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Carleman Estimate and Application to the Stabilization of a Dissipative Hyperbolic
System

KAIS AMMARI, FATHI HASSINE, AND LUC ROBBIANO

Asstract. We study the problem of stabilization for the acoustic system with a spatially
distributed damping. Without imposing any hypotheses on the structural properties of the
damping term, we identify logarithmic decay of solutions with growing time. Logarithmic
decay rate is shown by using a frequency domain method and combines a contradiction
argument with the multiplier technique and a new Carleman estimate to carry out a special
analysis for the resolvent.
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1. Introduction

We consider the following system of equations:
vu-+ r+bu=g inQ R,
re+divu=0, in QxR
(1.1) . un= 0, an I R,
u(0, x) = u°(x), r(0,x) = r’(x), x € Q,
where Q is a bounded domain in Rd, d = 2, with a smooth boundary I, div = V- is the
divergence operator and b € L*(Q), with b = 0 on Q and such that

(1.2) 3 b— >0 such that b = b_ on w.

Here w £ @ stands for the open subset of Q on which the feedback is active. As usual n denotes
the unit outward normal vector along .

The system of equations (1.1) is a linearization of the acoustic equation governing the propa-
gation of acoustic waves in a compressible medium, see Lighthill [21, 22, 23], where b u represents
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Key words and phrases. logarithmic stability, Carleman estimate, resolvent estimate, dissipative hyperbolic
system, acoustic equation.



2 KATS AMMARI, FATHI HASSINE, AND LUC ROBBIANO

a damping term of Brinkman type. This kind of damping arises also in the process of homog-
enization (see Allaire [1]), and is frequently used as a suitable penalization in fluid mechanics
models, see Angot, Bruneau, and Fabrie [4]. Our main goal is to prove the logarithmic decay of
solutions of (1.1) with growing time.

Let Lz(Ql denote the stagdard ilbert space of square integrable functions in Q and its closed
subspace Lm (Q) = {f € L°(Q) : Qf(x) dx = 0}. To avoid abuse of notation, we shall write

Il - Il for the L*(Q)-norm or the LZ(Q)d-norm.

Denoting H = (LZ(Q))d x 12 (Q), we introduce the operator
m

0 , ¥
A= div OV :D(A)= (u,r) €EH, (Vr,divu) € H, u- =0 Cc H - H,
nir
and N

B = 05 € L((L(Q))%, H), B* = \/b‘ 0 € L(H, (L(Q)?).

We recall that foru € (LZ(Q))d with divu € LZ(Q), u njr make sens in H-?

Raviart [13, Chp 1, Theorem 2.5]).

(I (see Girault-

Accordingly, the problem (1.1) can be recasted in an abstract form:
Z(t) + Az(t) + BB*z(t)=0, t>0
1. t 7 ’
(1.3) Z(0) = 2°,
where Z = (u, r), or, equivalently,

Zi(t) = AZ(t), t >0,
z(0) =2,

with Ay = —A - BB* with D(A,) = D(A).

(1.4)

It can be shown (see [2]) that for any initial data (W° r°) € D(A the problem (1.1) admits
a unique solution
(u, r) € C([0, @0); D(A)) N C'([0, e0); H).
Moreover, the solution (u, r) satisfies, .the energy identity
. 5

(1.5) E(O) — E(t) = " buls)” ds, forallt=0
o) (L2(Q)d
with 1
(1.6) E(t) = = I(u(t), r(t))ll2 ,Vt=0,
2 H
where we have denotefd s,
J
((u,r), (v, p)) n (u(x).v(x) + r(x)p(x)) dx, Il(u, Ny = lu()|” +r2(x)  dx.
= Q Q

Using (1.5) and a standard density argument, we can extend the solution operator for data
(u®, ) B. Consequently, we associate with the problem (1.1) (or to the abstract Cauchy

problems (1.3) or (1.4)) a semi-group that is globally bounded in H.

As the energy E is nonincreasing along trajectories, we want to determine the set of initial
data (uo, ro) for which
(1.7) E(t) > 0 ast — co.

Such a question is of course intimately related to the structural properties of the function b,
notably to the geometry of the set w on which the damping is effective. In fact, when the damping
term is globally distributed Ammari, Feireisl and Nicaise [2] showed an exponential decay rate of
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the energy by the means of an observability inequality associated with the conservative problem

of (1.1). Besides, it is also shown that if the damping coefficient is not uniformly positive definite

(i.e inf b(x) = 0) then the system (1.1) is not exponentially stable. In this paper we consider
x€Q

a damping which is locally distributed over the domain Q without any geometrical control
condition in particular this including the case when the damping coefficient is not uniformly
positive defined. So we expect to prove a weaker decay rate then given in [2]. More precisely,
we prove a logarithm decay rate of the energy. Our approach is based in the frequency domain
method which consist to prove an exponential loss on the resolvent estimate [7, 6, 10] where the
main tool for establishing a such decay is the Carleman estimate.

The theory of Carleman estimates for scalar equations is rather well developed by now. We
refer to Hormander [14] and Lebeau and Robbiano [17, 18, 19] for the second-order elliptic and
hyperbolic PDE’s and to Isakov [15] second-order parabolic and Schrédinger operators. However,
it turned out that Carleman estimates for systems in more than two variables are difficult to
obtain and still somehow very limited: The first results to systems go back to then Carleman’s
original work [9] which is written for a system in two independent variables, and we refer to
Calderdn [8] and Kreiss [16] for more relevant systems. Recently, Eller and Toundykov [11] have
established a Carleman estimate for some first-order elliptic systems. This estimate is extended
to elliptic boundary value problems provided the boundary condition satisfies a Lopatinskii-type
requirement. In this paper we provide a Carleman estimate for a system of first-order which does
not fit into the same framework as that of Eller and Toundykov [11]. Unlike their approach, our
method is based into the Hérmander approach which is essentially based on the sub-ellipticity
condition and the Garding inequality in order to control the non-elliptical regions.

The paper is organized as follows. Section 2 summarizes some well known facts concerning
the acoustic system (1.1). In section 3, we establish a new Carleman estimate needed for the
stabilization problem of the system (1.1). In Section 4, we prove the logarithmic stability for
the system (1.1).

2. Preliminaries

We start with a simple observation that the problem (1.1) can be viewed as a bounded (in H)
perturbation of the conservative system

u+Vr=0, inQ xR,
re+divu=0, in QxR

which can be recast as the standard wave equation

re — Ar = 0.
Consequently, the basic existence theory for (1.1) derives from that of (2.8). Hence A, generates
a Cy-semigroup (S(t)):=o in H that is even of contraction because A, is dissipative (see (1.5)).

(2.8)

The first main difficulty is that the operator A; possesses a non-trivial (and large) kernel
that is left invariant by the evolution. Indeed if (u, r) belongs to kerA, then itis solution of
the “stationary” problem

(2.9) Vr+bu=0,divu=0, in Q.
Thus multiplying the first identity ?f (2.9) by u—and integrating over Q yields
(Vr-a+b|u|®)dx = 0.
Q

By an integration by parts, using the fact that u is solenoidal and the boundary condition
u-n=0onT, we get Il



4 KATS AMMARI, FATHI HASSINE, AND LUC ROBBIANO

and therefore we obtain )

blu|?>dx = 0.

o)
In other words, we have
u=0 onsuppb,

and coming back to (2.9), we find

Vr=0.
Accordingly, we have shown that

kerAy = {(u,0) € D(A) | divu =0, Ulsypppr =0, u-n|r =0}
For shortness set E = ker A; and introduce also its orthogonal complement Hy in H.
It is easy to check that
( Adlw, s), (u, r)) =0 for any (w, s) € D(A), (u,r) € E;

in particular, the semi-group associated with (1.1) leaves both E and H, invariant. Consequently,
the decay property (1.7) may only hold for initial data emenating from the set H,.

