇gr = (∇g̃r, ∂xd r),  divg u = divg̃ ũ + ∂xd u   + hu  ,  where h = (det g̃) ∂xd (det g̃) . 

We recall that the equation of the resolvent problem (A0 + iµ)(u, r) = (f, g) locally takes the 
form 

(3.17) 

 
   −∇gr + iµu = f  in xd > 0, 

 
− divg u + iµr = g in xd > 0, u

d
 

= 0 on xd = 0. 

We have the following theorem 

Theorem 3.9. Let x0 ∈ R
d−1

 × {0}, we assume there exist a neighborhood of x0 where ϕ 
satisfies  (3.4) the sub-ellipticity  condition  and ∂xd ϕ(x0) > 0.  Then there exist V0  be an open set 

of R
d
 such that x0 ∈ V0, C > 0, and τ∗ > 0 such that 

τ 1/2|eτϕr|x  =0
 | + τ ǁe uǁ+ + τ 1/2ǁeτϕrǁ+ + τ −1/2ǁeτϕ∇g rǁ+ 

  
≤ C ǁ e

τϕ
f ǁ+ 

  
+ ǁe

τϕ
gǁ+  , 

for u, r ∈ C ∞(R
d
) supported on V0, satisfying (3.17), for every τ ≥ τ∗ and µ satisfying  (3.3). 

Let v = e
τϕ

u and w = e
τϕ

r. We have from (3.14) and (3.15) 
−τϕ

  
∇gr = e ∇gw − τw∇gϕ , 

  div u = e−
τϕ

  div  v − τg(∇  
g 

Then System (3.17) takes the form 
 

g gϕ, v)  . 

 
(3.18) 

   −∇gw + τw∇g ϕ + iµv = F  in xd > 0, 

  
− divg v + τg(∇gϕ, v) + iµw = G in xd > 0, v

d
 

= 0 on xd = 0, 

where F = e
τϕ

f and G = e
τϕ

g. 

In  the  following, we  denote  by  F̃   = (F 
1
, . . . , F

d−1
)  and  by ṽ = (v

1
, . . . , v

d−1
),  then  we  have 

F  = (F̃ , F
d
) and v = (ṽ, v

d
).  Multiplying  (3.18) by i, we have 

 
−i∇  w + iτw∇  ϕ − µṽ = iF̃   in x 

 

 

> 0, 

g̃ g̃ d 
−i∂   w + iτw∂   ϕ − µv

d
 = iF

d
 in x  > 0, 

   −i divg v + iτ g̃(∇g̃ϕ, ṽ) + iτv
d

∂x  ϕ − µw = iG in xd  > 0, 

v
d
 = 0 on xd = 0. 

For this system we prove the following Carleman estimate. 

Proposition 3.1. Let x0 ∈ R
d−1

 × {0}, we assume there exist a neighborhood of x0 where ϕ 
satisfies (3.4) the sub-ellipticity condition and  ∂xd ϕ(x0) > 0.  For  s ∈ R,  there exist V0  be  an 

open set such that x0 ∈ V0, C > 0, and τ∗ > 0 such that 

|ΛT,τ w|xd =0| + τ ǁΛT,τ vǁ+ + τ −1/2 ǁΛT,τ wǁ+ ≤ C ǁΛT,τ F ǁ+ + ǁΛT,τ Gǁ+ , 

for v, w ∈ S (R
d
) satisfying (3.19), supported in V0, for every τ ≥ τ∗ and µ satisfying  (3.3). 

(3.19) 
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d 

1/2 

T,τ 

j 

T,τ 

T,τ 

d 

d 

d 

T,τ i 

d 

± 

d d 

0 0 

0 0 

d 

 

From  this  proposition  we  deduce  Theorem 3.9  taking  s = 0.  Indeed  we  have  τ 
1/2

|w|x  =0| 4 

|ΛT,τ w|xd =0|  and from (3.17) we have 

τ −1/2ǁeτϕ∇g rǁ+
 
4 ǁe

τϕ 
 

  
r − iµu ǁ+ + |µ|τ −

1/2
ǁe

τϕ
uǁ+ 4 ǁe

τϕ
f ǁ+ + τ 

1/2
ǁe

τϕ
uǁ+, 

from (3.3). 

We begin by reducing the system in a 2 × 2 system. We denote by ζ′ ∈ S
1
 

 
 

the tangential 

symbol of the operator −i∇g˜ + iτ ∇g˜ϕ.  We have 
Σ 

ζi =  

1≤j≤d−1 

g
ij

(ξj + iτ∂x  ϕ) for i = 1, . . . , d − 1. 

Let  OpT(δ)  :=  −i divg̃ +iτ g̃(∇g̃ϕ, ·)  where  δ  ∈  S
1
 .  The principal symbol of the operator δ is 

(ξ1 + iτ∂x1 ϕ, . . . , ξd−1 + iτ∂x 
 

d−1 ϕ) modulo symbol in S
0
 .  The first equation of (3.19) reads 

OpT(ζ′)w − µṽ = iF̃ .  Applying  in both side of this  equation the operator OpT(δ), we obtain 

(3.20) OpT(δ)ṽ = −iµ−
1
OpT(δ)F̃  + µ−

1
OpT(δ)OpT(ζ′)w. 

From (3.16) we have 

−i divg v + iτ g̃(∇g̃ϕ, ṽ) = OpT(δ)ṽ − i∂xd v   − ihv 

= Dx  v
d
 − iµ−

1
OpT(δ)F̃  + µ−

1
OpT(δ)OpT(ζ′)w − ihv

d
. 

From this equation and second and third of (3.19) we obtain two equations on w and v
d
, that is 

(3.21) 

   Dx  w + iτw∂x  ϕ − µv
d
 = iF

d
  in xd  > 0, 

Dx  v
d
 + µ−

1
OpT(δ)OpT(ζ′)w − µw + iτv

d
∂x  ϕ − ihv

d
 = iG + iµ−

1
OpT(δ)F̃   in xd > 0, 

 d d 

v
d
 = 0 on xd = 0. 

Let U = (w, v
d
), the system (3.21) has the form 

Dx  U  + BU  = H,  where H  = (iF
d
, iG + µ−

1
OpT(δ)F̃ ), 

and B is a tangential matrix operators with principal symbol 

b = 
iτ∂xd ϕ −µ 

,
 

µ−
1
q(x, ξ′) − µ   iτ∂x  ϕ 

modulo µ−
1
S

1
 , where q(x, ξ′) = 

Σ 
 
1≤i,j≤d−1 

g
ij

(x)  ξi + iτ∂x  ϕ(x) ξj + iτ∂xj ϕ(x)  .  The  char- 

acteristic  polynomial  of  b  is  given  by  P (λ)  =  (λ −  iτ∂x  ϕ)
2
  + q  −  µ

2
.  Let  α  ∈  C  such  that 

α
2
 = q − µ

2
 with Re α ≥ 0.  The definition of α is ambiguous when q − µ

2
 ≤ 0 but in this case 

if q − µ
2
 < 0 the root are simple and the analysis below is independent of the choice of root. In 

particular the roots are smooth, or if q − µ
2
 = 0 the root is double and below, we give a specific 

analysis in  this case.  The root of P (λ)  are iτ∂xd ϕ   iα and the  analysis in what follows depends 
on the location of roots in complex plane. We have the following result, denoting s = t

2
 where 

t, s ∈ C we have for r0 > 0, 

(3.22) | Re t| S r0 ⇐⇒ 4r
2
 Re s − 4r

4
 + (Im s)

2
 S 0. 

Indeed, let t = x+iy, we have Re s = x
2
 −y

2
 and Im s = 2xy, we obtain 4r

2
 Re s−4r

4
 +(Im s)

2
 = 

0 0 

4(r
2
 + y

2
)(x

2
 − r

2
) which gives the result. 

From (3.22), we obtain that | Re α| S τ |∂xd ϕ| is equivalent to 

(3.23) 4τ 
2
(∂xd ϕ)

2
(Re q − µ

2
) − 4τ 

4
(∂xd ϕ)

4
 + (Im q)

2
 S 0, 

∇
g 

d 
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i 

0 

s+1/2 s s+1 

⟨
 
⟩  

0 

0 

d 

T,τ 

T,τ 

s 
T,τ T,τ T,τ T,τ T,τ 

d 0 

0 0 0 T,τ 

0 T,τ 

1 T,τ T T 1 T,τ T 1 

T,τ T T 

j T,τ j + j T 1)  iα̃  zj, iΛT,τ j + 

T,τ 2 T 2 2 T,τ T,τ + 

j 

 

where, from the definition of q, we have 
 Σ 
 Re q(x, ξ′) = g

ij
(x)  ξiξj − τ 

2
∂x  ϕ(x)∂x  ϕ(x)  , 

 i j 

1≤i,j≤Σd−1 

  Im q(x, ξ′) = τ g
ij

(x)ξj∂x  ϕ(x). 

1≤i,j≤d−1 

We prove a microlocal Carleman estimate. 

Lemma 3.5. Let x0 ∈ R
d−1

 ×{0}, we assume there exist a neighborhood of x0 where ϕ satisfies 

(3.4) the sub-ellipticity condition and ∂x ϕ(x0) > 0.   Let (ξ′ , τ0) ∈ R
d−1

 × R
+
  be such that 

|ξ′ |2 + τ 
2
 = 1.  There exist W  be an open conic set of (x0, ξ′ , τ0), χ1 ∈ S

0
 be an homogenous 

symbol of order 0 for ⟨ ξ′, τ ⟩  ≥ 1 supported in W and χ1 = 1 in a conic neighborhood of (x0, ξ′ , τ0). 

For s ∈ R, there exist C > 0, and τ∗ > 0 such that 

|ΛT,τ OpT(χ1)w|xd =0| + τ 1/2 ǁΛT,τ OpT(χ1)vǁ+ + τ −1/2 ǁΛT,τ OpT(χ1)wǁ+ 
s s s s d 

≤ C ǁΛT,τ F ǁ+ + ǁΛT,τ Gǁ+ + ǁΛT,τ wǁ+ + ǁΛT,τ v ǁ+ , 

for v, w ∈ S (R
d
) satisfying (3.19), for every τ ≥ τ∗ and µ satisfying  (3.3). 

This lemma implies Proposition 3.1 as we can cover ξ′, τ = 1 by a finite number of open 
sets given by the statement of Lemma 3.5. 

For the proof of Lemma 3.5, we distinguish two cases, α /= 0 and α = 0. 

Assume that α(x0, ξ′ , τ0) 0. By continuity and homogeneity in (ξ′, τ ), α /= 0 in a conic 

neighborhood W of (x0, ξ′ , τ0). Let χ0 ∈ S
0
    be an homogenous symbol of order 0 for ⟨ ξ′, τ ⟩  ≥ 1 

such that χ0 = 1 in a conic neighborhood of (x0, ξ′ , τ0), supported in W  and χ1 supported on 
χ0 = 1. Writing   

b = 
iτ∂xd ϕ −µ 

,
 

µ−
1
α

2
 iτ∂x ϕ 

the left eigenvector associated with iτ∂xd ϕ+iα (resp.  iτ∂xd ϕ−iα ) is 
  
−iα  µ 

    
resp. 

  
iα  µ   . 

Let  α̃  =  χ0α,  as  α  is  a  smooth  homogenous  function  of  order  1  in  W ,  α̃  ∈  S
1
   .  Recall  the 

notation Λ
s
 = OpT(⟨ ξ′, τ ⟩ s),  according with the above algebraic computations and with the 

left vector found, we define 
  

z   = −iΛ−
1
 Op  (α̃)Op  (χ  )w + µΛ−

1
 Op  (χ  )v

d
 

z2 = iΛ−
1
 Op  (α̃)Op  (χ1)w + µΛ−

1
 Op  (χ1)v

d
. 

T,τ T T T,τ T 

As  v
d
  = 0  on xd  = 0  we obtain  z1 + z2  = 0  on xd  = 0.  Applying  ±iΛ−

1
 Op  (α̃)Op  (χ1)  to  the 

first equation (3.21), µΛ−
1
 Op  (χ1) to the second equation and summing up, we obtain 

T,τ T 

j 

(3.25)   Dxd zj + OpT iτ∂xd ϕ + (−1)  iα̃  zj  = Hj  where 

ǁΛT,τ 

We compute 

Hjǁ+ 4 ǁΛ
s
  F

d
ǁ+ + ǁΛ

s
  Gǁ+ + ǁΛ

s
 F̃ǁ+ + ǁΛ

s
 wǁ+ + ǁΛ

s
 v

d
ǁ+. 