The following observation can be shown by a simple density argument:

Lemma 2.1. The solution (u, r) of (1.1) with initial datum in D(Ay) satisfies

2
(2.10) E(t)=- blul dx=o.
Q

Therefore the energy is non-increasing and (1.5) holds for all initial datum in H.

As already shown in the above, the strong stability result (1.7) may hold only if we take the
initial data
(U, r°) € Ho = ker[Ag]*.
There are several ways how to show (1.7), here we make use of the following result due to Arendt
and Batty [5]:

Theorem 2.1. Let (T(t));=o be a bounded Cy-semigroup on a reflexive Banach space X. Denote
by A the generator of (T(t)) and by o(A) the spectrum of A. If a(A) N iR is countable and no
eigenvalue of A lies on the imaginary axis, then lim T (t)x = 0 for all x € X.

t—+oo

In view of this theorem we need to identify the spectrum of A, lying on the imaginary axis,
and we have according to [2]:

e Suppose that |w| > 0. If Ais a non-zero real number, then iA is not an eigenvalue of A,.
e Suppose that |w| > 0. If A is a non-zero real number, then jA belongs to the resolvent
set p(Ay) of A,

Now, Theorem 2.1 leads to

Corollary 2.1 ([2]). Let (u, r) be the unique semi-group solution of the problem (1.1) emanating
from the initial data (uo, ro) E€H. Let Pg be the orthogonal projection onto the space E = ker[A 4]
in H, and let

(w, s) = Pe(u® r°).
Then
I(u, r)(t, ) = (w, s)ll;, > 0ast— oo

We now state the main result of this article. We begin by a proposition on an estimate of the
resolvent.
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Proposition 2.1. There exist C > 0 such that for every |u| = 1, and (f, g) € H = (L*(Q))? x
Lzm(Q), the solution (u, r) € D(A) of (Ag + iu)(u, r) = (f, g) satisfied

(2.11) l(u, Nll, < CeSHIE g)ll,y,

or equivalently

(2.12) Ay + i)l < CeIM.
We recall the following result.

Theorem 2.2. Let B a generator of a Co-semigroup (T(t))=o on H, a Hilbert space. We

assume
(2.13) T (¢)lly is uniformly bounded with respect t = 0O,
(2.14) B +iu is invertible for every u € R,
(2.15) There exists C > 0 such that (B + iu)~ll, < Ce“I¥l.
Then there exist C, >0 such that for all u € D(B) we have

I1Bully_

< >
I7(t)ulln < Clln(3 1) Vtz0.

One has also, for every k = 1 there exists C, >0 such thatif u € D(Bk), we have
k
e uy,
IT(tullh < C, ——
In"(3 +1t)
A weak version of this theorem was first proven by Lebeau [17], next Burq [6] gives the precise
statement. We also refer to Batty and Duyckaerts [7] for some generalizations.

On Hy = ker[A4]+, as seen above A, + iu is invertible on Hy, in fact A, is invertible on
Hy and & iu is invertible on H for u = 0. The semigroup is bounded as the norm on H is non-
increasing by (1.5). With Proposition 2.1, we can apply Theorem 2.2. We then obtain.

Theorem 2.3. Let (u, r) be the unique semi-group solution of the problem (1.1) emanating from
the initial data (uo, ro) € ID A Let P: be the orthogonal projection onto the space E = ker[ A,]
in H, and let

(w, 5) = Pe(u’, r°).
Then
NAL(u®, )l

c Vtz0,

"(LI, r)(t/ ') - (W/ s)”H

IA

In(3 +t)
for some C > 0 independent of (uo, ro).

Proposition 2.1 is obtained from Carleman estimates. We need two kinds of such estimates,
first an estimate far away the boundary, second an estimate up to the boundary. Both estimates
are proven in the next section.

3. Carleman estimates

Let Q be an open bounded subset of R% Let (u,r) be a solution of the resolvent problem
(Ao +iu)(u,r) = (f, g) € (Lz(o))"z L* fQ), that is

-Vr+iuu=fin Q,

(3.1) . . .
—divu+iur=gin Q.



6 KATS AMMARI, FATHI HASSINE, AND LUC ROBBIANO

Here we moreover assume that (u, r) are supported in K € Q where K is a compact set. Taking
the divergence of the first line and using that divu = iur - g, we obtain

(3.2) - Ar - p’r = iug + divf in Q.

We have to give a Carleman estimate for the solution of this type of equation. This is done in
Section 3.2. to do that we need some tools on pseudo-differential operators we recall below.

3.1. Pseudo-differential operators. We start this section with some useful notations. If
a=(ay...,a,) € N" is a multi-index, we introduce the following notation:

E=Er...6, 0%=05...8;, D*=D7'...D)" and |a| =a; +- - +a,
0
where Dy = — N = -i0x . We denote by G:=(V) the set of functions of class C® compactly
supported in V. kFor a compact subset K of R", we note by (>(K) the set of functions
in C.~(R") supported in K. The space LZ(V) is equipped with the usual norm denoted by
b . For s EN we set H(V)= {u €ED’(V); 0°u €L*(V) Vd | S } The Schwartz space
S(R"‘) is the set of functions of C> class with rapid decay rate. Its dual, S'(R") is the

set of temperate distributions. If u € S (R") its Fourier transform denoted by & is defined
) =

by a(§) = e"%u(y)dy where y.§ = y:&; stands for the euclidean inner production in
Rn i=1

R". Let f and g be two smooth functions defined in V x R”, we define the Poisson bracket

=

by {f. g} = (0g;f.0x;9 - 0, f.0¢;9). And if A and B are two operators we define there
j=1

commutator by [A,B] =A° B-B-° A.

Definition 3.1. Let a(., ., t) € C®(R" x R") where t = 1 is a large parameter, such that for

every muti-index a, 8 € N" we have
a 68 m—18| n n

[0x0¢a(x, & T)| < Cop (& T) , VxeER ,VEER ,Vr=21,

1
where we denoted by (£T) =  +T°)Z.In this case we say that a is a symbol of order m and
2

we write a € S. We o8/ principal symboIEf a € S the equivalence class of a in S™/S™-".
r T T T

T
We also define S~ = S" and §*> =
T T T T
reR reR

Definition 3.2. We define the pseudo-differ‘j.ntia/ operator of order m by

1 i
alx, D, T)u(x) = Op(a)u(x) = . . €*falx &T)a(€)d§, vueS(R"),
(2m)"  Rn

where a € S™. The set of the pseudo-differential operator of order m is denoted by W". If
T T
A € W7, we denote by 0,(A) his principal symbol.

Remarks 3.1. Let s € R for u € S’(R") we set the following norm
S S S
lull, s = A ully with A := Op({ & T) ).
Hence we can define the corresponding space
H{R") = {u € S(R"); llull_ s < co}.
Theorem 3.1. Let s € R and a(x, & t) € S”, then the operator Op(a) : H -—— H-" maps
T T T

continuously and uniformly for t > 1.
Lemma 3.1. Let m € R and a; € S”~/ with j € N. Then there exist a € S such that
T

T

=
VNEN, a- aq€ST N
j=0
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=
We then write a ~ a;. The symbol a is unique up to STt in the sens that the difference of

J
two symbols is in s for all M € N. Hence, we identify a, with the principal symbol of a.
Theorem 3.2. Let a € S” and b € S™, then Op(a) © Op(b) = Op(c) with c € ST  which
admits the following asymptotic expargbn .

clx, § ) ~ 0%a(x, & 1)0°b(x, & T).
ilolat ¢ x

1

Theorem 3.3. Let a € S™ and b € S™, then [Op(a), Op(b)] = Op(c) with c € S™™ ' and

principal symbol

1
olc)lx & ) = Ha, b}(x & 1)

which admits the followlg asymptotic expansion
clx, ) ~ 0%l(x, & t)d%(x, & T) - “
Oc b(x, & T)0 a(x, & 1) .

it ¢ x
o
Theorem 3.4. Let a € S”, then Op(a)* = Op(b) with b € S™ which admits the following
T T

asymptotic expansion = 1
b(x, & t) ~

0%0%a(x, & 1).
ilalgl &
o

In particular we have o,(Op(a)*) = a.