(3.26) 2 Re(H , iΛ
2s+1

z ) = 2 Re(D 
  

z  + Op   iτ∂ ϕ + (− 2s+1z ) 

= |Λ
s+1/2

(z  ) 2 2s+1 
  |  + 2 Re(Λ Op   τ∂ ϕ + (− 

 
using that 

T,τ j |xd=0 T,τ T xd 
1) α̃  zj , zj)+, 

(3.27) 2 Re(Dx  h, iΛ
2m

h)+ = |Λ
m

  h|x  =0|2, 

for h ∈ S (R
d
). 

d T,τ T,τ d 

If j = 2, we have τ∂x ϕ + Re α 4 τ + |ξ′| in W .  Let χ2 ∈ S
0
 supported in χ0 = 1 and 

d 

χ2 = 1 on the support of χ1. From symbolic calculus we have 
T,τ 

(3.28) ǁΛ
s
 
    
z  − Op (χ )z  ǁ 4 ǁΛ−

N
 wǁ + ǁΛ−

N
 v

d
ǁ  . 

(3.24) 

xd xd 

+ + 

j 
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T,τ 

s+1/2 s+1 s 

s+1 s 

ǁ Λ z ǁ s 

d — | | 

d d 

0 

d — | | 
≥  |   | |   | ≫ 

′ 

T,τ d T,τ T,τ T,τ 

d d 

d d 0 

 

Then the tangential Gårding inequality of Theorem 3.8 applies and we have 
2 Re(Λ

2s+1
 s+1 2 −N 2 −N   d  2  

  
T,τ    OpT τ∂xd ϕ + α̃  z2, z2)+ ≥ C1ǁΛT,τ  z2ǁ+ − CN ǁΛT,τ wǁ+ + ǁΛT,τ v ǁ+ . 

From (3.26), we then deduce 

(3.29)    2 Re(H2, iΛ
2s+1

z2)+ ≥ 

C  
    s+1/2 2 s+1 2  

  −N 2 −N   d  2  
  

1   |ΛT,τ (z2)|xd=0| + ǁΛT,τ  z2ǁ+ — CN ǁΛT,τ wǁ+ + ǁΛT,τ v ǁ+ , 

for C1 > 0, for every N > 0 and CN > 0, uniformly with respect to τ chosen sufficiently large. 
This implies 

(3.30) |Λ (z2)|x  =0| + ǁΛ z2ǁ+ 4 ǁΛ H2ǁ+ + ǁΛ−
N
 wǁ+ + ǁΛ−

N
 v

d
ǁ+. 

Lemma 3.6. Assume that α /= 0 in W. 

If Re α − ∂xd ϕ 0 on W, we have 

(3.31) ǁ Λ z ǁ   s ≤ C ǁ Λ H ǁ + |Λ
s+1/2

(z  ) | + ǁΛ wǁ + ǁΛ
s
 v

d
ǁ 

T,τ    1  + 

for some C > 0. 

T,τ    1  + T,τ 1  |xd=0 T,τ + T,τ +  , 

If Re α − τ∂x ϕ = 0 at (x0, ξ′ , τ0), we have 

(3.32) 
d 

s+1/2 

0 

  ≤ C Λ
s
  H ǁ + |Λ

s+1/2
(z  ) | + ǁΛ wǁ + ǁΛ

s
 v

d
ǁ 

T,τ 1  + 

for some C > 0. 

ǁ T,τ    1  + T,τ 1  |xd=0 T,τ + T,τ +  , 

 

Proof. We have to distinguish three cases, that is | Re α| S τ |∂x  ϕ| at (x0, ξ′ , τ0). 
d 0 

 

• If | Re α| < τ |∂xd ϕ|, from (3.23) this is equivalent to 

4τ 
2
(∂x ϕ)

2
(Re q − µ

2
) − 4τ 

4
(∂x  ϕ)

4
 + (Im q)

2
 < 0. 

We have τ∂x ϕ Re α 4 τ + ξ′  in W .  Then we have the same computations as in (3.29) 
and (3.30), and we have 

 s+1/2  s+1 s  −N −N  d 

|ΛT,τ (z1)|xd=0| + ǁΛT,τ   z1ǁ+ 4 ǁΛT,τ H1ǁ+ + ǁΛT,τ  wǁ+ + ǁΛT,τ  v  ǁ+ 

which is a better estimate than (3.31). 

• If | Re α| > τ |∂xd ϕ|, from (3.22) this is equivalent to 

4τ 
2
(∂x ϕ)

2
(Re q − µ

2
) − 4τ 

4
(∂x  ϕ)

4
 + (Im q)

2
 > 0. 

Observe that this case contains the case where τ0 = 0 as |ξ′ | = 1, and in W we have 
q(x, ξ′, τ ) c ξ′ 

2
 and  ξ′ τ . 

As τ∂x ϕ + Re α 4 τ + ξ′  in W , from (3.26), we can introduce a cutoff as in (3.28) 
to apply the tangential Gårding inequality of Theorem 3.8, we deduce 

 2s+1 s+1/2 2 s+1 2 −N 2 −N   d  2  
  

−2 Re(H1, iΛT,τ     z1)+ + |ΛT,τ (z1)|xd =0| 

and then 

4 ǁΛT,τ  z1ǁ+ − CN ǁΛT,τ wǁ+ + ǁΛT,τ v ǁ+ , 

s+1 s s+1/2 −N −N  d 

ǁΛT,τ  z1ǁ+ 4 ǁΛT,τ H1ǁ+ + |ΛT,τ (z1)|xd=0| + ǁΛT,τ  wǁ+ + ǁΛT,τ  v 

which implies (3.31). 

ǁ+, 

If Re α = τ∂xd ϕ at (x0, ξ0, τ0), from (3.22) and as Re α and ∂xd ϕ are positive, this is 
equivalent to 

4τ 
2
(∂x ϕ)

2
(Re q − µ

2
) − 4τ 

4
(∂x  ϕ)

4
 + (Im q)

2
 = 0,  at (x0, ξ′ , τ0). 

• 

T,τ 
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2 

d 

d 

T 

2 2 2 

— { − } 

1/2 2 −N 2 

d d d 

d 0 d 

d d 

d d 

0 d 

d d d + d 

 

We use Carleman technics to obtain an estimate. Before doing that we must translate sub- 
ellipticity assumption (3.4) on pϕ on analogous condition on α. First observe that 

pϕ(x, ξ, τ ) = (ξd + iτ∂x ϕ)
2
 + α

2
 = (ξd + iτ∂x ϕ + iα)(ξd + iτ∂x ϕ − iα). 

As iτ0∂x ϕ(x0) − iα(x0, ξ′ , τ0) ∈ R, pϕ = 0 is equivalent to ξd + iτ∂x  ϕ − iα = 0.  Noting that 
iτ∂xd ϕ + iα /∈  R thus  ξd + iτ∂xd ϕ + iα 0  in  W .  Second,  for  a  smooth  function  q  = qr + iqi 
where qr, qi  are real valued, we have {q, q̄} = 2i{qi, qr}.  Thus  on pϕ = 0 we have 

{pϕ, pϕ} = |ξd + iτ∂xd ϕ + iα|  {ξd + iτ∂xd ϕ − iα, ξd − iτ∂xd ϕ + iᾱ} 

= 2i|ξd + iτ∂x ϕ + iα|2{τ∂x  ϕ − Re α, ξd + Im α}. 

Thus sub-ellipticity condition reads in W , there exists C > 0 such that 

(3.33) ξd + iτ∂x  ϕ − iα = 0 =⇒ {ξd + Im α, τ∂x  ϕ − Re α} ≥ C⟨ ξ′, τ ⟩ . 

At (x0, ξ′ , τ0), observe that we can choose ξd such that ξd + Im α = 0 and as τ0∂x ϕ − Re α = 0, 
the condition (3.33) means, by continuity and homogeneity, there exists C > 0 such that 

(3.34) {ξd + Im α, τ∂x ϕ − Re α} ≥ C⟨ ξ′, τ ⟩  in W, 

eventually shrinking W . 

Let 

A = 
1 

∗
  

2   
OpT(iτ∂xd ϕ − iα̃) + OpT(iτ∂xd ϕ − iα̃)    , 

B = 
1 

∗
  

2i   
OpT(iτ∂xd ϕ − iα̃) − OpT(iτ∂xd ϕ − iα̃)    . 

We have A = A∗, B = B∗, OpT(iτ∂x  ϕ − iα̃) = A + iB, and principal symbol of A is  Im α̃  and 
principal symbol of B  is  τ∂xd ϕ − Re α̃. 

Now from (3.25) we compute for z = OpT(χ0)Λ
s
,τ z1 

(3.35)   ǁ + Op (iτ∂  ϕ −   ǁ  = ǁ ǁ   + ǁBzǁ 
Dxd T xd 

iα̃)  z  + Dxd + A z + + 

     
 

We have 

+ 2 Re 

 
  

Dxd  + A z, iBz . 
+ 

2 Re Dxd z, iBz + = [Dxd , iB]z, z  + + (Bz|xd=0, z|xd=0)∂. 

As the principal symbol of B  is τ∂xd ϕ − Re α̃, we obtain 

(3.36)    2 Re Dxd z, iBz  
+  

≥ Re   i[Dxd , OpT(τ∂xd ϕ − Re α̃)]z, z  
+

 

+ Re(OpT(τ∂x  ϕ − Re α̃)z|x  =0, z|x  =0)∂ − Cǁzǁ2   − C|z|x  =0|2, 
d d d + d 

for some constant C > 0. We also have 
2 

2 Re Az, iBz 
+ 

= i[A, B]z, z  
+ 

≥ Re i[OpT(Im α̃), OpT(τ∂xd ϕ − Re α̃)]z + 
− Cǁzǁ+. 

Then from this estimate and (3.36), we obtain 
 

(3.37)    2 Re Dxd  + A z, iBz 
+ 

≥ Re i[Dxd   + OpT(Im α̃), OpT(τ∂xd ϕ − Re α̃)]z, z  + 

+ Re(OpT(τ∂x  ϕ − Re α̃)z|x  =0, z|x  =0)∂ − Cǁzǁ2   − C|z|x  =0|2. 

The  principal  symbol  of  i[Dxd   + OpT(Im α̃), OpT(τ∂xd ϕ Re α̃)]  is    ξd + Im α, τ∂xd ϕ Re α  , 
then from (3.34) and microlocal Gårding inequality of Theorem 3.8, we have 

(3.38)   
Re i[D + Op  (Im α̃), Op  (τ∂   

ϕ − Re α̃)]z, z ≥ C ǁ Λ zǁ   − C ǁΛ z ǁ  . 
 

We have 

xd T T xd + 1 

 
1/2 

T,τ + 

 
2 

N T,τ    1  + 

|(OpT(τ∂xd ϕ − Re α̃)z|xd=0, z|xd=0)∂ | 4 |ΛT,τ z|xd=0|  , 
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+ 

+ 

T 

s+1/2 1/2 s−1/2 s−1/2  d 

1/2 s+1/2 

s+1/2 s 

T,τ T,τ T,τ 

s+1/2 s+1 s+1 s 

T,τ 

s 

T,τ T,τ d T,τ T,τ 

T,τ T T,τ T T,τ T,τ 

T T 

T,τ T T T,τ T,τ T 

T,τ T T 

T,τ T T,τ T,τ T,τ 

T,τ T T,τ T T,τ T,τ 

T,τ T,τ T,τ T,τ 

T,τ T d T,τ d 

 

then from (3.35), (3.37) and (3.38) we obtain 
1/2 

¨ ¨ 
1/2 −N 

(3.39) ǁ  ΛT,τ zǁ+ 4 ¨ Dxd   + OpT(iτ∂xd ϕ − iα̃)  z¨   + |ΛT,τ z|xd=0| + ǁΛT,τ  z1ǁ+, 

as we can absorb the remainder term ǁzǁ2 by the left hand side. Recalling the definition of z1 
given by formula (3.24), the symbolic calculus yields 

1/2 s s+1/2 s−1/2 s−1/2  d 

ǁΛT,τ OpT(χ0)ΛT,τ z1 − ΛT,τ z1ǁ+ 4 ǁΛT,τ wǁ+ + ǁΛT,τ v 

From z = OpT(χ0)Λ
s
,τ z1, we deduce 

ǁ+. 

(3.40) ǁΛ z1ǁ+ 4 ǁ Λ zǁ+ + ǁΛ wǁ+ + ǁΛ v ǁ+. 
T,τ 

Symbolic calculus also gives 
¨  

T,τ 

 
¨ 

T,τ 
 

 s 

T,τ 
 

 s s d 

(3.41) 

and 

¨ Dxd   + OpT(iτ∂xd ϕ − iα̃)  z¨ 4 ǁΛT,τ H1ǁ+ + ǁΛT,τ wǁ+ + ǁΛT,τ v ǁ+, 

(3.42) |Λ z|x  =0| 4 |Λ (z1)|x  =0|. 
T,τ d 

Then from (3.39)–(3.42) we obtain 

T,τ d 

(3.43) ǁΛ z1ǁ+ 4 ǁΛ H1ǁ+  + |Λ
s+1/2

(z1)|x   =0| + ǁΛs
 wǁ+ + ǁΛ

s
 v

d
ǁ+, 

which is (3.32). This achieves the proof of Lemma 3.6 as we have treated the three cases. Q 
 

We can prove Lemma 3.5 in the case α 0. 