Theorem 3.5 (Garding inequality). Let K be a compact subset of R" and a(x, & 1) € S;", of
principal symbol a,,. We suppose that there exist C >0 and R >0 such that

Rean(x, )2 C(&TY™, VxEK EER", 21, (1) =R
Then for any 0 < C < C there exists t« >0 we have
Re(Op(a)u, u)i2rny = Cllully 5, Vu€ C=(K), T2 tx

3.2. Local Carleman estimate away from the boundary. We set the operator
P(x, D) = -u* - B,
a real values function ¢ and then we define the conjugate operator by
P,(x, D) = €*P (x, D)e—",
where u is a parameter that depends on t, precisely we suppose that
(3.3) CoT < |u| £cot VT 21,
for some constants ¢ >cy > 0. Then we have
Py(x, D)W = —’w - Aw + 2TV ). Vw - T°|Vd|?w + TAPW

whose symbol is given by

o(Py) = |€]? + 2itV.E - T|VP|? + 1A - U
and with principal symbol py given by

Po(X, & T) = |E+itV|> - u” = [§]> + 2itV.E - T*|V|* - 1.

We define the following self-adjoint operators

Py + P -p &
Q=*""¢ and Q=" 82
2 2i
with principal symbols respectively
Qax §7) = 1§ - T°IVeI? - *  and qulx £ T) = 2tV.E

Noting that P, = Q, +iQ; and py = g, +iq;.
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We assume that the weight function ¢ € C °(R", R) satisfies the following sub-ellipticity
condition in K a compact set of RY if

(3.4) [Vep| >0in K
V(x & 1) € KxR"x[1,+0); py(x, £ 1) =0=={q5 q:}(x, 1) 2 C(§ 1) * >0.
Note that the constant C does not depend on u assuming (3.3).
Remark 3.1. Noting that
Pelx, £ T) =0 &= |€§? = T°|V|? +u® and V.€ = 0.

Lemma 3.2. Let ¢ € C>(R", R) such that |Vy| >0 in K. Then for A large enough ¢ = "’
satisfies the sub-ellipticity assumption in K.

Proof. We can assume that )= 0, as we can add a constant to ¢ and ¢ is multiplied by a
constant 8. Changing t in /8 we can see that sub-ellipticity condition is also satisfied for a
different constant C. A straightforward calculation shows that
{02 a1} ET) =4t 6D E+T2 YU H)p'V .
Using the fact that ¢ = e then we have
Vo =AVYs, ¢, =Ad; and ¢ =AY +A by, 1<jk<n,
therefore we obtain

3 3 2 4 2t ” -2t 7 -1 -2 2
{92 g1} =414 ¢ AT |VY| +71 fle,U) Vo +|agl S E+A ol [VY.gl .

Now if py = O then [§]%= T’|VP|2 + 1 = TA°P°|VY|? + i, which gives that
-2t ” " 2 2 -2 2 2 2 -2
Ap| & E=- | T|VY| +|Ap] pn z=-Ct |VyY| +A .

Besides, we have
o (VYIVY = -’ |V
Then it follows from these estimates that

4 2t "
(g 02 = 40 B ATVl +T (V) T+ €

2 -2

33 2 4 2 2
=24tA ¢ (At |VY| -Ct |VY| -Ct A ).

Since |Vy¢| > 0 in the compact set K then for A large enough we have {g,, q,} 2 C;\r3 >0. As
|€] is comparable to T on p, =0, we obtain the result. Q

Lemma 3.3. Let f and g be two real continuous functions defined in K such that f is positive
d e
on a compact subset K of R and verifies that

Vy €K fly)=0==g(y)=L>0.

We set h, = kf + g, then for «k sufficiently large then h, = C for some constant C > 0.

Proof. Let yy € K to prove the result we distinguish two cases.

Case 1: We assume f (y,) = 0. Then according to the assumption made in this lemma we
have h,(yo) = glyo) = L. Then there exists a neighborhood of y,, V,, such that for y € V,, and
every k >0, hly) = gly) = L/2. Let k,, = 1.

Case 2: We assume f(y,) > 0. Since f and g are continuous, there exist V,, a neighborhood
of yo and C, G; > 0 such that f(y) = C; and |[g(y)] < C, for all y € V,,. Then for all
K= (L+G)/Cy, hly) = L. Let ko= (L + G)/C;.

We cover K, by compactness argument, by a finite number of such neighborhoods V,,, ..., V,,
with associated k; = k,,. Taking k = max {k; } we have h(y) = L/2 on each V,;, then on K.
1<j=<p

This completes the proof. Q
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Lemma 3.4. Let V an open bounded subset of R? and k > 0. We suppose that ¢ verifies the
sub-ellipticity assumption on K and we set p, = K(q; +q21) +1{q, q1}. Then for k large enough
there exists C >0 such that for all (x, &) € K x RY and t = 1 we have oux & = C( &)~

Proof. First we assume [€| large with respect t, that is || = Bt for 8 sufficiently large, to be
fixed below. We have
pux ) = K(a” +a’) + T{a i}
=K 2 2 2 2 2 2 2 2t 4t "
l§] -(t |Vl +u) +4dkt (V&) +4t &P §+1 (VP)dp Vo

2 V|2 2, 2
et 1 (1+<| 6(f)|2)+u) +4kT (V.6)° +41” ‘§p s+ (Vo) 9"V

(3.5)

’ a 2 2 4
C(&r)y —Cr |¢] -Cr,

I\

2 2 2
if 8 is sufficiently large such that (T(1+|Vo|7) + 1)

) < 1/2 and for some constants C, C > 0.
If 8 is sufficiently large we obtain Cr2|{<|g’+r2'r4 < C(&T1)%/2, from (3.5) we obtain p,(x, &) =
C'(&t)*4 for C' > 0. This fixes 8.

Second we assume |¢| < Bt . As p, is homogeneous of degree 4 in (§ 1, u), we can prove the
estimate on K" = {(x, & T, u) € K xR x [0, +00) xR, |2+t +p> =1, |§] <61, cor < |u| <
coT} taking into account of (3.3). As K’ is a compact set, we can apply Lemma 3.3 by taking
f=g5+q1and g = t{g, q1}. This completes the proof. Q

Theorem 3.6. Let Q be an open bounded set of R" and ¢ be a function that satisfies the

sub-ellipticity assumption in K. Then there exisg* >0 and C >0 such that

(3.6) 21e™rl? + tlle™®Vrl? + -1 llecp Darll2 < Cllecs Prll2.
0 0 [0] 0
a=2

for all r € G=>(K), T = T« and u satisfying (3.3).

This theorem is classical, and we can find in Hérmander [14]. Here we give a proof to be
complete.

Proof. Let’s take w = e™r then Pr = f can be written as follow Pygw = g = ferd’. Since
g = Q,w+iQ,w and Q, and Q, are symmetric then we have
2

2 2
lQ,wlly + llQiwlly + i(Qiw, Qow) — i(Qaw, QW)
(QZQZW/ W) + (QIQIWI W) + i(onlwl W) - i(Q]_QzW, W)

(3.7) = Qj +sz+i[ab Q] ww.

ligll,

We fix k large enough such that the statement of Lemma 3.4 is fulfilled, then for t sufficiently

large satisfying kT~ < 1 then from (3.7) we obtain
(3.8) ' k(Q4+ Qp+it[Q ,Q hw,w < ligl?
Since the principal symbol of K(pz+q2)+it[Q2, Q] is given by p.(x, & ) = K(q2+q12)+t{q2, g1}
then from Lemma 3.4 we have p(x, & ) = C( & T) * therefore by Garding inequality (Theorem
3.5) it follows that

Re «k(Q5+Q%)+it[Q, Q] w,w = wli?,.