If Re α − ∂xd ϕ =/ 0 on W , from (3.30), Lemma  3.6, and as z1 + z2 = 0  on xd = 0, we deduce 
 

s+1/2 
 

s+1 
 

s+1 

|ΛT,τ (z2)|xd=0| + ǁΛT,τ  z2ǁ+ + ǁΛT,τ  z1ǁ+ 
s 
T,τ H2ǁ+ + ǁΛ

s
 H1ǁ+ + ǁΛ

s
 wǁ+ + ǁΛ

s
 v

d
ǁ+. 

From (3.25) we deduce 

(3.44) |Λ (z2)|x  =0| + ǁΛ z2ǁ+ + ǁΛ z1ǁ+ 4 ǁΛ Gǁ+ + ǁΛ
s
 F

d
ǁ+ + ǁΛ

s
 F̃ǁ+ 

T,τ d T,τ T,τ T,τ 
s 
T,τ 

T,τ 

v
d
ǁ+ + ǁΛ

s
 wǁ+. 

T,τ 

We have from (3.24), z1 + z2 = 2µΛ−
1
 Op (χ1)v

d
 and from (3.3) we deduce 

T,τ T 

(3.45) τ ǁΛ
s
 Op  (χ1)v

d
ǁ+ 4 |µ|ǁΛ

s
 Op  (χ1)v

d
ǁ+ 4 ǁΛ

s+1
z1ǁ+ + ǁΛ

s+1
z2ǁ+. 

We have OpT(α̃)∗Λ
s

,τ Λ
s

,τ OpT(α̃) = OpT(⟨ ξ′, τ ⟩ 2sα̃
2
) modulo an operator of order 2s + 1.  As α̃ 

is not 0 on the support of χ1, the tangential Gårding inequality of Theorem 3.8 yields 

ǁΛ Op  (α̃)Op  (χ1)wǁ+ + ǁΛ−
N

 wǁ+ 4 ǁΛ
s
 Op (χ1)wǁ+, 

for every N  > 0.  From this and as z2 − z1 = 2iΛ−
1
 Op  (α̃)Op  (χ1)w  from (3.24), we deduce 

(3.46) ǁΛ
s+1

Op  (χ1)wǁ+ 4 ǁΛ
s+1

z1ǁ+ + ǁΛ
s+1

z2ǁ+ + ǁΛ−
N
 wǁ+. 

From the first equation of (3.19) and from (3.3) we have 

τ ǁΛ
s
 Op  (χ1)ṽǁ+ 4 ǁΛ

s+1
Op  (χ1)wǁ+ + ǁΛ

s
   F̃ǁ+ + ǁΛ

s
 wǁ+ 

(3.47) 4 ǁΛ
s+1

z1ǁ+ + ǁΛ
s+1

z2ǁ+ + ǁΛ
s
 F̃ǁ+ + ǁΛ

s
 wǁ+. 

From  (3.24),  (z2)|x  =0   =  iΛ−
1
 Op  (α̃)Op  (χ1)w|x  =0,  arguing  as  from  above  and  using  the 

d T,τ T T d 

Gårding estimate of Theorem 3.5, we have 

(3.48) |Λ
s+1/2

Op  (χ1)w|x  =0| 4 |Λ
s+1/2

(z2)|x  =0|. 

From (3.44)–(3.48) we obtain Lemma 3.5. 

+ 

4 ǁΛ 

+ ǁΛ 

T,τ 
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4 ǁΛ T,τ T,τ T,τ T,τ 

s+3/2 
T,τ T,τ T T,τ 

T,τ T,τ T,τ T,τ T,τ d 

T,τ d T,τ T,τ 

T,τ T T,τ 

T T,τ 

T,τ T T,τ T T,τ T,τ T,τ 

T T 

T,τ T T T,τ T,τ T 

T,τ T,τ T,τ T,τ 

T,τ T,τ T,τ 

T,τ T T,τ T T,τ T,τ 

T,τ T d T,τ d 

T,τ T,τ T,τ 

d T d T T 

 

If Re α − τ∂x ϕ = 0 at (x0, ξ′ , τ0), adding (3.30) to ε(3.32) for ε > 0, we deduce 
d 

 
s+1/2 

0 

s+1/2 
 

s+1/2 

|ΛT,τ (z2)|xd =0| + ǁΛT,τ z2ǁ+ + εǁΛT,τ z1ǁ+ 

4 ǁΛ
s
   H2ǁ+ + εǁΛ

s
  H1ǁ+ + ǁΛ

s
 wǁ+ + ǁΛ

s
 vdǁ+  + ε|Λ

s+1/2
(z1)|x   =0|. 

From (3.25) and as z1 + z2 = 0 on xd = 0, we deduce for ε small enough tat 

(3.49)    |Λ
s+1/2

(z2)|x   =0| + ǁΛ
s+1/2

z2ǁ+  + ǁΛ
s+1/2

z1ǁ+ 

s 
T,τ Gǁ+ + ǁΛ

s
 F

d
ǁ+ + ǁΛ

s
 F̃ǁ+ + ǁΛ

s
 v

d
ǁ+ + ǁΛ

s
 wǁ+. 

We have from (3.24), z1 +z2 = 2µΛ−
1
 Op (χ1)v

d
. Let χ2 ∈ S

0
 supported in χ0 = 1 and χ2 = 1 

on the support of χ1. From symbolic calculus we have 

ǁ(OpT(χ2)ΛT,τ µ )(µΛ−
1
 OpT(χ1)v

d
 ) − Λ

s+1/2
Op (χ1)v

d
 ǁ+ 4 ǁΛ−

N
 v

d
 ǁ+. 

As Op (χ2)Λ
s+3/2

µ−
1
 is an operator of order s + 1/2 as |µ| and |ξ′| are comparable on the 

support of χ2, we deduce 
(3.50) 

τ 1/2ǁΛs 
Op  (χ1)v

d
ǁ+ 4 ǁΛ

s+1/2
Op  (χ1)v

d
ǁ+ 4 ǁΛ

s+1/2
z1ǁ+ + ǁΛ

s+1/2
z2ǁ+ + ǁΛ−

N
 v

d
ǁ+. 

We  have  τ −
1
OpT(α̃)∗Λ

s
,τ Λ

s
,τ OpT(α̃)  =  τ −

1
OpT(⟨ ξ′, τ ⟩ 2sα̃

2
)  modulo  an  operator  of  order  2s. 