Combining this inequality with (3.8) we find

(3.9) T w2, < liglie.

which reads =

(3.10) Iwl? + TIvwli? + t-* IDawll> < Cllecofll>.
0 0 0 0

lor|=2
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Since we have
e*’D,r = (D; + itd; p)w, e"®D;Dyr = (D; + itd,;¢)(Dy + iTd )W,

then we have

(3.11) tle®vri? < 3wk + TV w2
o CT 0 0
and
1 = >
(3.12) T~ llecp Darll2< C "t Bwll 2+ TlIVWIl 2+ T -1 1D avll 3.
0 0 0 0
|al=2 |a|=2
Thus, estimate (3.6) follows by replacing (3.11) and (3.12) into (3.10). This concludes the
proof. Q

Theorem 3.7. Let Q be an open bounded set of R’ let K € Q and ¢ be a function that satisfies
the sub-ellipticity assumption in K. Then there exist T+ >0 and C > 0 such that

3 o™ 12 t$ 2 2 ™ 112 $e)2
tlle rliig+ tlle™Vriify< Ct™  lle ™ gli§ + lle™™fll5

for all r € C>(K) which satisfies (3.2), T = t« and u satisfying (3.3).

From this theorem we can deduce this corollary.

Corollary 3.1. Let Q be an open bounded set of Rd, let K €@ Q and ¢ be a function that satisfies
the sub-ellipticity assumption in K. Then there exist T+ >0 and C > 0 such that

3., 112 301 57,12 v 112 2 ™ _112 P2
tlleully + Tolle “riify+ tlle ™ Vrilcy< Cr™  lle ™ glig + lle™™fll5

for all r,u € C>(K) which satisfies (3.1), T = t« and u satisfying (3.3).

Proof. As r satisfies (3.2), with Theorem 3.7, we only have to estimate 1'3|Ietd’ullz0 From the
first equation of (3.1) we have T lle™ug? 4 3le™u—"(f + Vr)lI2, gvhich gives the result using

(3.3). Q
Proof of Theorem 3.7. We set P, = e ?Pe"?, w =e"%r, F = -¢"f and G = iue"%q +
eV .f. Then from (3.2) we have
Pyow = G +div(F).
Let K; be such that K € K; € Q and let x € (G*(K;) be such that x = 1 on K. Setting
v =X/\—rlw with A, = (7 - A)l/2 and we write
Pyv = )(/\*1P¢W + [Py, )(A*l]w = )(/\*I(G + div(F)) + [Py, )(/\*l]w,
T T T T
then we find
(3.13) IPyvily < C T HIGH + IFNlg + lwllg .

Applying Estimate (3.9) in the proof of Theorem 3.6 to v then we obtain

1
T 20lvll,; < CllPyVllg
We have v = A~'w + [y, A-"]w then llwllyy 4 livil,, + llwllg. That together with (3.13)
T T

1
T Zlwll,, < € T MGl + IFlg + lwlly

Multiplying by t which is chosen sufficiently large then we obtain
1
t2llwll,, < C(IGllp + TlFllp) < Ct (Iler‘bg”o + e £ll) .

As W J; is equivalent to T dr ol e“lir o ¥rgliing as in the proof of (3.11) we obtain the

result of the theorem. Q
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3.3. Local Carleman estimate at the boundary. In this section because the boundary,
we use a tangential pseudo-differential calculus. This calculus is completely analogous to the

one presented in Section 3.1 except that a function a(x), x5 &) isa symbol in (x, ) in the
sense of Definition 3.1 where x4 is a parameter and the estimates given in Definition 3.1 are
uniform with respect x,. To avoid confusion we denote by S'T','r the class of tangential symbol
of order m, Op+(a) the operator associated with the symbol a € St . The class of operators
associated with symbols in S"},Tis denoted by llJmT’r We refer to [20] for details on these symbols
and operators. We consider functions in a half space R x (0, +o0) = R and we denote
by I.II, = Il.llLZ(Rd)+the L>norm and (,,.), = (- )2(re Ehe associated inner product. At
the boundary x, = 0 we denote the L*norm by |g|? = Rd-1 |g(x')|?dx" and the inner product
associated by (., .)s = (., .)i2Re-1). A set W =w x T in R? x R x R"is called a conic
open set, if there exist w an open set in R? and T an open set in R?-' x R* such that for all
(6,7) €T and A >0 then (AE, At) € T. For s € R we denote by A% . the tangential operator
defined by A, = Op+(( &, T) ).

We recall the following microlocal Garding inequality obtained, for instance, by applying
sharp Garding inequality.

Theorem 3.8 (Microlocal Garding inequality). Let K be a compact set of R? and let W be a
conic open set of R xR~ xR" contained in KxR*'xR". Let also x € SOT,T be homogeneous
of order O (for ( £, t) = 1) and be such that supp(x) € W.

Let a(x, £, t) € S",cwith principal part a,, homogeneous of order m. If there exist C; > 0
and R >0 such that

Ream(x &, 1) 2C (&, 1), (xE,T)EW, T E€[L+x), (&, 1) 2R,
then for any 0 < C; < Co, N € N, there exist Cy and t« = 1 such that
m/2 2 -N 2
Re Op+(a)Opt(x)u, Opr(x)u , = CilIAT . Opr(x)ull, = CylINT - ull,,

for u e S(Rd) and T = Ty.

As we want to change the variables in order to have a flat boundary which is convenient to
do the computations, we use the language and usual tools of Riemannian geometry. In this
framework the gradient and divergence operators keep forms we can follow after a change of

variables. Our purpose is to use these tools locally and we do not use manifold tools as charts,

atlas and etc. To fix the notation, let V be an open set in R". Let g(x) = g;;(x) 1=y bea
<ij<

positive symmetric matrix called the metric, we denote by gl(x) = g'j(x) the inverse
1<ij=<d

of g(x). For a smooth function r, we denote by (Vgr(x))i = 1<j=d g7 (x)0,; r(x) the gradient
of r. We have V r(x) € T,V, this means that V,r is a tangent vector field.
Foru(x)= u'(x),..., ud(x) a smooth tangent vector field, we define the divergence operator
=
. —1/2 1/2
divy u(x) = detg(x) 0y, detg(x) "U(x)
1<j<d

For a smooth function r and a smooth tangent vector field u, we have

by

(3.14) divy(ru) = rdivy u +g(Vgr, u), where g(Vgr, u) = gij—(Vgr)iui.
1<ij=<d

For two smooth functions r; and r, we have

(3.15) Vglriry) = rVgr, + rVgr,.

It is well-known that there exist coordinates (called normal geodesic coordinates) such that the
boundary is defined locally by x, = 0, the open set Q NV is defined by x, > 0, the metric g is
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such that g;y = g4 =0fori=1,...,d-1and, ggg = 1. We denote by § = (9;7)1<i ;<41 the
metric g on x4 fixed.

We can define on each manifold x4 = const the gradient and divergence operators associated
with § and for r a smooth function and & = (ul, e, udfl) a smooth vector field on x, = const,
we have

; = . s = 12
(Vgr) = gY0,srfori=1,...,d-1, divy = (det§)- Ox; (detg)”“v/
1<j<d—1 1<j<d—1
In such coordinates, we have detg = det§. The gradient and divergence operators take the
following form.
(3.16) V,r = (Vsr, 0xyr), divy u = divg i + 0, u® + hu®, where h = (det §) =20, (det §) /2.
We recall that the equation of the resolvent problem (Aq + iu)(u, r) = (f, g) locally takes the
form
-Vyr +ipu = fin x4 >0,
(3.17) . —divyu+ijur=gin xd>0,ud
=0on x4 =0.

We have the following theorem
Theorem 3.9. Let x, € R x {0}, we assume there exist a neighborhood of x, where ¢

satisfies (3.4) the sub-ellipticity condition and 0,,¢(xo) > 0. Then there exist V, be an open set
of RY such that Xo €E Vo, C>0, and T« > 0 such that

t2|e%r o |+ TV2IEPUll, + TV2Ie™rll + T VeVl < € Ie™F I, + lle™gll.,
foru,re C”(Rd) supported on V,, satisfying (3.17), for every t = T« and u satisfying (3.3).

Let v=eu and w = e"®r. We have from (3.14) and (3.15)

r=e w-twV,p,
dqlv u=e- ggdlv V- ?rg(V
g g g¢/ V) .

Then System (3.17) takes the form

-Vyw +twVy +iuv = F in x4 >0,
(3.18) . —divgv+1g(Vye, v) +iuw = G in x4 >0, v*
=0onx,=0,
where F = e™f and G = e™g.
In the following, we denote by F = (F*,.. Fdfl) and by v = (v',..., vdfl), then we have
=(F,F ) and v= (v, v ) Multiplying (3. 18) by i, we have
-iVw+itwV ¢ - uv—lF inx >0,

—/dq< W + iTw é( F? ?1
(3.19) . -IdIVgV+I'L'g( &)v)+ltv -

ve =0onxy,=0

4> 0

X Z -
uw =iG in xg >0,

For this system we prove the following Carleman estimate.

Proposition 3.1. Let x, € R x {0}, we assume there exist a neighborhood of x, where ¢
satisfies (3.4) the sub-ellipticity condition and O,, ¢(x;) > 0. For s € R, there exist Vo be an

open set such that xo € Vo, C >0, and t« > 0 such that
INE 2 Wigmol + TY2IAS VI, + T V2N E WL, < € NS FIl, + IAS G, ,

forv,w €S (Rd) satisfying (3.19), supported in V,, for every t = 1« and u satisfying (3.3).
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From this proposition we deduce Theorem 3.9 taking s = 0. Indeed we have T1/2|W\X «o| 4
1/2
|AT £ Wixy=0| and from (3.17) we have

72| g7

_1 2 .
T2Vl 4 117 Vr-iuu I, + ||t -YPle®ull, 4 eI, + T ull,,

from (3.3).

We begin by reducing the system in a 2 x 2 system. We denote by ¢ € S#,r the tangential
symbol of the operator -V, +itV,-¢p. We have
=

Z = g”(& +itd,,¢) fori=1,...,d-1.

1<j<d—1
Let Opy(8) := -idivg +itd(Vy¢, -) where 6 € slT’r. The principal symbol of the operator 6 is
(&1 + IOy @, ..., Ey—1 + iTOxq_1P) Modulo symbol in Sgr,r. The first equation of (3.19) reads
Op(Z)w-uv = iF. Applying in both side of this equation the operator Op(6), we obtain

(3.20) Opr(6)V = -iu="0pr(8)F + u="0p1(6)Opr({)w.

From (3.16) we have

-idivy v + it§(Vs¢, ¥) = Opr(6)¥ - iduuv Zibv @
= Dyav” - iu="Opr(8)F + =" 0pr(8)Opr()w - ihv".
From this equation and second and third of (3.19) we obtain two equations on w and vd, that is
(3.21)
ngv;l-irwdlxg)—uvd=iFdinxd>O, o y ) N
D, v® + =" 0p+(6)Opr()w - uw + itv9, ¢ - ihv® = iG + iu="Op1(8)F in xg >0,
dJ d d
v =0o0onx,=0.

Let U = (w, vd), the system (3.21) has the form

D,,U + BU = H, where H = (iFd, iG+;r10pT(6)l—:),
and B is a tangential matrix operators with principal symbol

irdxdd) —H
plqlx, €) - p ito, @
>

modulo u~"St., where g(x, §) = 97 (x) & + it0x,p(x) & + itd,;¢(x) . The char-
1<ij<d—1

acteristic polynomial of b is given by P(A) = (A - i1:dxdqb)2 +q - uz. Let @ € C such that
o = q- u2 with Re a = 0. The definition of a is ambiguous when g - uz < 0 but in this case
if g - ;12 < 0 the root are simple and the analysis below is independent of the choice of root. In
particular the roots are smooth, or if g - ,u2 = 0 the root is double and below, we give a specific
analysis in this case. The root of P (A) are itd,,¢ +ia and the analysis in what follows depends
on the location of roots in complex plane. We have the following result, denoting s = t* where
t,s € C we have for ry >0,

(3.22) |[Ret| S ro &= 4roRes—-4r'e+ (Ims)”> S 0.
Indeed, let t = x+iy, we have Re s = xz—y2 and Im s = 2xy, we obtain 4r; Re s—4r40+(lm s)2 =

4(r%,+ V(x> - r’) gvhich gives the result.
From (3.22), we obtain that |Rea| S t]d,,¢| is equivalent to

(3.23) 47%(0,,9)’(Re g - 1°) - 4t*(0,,9)" + Imq)* S O,
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where, from the definition of g, we have
- Reg(x §) = 97 (x) & - T 0% $(x)0x D(X) ,
1<ij=1 3 ) 7
L Img(x, &) =t 97 (x)&0,,0(x).

1=ij=d—1
We prove a microlocal Carleman estimate.

Lemma 3.5. Let xq € R x{0}, we assume there exist a neighborhood of x, where ¢ satisfies

(3.4) the sub-ellipticity condition and 90, ¢(xo) > 0. Let (£, 1) € R’ x R" be such that

|&]% + ré = 1. There exist W be an open conic set of (xo, § , To), X1 € Sgr,r be an homogenous
symbol of order 0 for ( £, t) =1 supported in W and x; = 1 in a conic neighborhood of (xo,& , To)-
For s € R, there exist C >0, and t« >0 such that

N2 V2IAT Oprlta)vil + T2 IAT Opr(xwll.

< C Ay FIL, + 1AL Gl + A7 wll, + AT v I .

OpT(Xl)W‘Xd=0| +T

for v, w € S(Rd) satisfying (3.19), for every t = 1+« and u satisfying (3.3).

This lemma implies Proposition 3.1 as we can cover &, T = 1 by a finite number of open
sets given by the statement of Lemma 3.5.

For the proof of Lemma 3.5, we distinguish two cases, o /=0 and a = 0.

Assume that a(xq &, To) 0. By continuity and homogeneity in (£, t), @ /= 0 in a conic
neighborhood W of (xo €5 ). Let xo € S° 1.be an homogenous symbol of order 0 for ( £, ) =1
such that xo = 1 in a conic neighborhood of (x,, £ 1), supported in W and y; supported on
Xo =1. Writing

dexdd) —H
b= 12 .
U a iT0,ah
the left eigenvector associated with it0,,p+ia (resp. it0,,p—ia ) is —ia u resp. io M
Let & = xoa, as a is a smooth homogenous function of order 1 in W, & € SlTr Recall the

notation At = Op(( &, T) %), according with the above algebraic computations and with the
left vector found, we define

= [04 w + u/N
(3.24) = IréOp(t)bp (xli H 1TODp(X1 iy'
As v? =0 on x; = 0 we obtain z +z= = 0. Applying i\ a)o to the
first equation (3.21), uA- li)Op ()(1) to the s econg equatloelpa%dgsummlTnzgoﬂgf v?/e %Ké}%

T,T

(3.25) D,,z; + Opt it0x,¢ + (—1) i& z; = H; where

s d ~ s s d
INT cHllL, 4 IAT FONL + IS G+ IAE Flle + AL wil + AL VI

+-

We compute

(3.26) 2Re(H;,iN7'z;)4 = =2 Re(l dz, +0pT it ¢ + (- 1Vid z;, //\%5;1 z;),
= z) |2 +2Re(A25*10p 9 P+

T,T J |xa=0 T,T T Xd 1)/6[ Zj, zj)+/
using that
(3.27) 2Re(Dy h, iN"h). = A" hi —ol?
d TT Tt d

for h € S (RY).