As α̃  is  not 0  on the support of χ1, the tangential Gårding inequality of Theorem 3.8 yields 

τ −1/2ǁΛs 
Op  (α̃)Op  (χ1)wǁ+ + ǁΛ−

N
 wǁ+ 4 τ −

1/2
ǁΛ

s+1
Op  (χ1)wǁ+, 

for  every  N  >  0.  From  this  and  as  z2 − z1  =  2iΛ−
1
 Op  (α̃)Op  (χ1)w  from  (3.24),  we  deduce, 

using symbolic calculus and χ2χ1 = χ1, 
T,τ T T 

(3.51) τ −
1/2

ǁΛ
s+1

OpT(χ1)wǁ+ 4 τ −
1/2

ǁΛ
s+1

OpT(χ2)Λ−
1
 OpT(α̃)OpT(χ1)wǁ+ + ǁΛ−

N
 wǁ+ 

4 ǁΛ
s+1/2

z1ǁ+ + ǁΛ
s+1/2

z2ǁ+ + ǁΛ−Nwǁ+, 
as τ −

1/2
Λ

s+1
Op (χ2) is an operator of order s + 1/2. 

T,τ T 

From the first equation of (3.19) and (3.3), we have 

(3.52) τ 1/2ǁΛs 
Op  (χ1)ṽǁ+ 4 ǁΛ

s+1
µ−

1
τ 

1/2
Op  (χ1)wǁ+ + ǁΛ

s
 F̃ǁ+ + ǁΛ

s
 wǁ+ 

4 ǁΛ
s+1/2

z1ǁ+ + ǁΛ
s+1/2

z2ǁ+ + ǁΛs
 wǁ+ + ǁΛ

s
 F̃ǁ+, 

 

from (3.51). 

T,τ T,τ T,τ T,τ 

From  (3.24),  (z2)|x  =0  =  iΛ−
1
 Op  (α̃)Op  (χ1)w|x  =0,  arguing  as  from  above  and  using  the 

d T,τ T T d 

Gårding estimate of Theorem 3.5, we have 

(3.53) |Λ
s+1/2

Op  (χ1)w|x  =0| 4 |Λ
s+1/2

(z2)|x  =0|. 

From (3.49)–(3.53) we obtain Lemma 3.5. 

Now we consider the case q − µ
2
  = 0.  Let ε > 0, we can shrink W  such that |q − µ

2
| ≤ ε⟨ ξ′, τ 

⟩ 2 in W . Note that |µ| ∼ τ  ∼ |ξ′| on W .  Let χ1  be the cutoff defined previously supported on W 
and χ0 supported on W and χ0 = 1 on the support of χ1. By symbolic calculus we have 

(3.54) OpT(χ1)OpT(δ)OpT(ζ′)  =  OpT(δ)OpT(ζ′)OpT(χ1) + [OpT(χ1), OpT(δ)OpT(ζ′)] 

= OpT(q)OpT(χ1) + OpT(r1)OpT(χ1) 

+ OpT(χ0)[OpT(χ1), OpT(δ)OpT(ζ′)] + OpT(r−N ), 

where r1 ∈ S
1
 and r−N ∈ S−

N
 . Observe that µ−

1
χj ∈ S−

1
 for j = 1, 2. 

From (3.21), (3.54), and by symbolic calculus we have 
 
 Dx Op (χ1)w + iτ (∂x ϕ)Op (χ1)w − µOp (χ1)v

d
 = H1 in xd > 0, 

Dx OpT(χ1)v
d
 + µ−

1
OpT(q − µ

2
)OpT(χ1)w + iτ (∂x  ϕ)OpT(χ1)v

d
 = H2 in xd > 0, 

 
 d 

d 

v  = 0 on xd = 0, 
d 

−1 
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2 s+1 2 2 s 

T,τ 

⟨  ⟩  − − ≥ ⟨  ⟩  ∼ | | ∼ |   | 

T,τ 

−N 

T,τ j ε ǁ T,τ T,τ T,τ T,τ T,τ 

d d T,τ 

d T,τ T,τ + T,τ 

d T,τ 

d T,τ T + T,τ + 

T,τ T 1 + 2 T 1 ǁ+ ǁ T,τ T 1 + T,τ 

ε T,τ + T,τ T,τ T,τ + T,τ + 
2 

 

where 

(3.55) ǁΛ
s
  H ǁ 

 
  

≤ C Λ
s
 

 
F

d
ǁ 

 
+ ǁΛ

s
 Gǁ 

 
+ ǁΛ

s
 wǁ 

 
+ ǁΛ

s
 

 
v

d
ǁ 

 
+ ǁΛ

s
 

 
F̃ǁ 

for j = 1, 2 with Cε depends on ε. We compute 

(3.56)    2 Re(H1, iΛ
2s+1

Op  (χ1)w)+ 
T,τ T 

= 2 Re(Dx  OpT(χ1)w + iτ (∂x  ϕ)OpT(χ1)w − µOpT(χ1)v
d
, iΛ

2s+1
OpT(χ1)w)+. 

By microlocal Gårding inequality of Theorem 3.8 we have, using τ ∼ |ξ′| on W 

(3.57) 2 Re(iτ (∂x  ϕ)OpT(χ1)w, iΛ
2s+1

OpT(χ1)w)+ ≥ C0ǁΛ
s+1

OpT(χ1)wǁ2  − CN ǁΛ−
N
 wǁ2

 

for C0 > 0, for all N > 0 and CN > 0. 

From this, (3.27) and (3.56) we obtain 

(3.58) 2 Re(H1, iΛ
2s+1

Op (χ1)w)+ 
s+1/2 

T,τ T 
2 s+1 2 2 s d   2 −N 2 

≥ |ΛT,τ OpT(χ1)w|xd=0| +C1ǁΛT,τ    OpT(χ1)wǁ+ − µ   C2ǁΛT,τ OpT(χ1)v ǁ+ − CN ǁΛT,τ  wǁ  , 

for C1, C2 > 0, for all N > 0 and CN > 0. 
 

We then obtain 

(3.59)    |Λ
s+1/2

Op  (χ1)w 
 

|  + ǁΛ Op (χ1)wǁ 
 

≤ µ C3ǁΛ 
 

Op (χ1)v
d
ǁ2

 
T,τ T |xd=0 

  + C 
s
 

T,τ T 
d s 

+ T,τ T + 
s s d s ˜ 

ε ǁΛT,τ F ǁ+ + ǁΛT,τ Gǁ+ + ǁΛT,τ wǁ+ + ǁΛT,τ v ǁ+ + ǁΛT,τ F ǁ+ , 

for C3 > 0, for all N > 0 and CN , Cε > 0. 
 