If j =2, we have 10, ¢ +Rea 4 T+ |€] in W. Let x, € S° supported in xo = 1 and
d T,
X2 =1 on the support of y;. From symbolic calculus we have ‘

(3.28) INL. z2-0ptix 3z 2l + 4 IATY W+ + IAFE VI
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Then the tangential Garding inequality of Theorem 3.8 applies and we have
2Re(AN= s+l 2 -N 2 N d 2
Tr OPr T0,q@+ @ 2,25) 2 CliNT . 2,0l -Cn N Wil + 1IN v L.

’

From (3.26), we then deduce

(3.29) 2Re(Hy iAT"'z;), =
C s+1/2 2 s+1 2 —N 2 —N d 2
1A (Z2)xgmol + AT zoll, —Cy AL wil, +IAT v I, ,

for C, >0, for every N > 0 and Cy > 0, uniformly with respect to T chosen sufficiently large.
This implies

(3.30) INT(22) beamol + INE 22511, 4 IS Holl, + IATY wil, + IAEN VAL,
Lemma 3.6. Assume that a /=0in W.

If Rea - 0,,¢ 0 on W, we have
(3.31) Az <c i As HII +|/\5+1/2(z ) | + II/\S will +1IA° VIl
Tt 1 + Tt 1 + T,T 1 |xa=0 TT + T, T + s
for some C > 0.
If Rea — 10, ? =0 at (xo E',Oro), we have

+1/2 d
(3.32) s+1/2 <C AN HI +|N7%(2) [ +0A, wil +1IA° VAl
e Zill+ Tr 1+ Tt 1 |xa=0 TT o+ TT *

for some C > 0.

Proof. We have to distinguish three cases, that is |[Rea| S t]|9, ¢| at (xo &, T0).
d 0

e If |Rea| < T|0,,¢|, from (3.23) this is equivalent to
4r2(dx(g>)2(Re q- yz) - 4t*(0, 4&)4 + (Im q)2 < 0.

We have 10, ¢ Rea 4 t+ & inW. Then we have the same computations as in (3.29)
and (3.30), and we have

s+1/2 s+1 s —N —N d
Nte  (22)ixgmol + 1A zally 4 A7 cHyll, + IAG wil, + IAL v Il

which is a better estimate than (3.31).
e If |Rea| > 1|0,,¢|, from (3.22) this is equivalent to

4r2(dx(g>)2(Re q- yz) - 4t*(0, 4&)4 + (Im q)2 > 0.

Observe that this case contains the case where 1, = 0 as |§;| = 1, and in W we have
alx €, 1) = d§I" and €] » t.
As —0, p+Rea 4 T+ & |id W, from (3.26), we can introduce a cutoff as in (3.28)

to apply the tangential Garding inequality of Theorem 3.8, we deduce
2s+1 s+1/2 2 s+1 2 —N 2 —N d 2

“2Re(Hy, ifr z1)+ +|Are  (Z)ixgmol 4 INpo z1ll, = Cy N Wl + 1A v L,
and then
s+1 s s+1/2 —N —N d
ATzl 4 IAL  Hallh + Ay (Z1) gm0l + 1AL wily + AL v e

which implies (3.31).
e If Rea = 10,,¢ at (xo &, To), from (3.22) and as Rea and 0,,¢ are positive, this is
equivalent to

4t*(0, 4p)’(Re g - p°) - 4t%(9, @) +(Imq)* = 0, at (xo, £, T)-
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We use Carleman technics to obtain an estimate. Before doing that we must translate sub-
ellipticity assumption (3.4) on pg on analogous condition on a. First observe that

Po(x, & T) = (&4 + iTO, ) + & = (&4 +iTO, g + ia)(Ey + iTO, @ - i)

As itg0y P(xo) — iat(xo, €, T9) € R, py = 0 is equivalent to &, +itd, ¢, ia = 0. Noting that
iT0,x,¢ + ia [€ R thus & + itd,,¢ +ia 0 in W. Second, for a smooth function g = g, + ig;
where q,, q; are real valued, we have {q, 3} = 2i{q;, 9,}. Thus on ps = 0 we have

{Per Do} = |€a + iTOxy + icd {Eg + iTOxy - i), &g - iTOxy + idl}
= 2|& + it0, b + ia|*{10, $ - Rea, & + Im a}.
Thus sub-ellipticity condition reads in W, there exists C > 0 such that
(3.33) E,+iTO gp—i=0=>{E+Ima, 0, ¢ -Rea}=C(E, 1).

At (xo, & pTp), observe that we can choose &; such that §;+Ima = 0 and as 1,04 - Rea =0,
the condition (3.33) means, by continuity and homogeneity, there exists C >0 such that

(3.34) {és+Ima, 10, p-Rea}=C(&,T) inW,
eventually shrinking W.
Let
A= 1
™ 5 OPrlitdu- id) + Opr(itd b - i)
B

- o OPr(iTOss - i) - Opr(iTOsy - idl)

We have A = A*, B = B*, Op1(it0x ¢ - id) = A+ iB, and principal symbol of A is Imé& and
principal symbol of B is td,,¢ - Re d.

Now from (3.25) we compute for z = Op{xo)/N ;21

(3.35) Il +O0p (ito ¢- . I=I I, + 1Bzl
e T xa jg) z 2 D, +A z 2% 2
+2Re D,,+A z iBz
4
We have
2Re Dy,z,iBz | = [Dy,, iBlz, z , + (BZ|x4=0, ZIx4=0)o-

As the principal symbol of B is td,,¢ - Re &, we obtain

(3.36) 2Re D,,z,iBz , = Re i[Dy,; Opr(t0x,¢-Red)lz,z ,
+ Re(Op1(T0yx ¢ - Red)zx —o, Zlx —0)o - CllzIIZ - Clzx —o|?
d d d + d

for some constant C >0. We also have
2
2Re Az, iBz = i[A ,Blz,z , =2 Re j[Op;(Ima), Opy(td,,¢-Red)]lz , — Clizll..

Then from this estimate and (3.36), we obtain

+

(3.37) 2Re D,,+A z iBz =Re j[Dy,+ Opr(Ima), Op(t0x,¢ - Red)]z, z
+

+ Re(OpT(tdxdd) - Re &)z|x #0s Z|x #O)d - C"znz ﬁ—Clz\X =QJZ'
The principal symbol of i/[D,, + Opt(Im &), Opr(t9,,¢ —Red)] is {&; + Ima, t0,,¢ - Rea},
then from (3.34) and microlocal Garding inequality of Theorem 3.8, we have
(3.38) Re i[[D +Op (Ima),Op (t0 ¢-Red)lz z 2C Il ANpzll, -C NIIN_pz I,
X T T xd 1

d + T,T + N Tt 1 +
We have 1/2

|(OpT(rdxd¢ - Re &)Z\xd=0/ led=o)a| 4 |/\T,rz\xd=0| ’

2
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then from (3.35), (3.37) and (3.38) we obtain
1/2 1/2 —-N

(3.39) I Arczlle 4 Dyy+ Opr(itded - i) z i+ [Aqc Zig=ol + A7 22,

as we can absorb the remainder term lizIl2 by the left hand side. Recalling the definition of z;

given by formula (3.24), the symbolic calculus yields
172 s s+1/2 s—1/2 s—1/2 d

INT: OprXo)A 21— Are  zallh 4 IAL. wil, + 1IN, v Il

From z = Op(xo)\’ 721, we deduce

(3.40) ||/\5+1/2 21||+ 41 /\1/22||+ + ||/\5_1/2W||+ + ||/\5_1/2Vd ||+
T,T T,T T,T T,T
Symbolic calculus also gives
s s s d
(3.41) D, + Opr(itdy ¢ - i) z + 4 IAg Hilly + IAg wil, + 1A v 14
and
(3.42) [N1/225 —o| 4 |As+1/2(21)1x =ol-
Tt d Tt d
Then from (3.39)—(3.42) we obtain
(3.43) INET 22001, 4 AL Halle + AT (20) amo] + AT WL + AT VO,
which is (3.32). This achieves the proof of Lemma 3.6 as we have treated the three cases. Q

We can prove Lemma 3.5 in the case a 0.

If Rea-0,,9 # 0on W, from (3.30), Lemma 3.6, and as z; +2z, = 0 on x4 = 0, we deduce

s+1 s+1
(22)‘Xd=0| -+ "/\T,T Zz”_._ =+ "/\T,T 21"+
4NAS Holly + NS Hally + 1A% il + A% VL.
From (3.25) we deduce
(3.44)  |As+1/2(22)1x —o| + INss1251l, + INge12:1l, 4 IINs G, + IIN® FONl, + IIN°S Fl,

Tt d T,T T,T T,T T,T Tt
s d s
+ IIATITV I, + II/\TITWIIJ,.

We have from (3.24), z; +z, = ZuA—lop (Xl)vd and from (3.3) we deduce
T,T T
(3.45) TN opr (x)V7Il, 4 |u|IAL:Opr (x2 )V, 4 IAS zill, + IAST 2511,

3

We have Opr(&)*AT AT, Opr(&) = Opr({ £, T) 2°&") modulo an operator of order 2s + 1. As &
is not 0 on the support of x;, the tangential Garding inequality of Theorem 3.8 yields

INT, . OpT(&)OpT(x: )Wl + IATY wil, 4 IN%G Opr (x1)wll.,
for every N > 0. From this and as z, - z; = 2iAT0p (@)Op fx1)w from (3.24), we deduce
(3.46) INTFOPT (x)wlly 4 IXT z10l, + INT 2,01, + INT Y wil,.
From the first equation of (3.19) and from (3.3) we have
TIAL L OpT(xa )il 4 AT 0P T )WL + IAS £l + IS Wil

(3.47) 4 UN 2,0, + A2 20, + IAS Fll + AT wil,.
From (3.24), (z2)ix =0 = iN-"Op (&)Op (X1)W|x —o, arguing as from above and using the
d ,T T T d

Garding estimate of Theorem 3.5, we have

(3.48) AT 2 0P T )Wixcamol 4 [T *(22) 1 aol-
From (3.44)—(3.48) we obtain Lemma 3.5.
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If Rear — 10, ¢ =0 at (xq £, T0), adding (3.30) to £(3.32) for € > 0, we deduce
d 0
s+1/2 s+1/2 s+1/2
Arr (22)Ixg=0l + INT - 2ol +ellAr .z,

s s+1/2
AN Holl, + AT Hyll, + AT WL + AT VoL + e AT (21) xa=o0]-

From (3.25) and as z, +z, =0 on x4 = 0, we deduce for € small enough tat

(3.49)  INS%(22) ixcamol + INT Y 2ol + ING 221114

s s d s i s d s
4N Gl + AT FONL + AT FlL + 1A VAL + AT wil,.

We have from (3.24), z,+2z, = 2uAz Op (x2))v°. Let x, € ST, supportediny,=1andy, =1
on the support of ;. From symbolic calculus we have

HOPrOATY > 1 ) (UATEOpr(xa)V?) = ATL0P Hx)v™ I, 4 IATH v 1.

As OpT()(z)ASJ'Tgi/rzu—1 is an operator of order s+ 1/2 as |u| and |§| are comparable on the

support of x,, we deduce
(3.50)

1/2
V2N opr )Vl 4 IASTY0 (x4 IAT Y201, + IS 22,01, + IATY VL.

We have r*lopT(&)*/\sT,T/\sT,rOpT(&) = r*lopT(( &, 1) 25612) modulo an operator of order 2s.
As @ is not 0 on the support of x;, the tangential Garding inequality of Theorem 3.8 yields

TV2IAL L 0pT(@)OpTOxa )WL, + IATY Wil 4 T IATOp s )wll.,,

for every N > 0. From this and as z, - z; = 2i/\*10p (a)Op (x1)w from (3.24), we deduce,
T,T T T
using symbolic calculus and xx1 = X1,

(3.51) Y2IATOpr (e )wils 4 T2 IATFOpr (2 ) A T20p+ (&) Opr O )Wl + IATewll,
_— 4N 210 + INGE P20, + IATY WL,
s+

as T7°N7°0p (x2) is an operator of order s + 1/2.
T,T T

From the first equation of (3.19) and (3.3), we have
(3.52)  TVZIAS 0pT()0lL 4 IATH U T2 0p T Wil + IAT F il + IAT wil,

+1/2 +1/2 ~
4 IN Y220, + INY 220, + IS wil, + IN° F,
T, T T, T T,T T, T

from (3.51).
From (3.24), (z2)ix =0 = iN-"0p (&)Op (X1)W|x =0, arguing as from above and using the
d T,T T T d

Garding estimate of Theorem 3.5, we have
(3.53) AT 0PT(x1)Wixa=o| 4 [ATZ"*(22) x azol.
From (3.49)—(3.53) we obtain Lemma 3.5.

Now we consider the case g - ,u2 =0. Let € >0, we can shrink W such that |g - /.42| <g(é T

) 2in W. Note that |u] ~ T ~ |§] on W . Let x; be the cutoff defined previously supported on W
and xo supported on W and xo = 1 on the support of ;. By symbolic calculus we have

(3.54) Op+(x1)Op+(6)0p+(7) = Op:(8)Op({)O0pr(x1) + [Op+(x1), Op+(8)0p+(7)]
= Op1(q)Op1(x1) + Op+(r1)Op+(x1)
+ Op1(X0)[OpT(X1), OpP(6)Op+({)] + Opr(r-n),
where r; € Srl,r and r_y € S7. Observe that ;rl)(j € St forj=1,2.
I.:rom (3.21), (3.54), and by symbolic calculus we have
* Dy QP tr)w i+ it(0; $)Op txyw - uOp fxa)v’ = Hy g in Xy >0,
Dy Op+(x1)v" + u="Op+(q — 1")Opr(x)w + it (0 d¢>)OpT(x1)v = H, inxg >0,
v =0 onxyg =0,
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where
(3.55) AT Hjll, < Co IAS FONl + IS Gl + TN wil . + 1A VL, +IIAS FIL,
for j = 1,2 with C, depends on €. We compute

2s+1

(3.56) 2Re(Hy iN Op (x1)w),

T,T
= 2 Re(Dy Oprlt)w + it(04 $)Opr(xa)W ~ HOPT(X: )V, i Opr(Xa)W)..
By microlocal Garding inequality of Theorem 3.8 we have, using T ~ || on W

(3.57) 2Re(iT(du P)OPr(X)W, iAT "Opr(x1)W). = CllATOpr(x)wi® = Cy IN-"rwll?
for G, >0, for all N >0 and Cy > 0.

From this, (3.27) and (3.56) we obtain
(3.58) 2 Re(Hs, //\25+10p (X.l)"")+
s+1/2 s+1 2 2 s d 2 —-N 2
= At Opr(X1)Wixg=ol +C1IIAT,T OprO)wll, = GlIAL  Opr(x)v Il =CyllAT wil

for C,, C; >0, forall N >0 and Cy > 0.

We then obtain

(3.59) |/\$+1/20pT()(1)w o |2 + [INs+1 Op (Xl)WIIz < u2GlINs Op (Xl)v 12
.

T,T T,T T T, T T
+ C d

II/\TTF I, +II/\TTGII +IIATTWII +II/\Trv I, +II/\TTFII+ ,
for G >0, for all N >0 and Cy, C. > 0.