Now we compute 

(3.60)    2 Re(H2, iµΛ
2s

 Op  (χ1)v
d
)+ = 2 Re(Dx  Op  (χ1)v

d
, iµΛ

2s
 Op  (χ1)v

d
)+ 

T,τ T d T T,τ T 

+ 2 Re(µ−
1
OpT(q)OpT(χ1)w − µOpT(χ1)w + iτ (∂x  ϕ)OpT(χ1)v

d
, iµΛ

2s
  OpT(χ1)v

d
)+. 

From (3.27) we have 2 Re(Dx Op (χ1)v
d
, iΛ

2s
 Op (χ1)v

d
)+ = 0 as v

d
 = 0 on xd = 0. 

d T T,τ T 

As Cε
2
  ξ′, τ  

2
 µ−

2
(q µ

2
)

2
 ε

2
  ξ′, τ  

2
, on W  with C > 0, using that τ µ ξ′ , we 

have by microlocal Gårding inequality of Theorem 3.8 

2 Re(µ−
1
OpT(q − µ

2
)OpT(χ1)w, Λ

2s
 µ−

1
OpT(q − µ

2
)OpT(χ1)w)+ 

2 s+1 2 −N 2 

 
Then we have 

≤ C4ε ǁΛT,τ  OpT(χ1)wǁ+ + CN,εǁΛT,τ  wǁ+. 

(3.61)      2 Re(µ−
1
OpT(q)OpT(χ1)w − µOpT(χ1)w, iµΛ

2s
  OpT(χ1)v

d
)+ 

s d s+1 −N 

 
for C5 > 0. 

≤ ε|µ|C5ǁΛT,τ OpT(χ1)v  ǁ+  ǁΛT,τ  OpT(χ1)wǁ+ + CN,εǁΛT,τ  wǁ+  , 

From microlocal Gårding inequality of Theorem 3.8 and as ∂xd ϕ(x0) > 0, we have 
(3.62) 

2 Re(iτ (∂x  ϕ)OpT(χ1)v
d
, iµΛ

2s
 OpT(χ1)v

d
)+ ≥ µ

2
C6ǁΛ

s
,τ OpT(χ1)v

d
ǁ2   − CN ǁΛ−

N
 v

d
ǁ2 , 

where C6 > 0 is independent of ε, for all N > 0, CN > 0. 
 

From (3.55) and (3.60)–(3.62) we obtain 

µ
2
ǁΛ

s
 Op (χ )v

d
ǁ2

 ≤ |µ|εC ǁΛ Op (χ )v
d
 Λ

s+1
Op (χ )wǁ   + C ǁΛ wǁ 

+ C
 

ǁΛ
s
 F

d
ǁ  + ǁΛ

s
  Gǁ + ǁΛ

s
 wǁ + ǁΛ

s
 v

d
ǁ   + ǁΛ

s
 

  
F̃ǁ . 

s 

+ + + + + + , 

T,τ N,ε + 

+ + 
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ǁ 

T,τ T,τ T,τ T,τ 

T,τ T,τ T,τ T,τ 

\ 

c 

0 

2 

T,τ T 1 + 7 ǁ T,τ T 1 

ε T,τ T,τ T,τ T,τ T,τ + 

T,τ T T,τ T d T,τ T 

2 

τϕ τϕ τϕ τϕ 

 

We deduce 

µ
2
ǁΛ

s
  Op (χ )v

d
ǁ2

 

 
2 

  
s+1 2  

  
≤ ε C Λ Op (χ )wǁ 

(3.63) + C 
   

Λ
s
 F

d
ǁ + ǁΛ

s
 Gǁ + ǁΛ

s
 wǁ + ǁΛ

s
 v

d
ǁ + ǁΛ

s
 

  
F̃ǁ . 

By the linear combination (3.63)+ε(3.59) and fixing ε sufficiently small, from (3.3) and τ suffi- 
ciently large, we deduce 

 
s+1/2 

(3.64)    τ ǁΛ
s
   Op  (χ1)v

d
ǁ+ + |Λ Op  (χ1)w|x  =0| + ǁΛ

s+1
Op  (χ1)wǁ+ 

s 
T,τ F

d
ǁ+ + ǁΛ

s
 Gǁ+ + ǁΛ

s
 wǁ+ + ǁΛ

s
 v

d
ǁ+ + ǁΛ

s
 F̃ǁ+. 

From the first equation of (3.19) and from (3.3) we have 

(3.65) τ ǁΛ
s

,τ OpT(χ1)ṽǁ+ 4 ǁΛ
s+1

OpT(χ1)wǁ+ + ǁΛ
s

,τ F̃ǁ+ + ǁΛ
s
,τ wǁ+ 

T T,τ 

s 
T,τ F

d
ǁ+ + ǁΛ

s
 

T 

Gǁ+ + ǁΛ
s
 

T 

F̃ǁ+ + ǁΛ
s
 wǁ+ + ǁΛ

s
 v

d
ǁ+, 

from (3.64). From (3.64) and (3.65) we obtain Lemma 3.5 in the case α = 0. 
 
 

4. Logarithmic stability 

 
The exponential estimate of Proposition 2.1 is the  consequence of the two following results. 
First a global Carleman estimate with an observability term and second an estimate of the 
observability term coming from the dissipation. 

Let ω0 and ω1 be open sets such that ω1 ⋐ ω0 ⋐ ω, and, from (1.2), we have b(x) ≥ b− > 0 

for x ∈ ω. In what follows we denote by ǁ.ǁ0 := ǁ.ǁL2(Ω). 

Theorem 4.1. Let Ω be an open bounded set of R
d
 with smooth boundary. Let ϕ ∈ C (R

d
) be 

a function that satisfies the sub-ellipticity assumption in Ω ω1. Then there exist τ∗ > 0 and 
C > 0 such that 

τ 3/2 ǁe rǁ0+τ 
 

3/2 ǁe uǁ0 ≤ C 
  

τ ǁe gǁ0 + τ ǁe f ǁ0 + τ 
 

3/2 ǁe rǁL2(ω0) + τ 
 

3/2 ǁe uǁL2(ω0 )    , 

for  all  u, r ∈ C ∞(Ω)  which  satisfies  (3.1),  u · n|Γ = 0,  τ  ≥ τ∗,  and  µ  satisfying  (3.3). 

Remarks 4.1. It is classical that there exist ψ such that ∂nψ(x) < 0 for x ∈ ∂Ω and ∇ψ /= 0 
for x ∈ Ω\ ω1 (see Fursikov-Imanuvilov [12]). From Lemma 3.2, ϕ = e

λψ
 satisfies sub-ellipticity 

condition in Ω \ ω1 for λ sufficiently large. In what follows we fix such a function ϕ. 

Proposition 4.1.  Let (u, r) ∈ D(A ) solution of (Ad + iµ)(u, r) = (f, g) ∈ H.  Then we have 

(4.1) |µ|ǁ
√

buǁ2  ≤ Cǁ(u, r)ǁH ǁ(f, g)ǁH 

 
 

for some constant C > 0. 

|µ|ǁrǁL2(ω0)  ≤ Cǁ(u, r)ǁH ǁ(f, g)ǁH , 

 

From these two results we are able to prove Proposition 2.1. 

 
Proof of Proposition 2.1. Noting that the resolvent problem (A − iµ)(u, r) = (f, g) is written as 
follow  

 ∇r + iµu = f − bu in Ω 

 
div(u) + iµr = g in Ω 

u.n = 0 on Γ. 

This allows us to apply Theorem 4.1. So let C2 = maxx∈Ω ϕ(x) and C1 = minx∈Ω ϕ(x) we 
deduce from the Carleman estimate of Theorem 4.1 that 

(4.2) ǁrǁ0 + ǁuǁ0 4 e 
(C2−C1)τ  

 
 
ǁgǁ0 + ǁf + buǁ0 + ǁrǁL2(ω0) + ǁuǁL2(ω0)  . 

4 ǁΛ 

4 ǁΛ 

+ 

+ + + + 

τϕ τϕ 
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1/2 1/2 

′ 

c 

| |ǁ ǁ   ≤ | | | | 

ǁ  ∇  ǁ ǁ ǁ ǁ ǁ 

τϕ τϕ 3/2 τϕ 3/2 τϕ 

ǁ ǁ ǁ ǁ 

H H 

2 2 

 

T√aking  τ  =  |µ|/c0  accordingly  with  (3.3),  by  the  estimates  of  Proposition  4.1  and  as  ǁbuǁ0  4 

ǁ buǁ0, we have 

(4.3) ǁ(u, r)ǁH  4 Ce
K|µ| ǁ(f, g)ǁH + ǁ(u, r)ǁ ǁ(f, g)ǁ , 

which yields  ǁ(u, r)ǁH  4 e
K

 |µ|ǁ(f, g)ǁH .  This  is the sought result. Q 

Proof of Proposition 4.1.  From equation, we have −∇r + iµu − bu = f  taking the inner product 
with u,  we obtain −(∇r, u) + iµǁuǁ2 −(bu, u) = (f, u).  Integrating by parts, we have −(∇r, u) = 
(r, div u) as u · n = 0 on ∂Ω. Using the second equation − div u + iµr = g, we have −(∇r, u) = 
(r, iµr − g). We thus obtain 

−iµǁrǁ − (r, g) + iµǁuǁ  − (bu, u) = (f, u). 

Taking the real part of this equation we have   µ   
√

bu  
2
       (f, u)  +  (r, g) .  This implies the 

first estimate of (4.1). 

Let χ ∈ C ∞(R
d
) such that χ(x) = 1 for x ∈ ω0 and χ supported in ω. Taking the inner 

product between − div u + iµr = g and χ
2
r, we obtain (− div u, χ

2
r) + iµǁχrǁ2 = (g, χ

2
r). 

Integrating by parts we have (− div u, χ
2
r) = (u, χ

2
∇r) + (u, 2χr∇χ) and by equation −∇r + 

iµu − bu = f we have 
2 2 2 2 2 

−iµǁ χuǁ — (u, χ bu) − (u, χ f ) + (u, 2χr∇χ) + iµǁχrǁ   = (g, χ r). 

Taking account that b ≥ b− in ω, thus on the support of χ, we have 

|µ|ǁχrǁ2 4 ǁ(u, r)ǁHǁ(f, g)ǁH + ǁu∇χǁǁχrǁ + |µ|ǁ χuǁ2 + ǁ
√

buǁ2. 

We can estimate   u   χ   and χu by 
√

bu and by the first estimate of Proposition 4.1 we 

obtain the second estimate.  Q 

 

Proof of Theorem 4.1. Let x0 ∈ Ω \ ω1, from Corollary 3.1 if x0 ∈ Ω or from Theorem 3.9 if 
x0 ∈ ∂Ω we obtain, in both cases, an open neighborhood (in R

d
) of x0, V such that 

(4.4) τ 
3/2

ǁe
τϕ

rǁ0 + τ 
3/2

ǁe
τϕ

uǁ0 ≤ C (τ ǁe
τϕ

gǁ0 + τ ǁe
τϕ

f ǁ0) , 

for u, r ∈ C ∞(V ).  By compactness of Ω\ ω1 we can find a finite recovering (Vj )j∈J  of Ω\ ω1.  Let 
c 

(χj)j∈J  be a partition of unity subordinated to (Vj )j∈J  such that 
Σ 

j∈J χj(x) = 1 for x ∈ Ω\ ω1. 
Let uj  = χju and rj  = χjr  where (u, r) solution to  (3.1), u · n|Γ = 0.  We have 

— ∇rj + iµuj = χjf − r∇χj 

— div uj + iµrj  = χjg − u · ∇χj . 

We can apply the Carleman estimate (4.4) in each Vj  and we obtain 

τ 
3/2

ǁe
τϕ

rj ǁ0 + τ 
3/2

ǁe
τ ϕ

ujǁ0 4 τ ǁe
τ ϕ

(χjg − u · ∇χj)ǁ0 + τ ǁe
τ ϕ

(χjf − r∇χj )ǁ0 

4 τ ǁe
τϕ

gǁ0 + τ ǁe
τϕ

uǁ0 + τ ǁe
τϕ

f ǁ0 + τ ǁe
τϕ

rǁ0. 

We have 

τ 3/2ǁeτϕrǁ0  + τ 3/2ǁeτϕuǁ0 

4 τ 3/2 ǁe rj ǁ0 + ǁe ujǁ0  + τ ǁe rǁL2 (ω ) + τ ǁe uǁL2(ω ) 
0 0 

j∈J 

4 τ ǁe
τ ϕ

gǁ0 + τ ǁe
τ ϕ

uǁ0 + τ ǁe
τ ϕ

f ǁ0 + τ ǁe
τ ϕ

rǁ0 + τ 
3/2

ǁe
τ ϕ

rǁL2(ω0)  + τ 
3/2

ǁe
τ ϕ

uǁL2(ω0). 

This gives the sought result as we can absorb the term τ e
τϕ

u 0 + τ e
τϕ

r 0 with the left hand 

side. Q 

Σ   
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