Now we compute
(3.60) 2 Re(H,, iuA* Op 0a)v9). = 2 Re(D, Op OV, iun* Op OV
T,

T,T d T

+ 2 Re(u~"Opr(q)Opr(x))w - quT(xl)w + /r(dxdcb)OpT(xl)v A% :Opr(x)v)..
From (3.27) we have 2 Re(D Op (X1)V in* Op ()(l)v ). =0 as v''=0on x4 = 0.

T,T
2 2 2, 22 270 _\2 . .
As Ce” (€, T —u(g- u°) = (&, ), on W with C >0, using that T ~ |ul ~ | €], we
have by microlocal Garding inequality of Theorem 3.8

2 Re(u~"0p+(g - 1*)Opr(xa)w, A% 41~ Opr(q - 1 )OpT(Xl)W)+
C45 II/\TT OpT(Xl)WII + CNEII/\TT WII .

Then we have

(3.61) 2 Re(u~"Opr(q)Opr(i)w — HOPr(ta)w, IUAT Op (V). i
< g|u|GslINT Opr(xa)v Il AT Opr(x)wlls + CyliAg wil,
for Cs > 0.

From microlocal Garding inequality of Theorem 3.8 and as d,,¢(xo) > 0, we have
(3.62)

2 Re(it(0a P)OPr(x)V% iuA: Opr(x)V9). = 1’ CollAT, Opr(x)VIIZ = Cy IA-Tv7II%
where Cs >0 is independent of g, for all N >0, Cy >0.
From (3.55) and (3.60)—(3.62) we obtain
L2IAL  Opr (x)VII%. < [uleGlIAS  Opr (a)ViIl, AT ;0P T(x JWils + C e INTY Wil
+ G NS FONL + 1IN Gl + IS will y + 1A VL + IS L 2
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We deduce
2 s+1 2
KEIAS Opr(x )V < & 7 AT, Opr(x)wil
(3.63) + Co N FoUL + NS Gl + I il + IAS VIl + IS FIL 2

By the linear combination (3.63)+&(3.59) and fixing € sufficiently small, from (3.3) and t suffi-
ciently large, we deduce

s+1/2
(3.64) TIATOpTO VIl +|ATe  OPT (X1)Wixa—ol + IATT OpT(xa)wil,

s d s s s d s ~
ANAS FOIL + NS Gl + AL wil, + IS VIl + NS FL.

From the first equation of (3.19) and from (3.3) we have

(3.65) TIA® .Opr(x1)Vlls 4 IN 0pr O )Wl + IA° (Fll, + IA° wil,
T T,T T T

4 IAS FL + NS Gl + A Fll + IAS  wil, + AL VAL,
from (3.64). From (3.64) and (3.65) we obtain Lemma 3.5 in the case a = 0.

4. Logarithmic stability

The exponential estimate of Proposition 2.1 is the consequence of the two following results.
First a global Carleman estimate with an observability term and second an estimate of the
observability term coming from the dissipation.

Let wy, and w, be open sets such that w; € wy, € w, and, from (1.2), we have b(x) = b_ >0
for x € w. In what follows we denote by Il.llg := ll.ll;2(q).

Theorem 4.1. Let Q be an open bounded set of R? with smooth boundary. Let ¢ € C(Rd) be

a function that satisfies the sub-ellipticity assumption in_Q\wl. Then there exist t« > 0 and
C >0 such that

20 rllg+T 2P ully < C  tle™gllp + Tle™ fllg + T2 rll 2(wg) + T2 1P Ull 200 )

forall u,r e Cc°°(6) which satisfies (3.1), u-n|r =0, T = T+, and u satisfying (3.3).

Remal_'ks 4.1. It is classical that there exist ¢ such that 0,Y(x) < 0 for x € 0Q and Vi /=0
for x € Q\ w;_(see Fursikov-Imanuvilov [12]). From Lemma 3.2, ¢ = e satisfies sub-ellipticity
condition in Q\ w; for A sufficiently large. In what follows we fix such a function ¢.

Proposition 4.1. Let (u, r) € D(A) solution of (Ag + iu)(u, r) = (f, g) € H. Then we have
(4.1) lull” bul® < Cli(u, NI gy
lIA1320, < Cl(u, AL g,

for some constant C > 0.
From these two results we are able to prove Proposition 2.1.

Proof of Proposition 2.1. Noting that the resolvent problem (A -iu)(u, r) = (f, g) is written as
follow .
= Vr+iuu=f-bu inQ
Cdiv(u) +iur=g inQ

u.n=0 onT.

This allows us to apply Theorem 4.1. So let C; = max,cq®(x) and C; = min,c, ¢tx) we
deduce from the Carleman estimate of Theorem 4.1 that

(C2—C1)T
(4.2) lirilg + llully 4 e liglly + Ilf + bullg + lIrll 240 + Null;2(¢) -
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Tgking T = |u|/co accordingly with (3.3), by the estimates of Proposition 4.1 and as libull, 4
I bully, we have

(4.3) Iy, A)ll, 4 Ce<HI(E @)y + i, NI )2,
which vyields II(u, r)ll,; 4 e’ MII(f, g)ll,. This is the sought result. Q

Proof of Proposition 4.1. From equation, we have -Vr + iuu — bu = f taking the inner product
with u, we obtain —(Vr, u) + iullull> —=(bu, u) = (f, u). Integrating by parts, we have —(Vr, u) =
(r, divu) as u-n =0 on 9Q. Using the second equation —divu + iur = g, we have —(Vr, u) =
(r, iur — g). We thus obtain

—iplirll % (r, g) + iulull 2(bu, u) = (f, u).
Taking the real part of this equation we have| gyl by < | (fLu)|+ [r,g) | This implies the
first estimate of (4.1).

Let y € C °°(R ) such that x(x) = 1 for x € wy and y supported |n w. Taking the |nner
product between - div u + iur = g and )( r, we obtam (- divu, x r) + iullyrl? = (g, x r)
Integrating by parts we have (—divu, x r) = (u, x Vr) + (u, 2xrVx) and by equation -Vr +
ipu - bu = f we have

2 2 2 2 2
—ipll xull  — (u, x bu) = (u, x f)+ (u, 2xrVx) +iullxrll = (g, x r).
Taking account that b = b_ in w, thus on the support of y, we have
[l llxrlZ 4 W(u, NILNE g)lly + NuVxllxrll + ]l xull? + 1| bull?.

We can estimatell &7 Il and Il yulby Ibu alhd by the first estimate of Proposition 4.1 we
obtain the second estimate. Q

Proof of Theorem 4.1. Let x, € Q \ w,, from Corollary 3.1 if xo € Q or from Theorem 3.9 if
Xo € 0Q we obtain, in both cases, an open neighborhood (in R’ ) of xo, V such that

(4.4) te™rlly + T¥%Ne™ull, < C (tlle™gll, + Tlle™fl,),
for u,r € C>(V). By compactness of &\ w;, we can find a finite reggvering (V;);e, of @\ w;. Let

(x;);es be a partition of unity subordinated to (V;);e, such that e, 2 (x) = 1for x € Q\w1
Let u; = x;u and r; = x;r where (u, r) solution to (3.1), u-n|r = d. We have

—Vr;+iuu; = xf -rVy
—divu; +iur; = x;9-u-Vy;.

We can apply the Carleman estimate (4.4) in each V; and we obtain

1™ rllo + %™ ullo 4 Tle™ (x;g - u - Vx)lo + Tle™ (e f - rVx;)llo
4 tlle®gll, + tle™ully + tlle™flly + tle™rll,.
We have
32)e™rllg + T¥2le™ullo
=
4 372 llecorjllg + lletoujlly + T3/2llecerll 2, ) + T32lled ull 2, )
0 0
jeJ

32|17

4 tlle™glly + tlle™ullo + Tle™®Fllg + tlle™®rlly + > Ne™®rll 20y + T Pull2(up)-

This gives the sought result as we can absorb the term i erd’ulb +7 dfr o With the left hand
side. Q
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