
HAL Id: hal-04268885
https://hal.science/hal-04268885v1

Submitted on 3 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Better Steady than Speedy: Full Break of
SPEEDY-7-192

Christina Boura, Nicolas David, Rachelle Heim Boissier, María Naya-Plasencia

To cite this version:
Christina Boura, Nicolas David, Rachelle Heim Boissier, María Naya-Plasencia. Better Steady than
Speedy: Full Break of SPEEDY-7-192. EUROCRYPT 2023 - 42nd Annual International Confer-
ence on Theory and Applications of Cryptographic Techniques, Apr 2023, Lyon, France. pp.36-66,
�10.1007/978-3-031-30634-1_2�. �hal-04268885�

https://hal.science/hal-04268885v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Better Steady than Speedy:
Full break of SPEEDY-7-192

Christina Boura1, Nicolas David2, Rachelle Heim Boissier1, and María
Naya-Plasencia2

1 Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de
Versailles, 78000, Versailles, France

{christina.boura,rachelle.heim}@uvsq.fr
2 Inria, France

{nicolas.david,maria.naya-plasencia}@inria.fr

Abstract. Differential attacks are among the most important families
of cryptanalysis against symmetric primitives. Since their introduction in
1990, several improvements to the basic technique as well as many ded-
icated attacks against symmetric primitives have been proposed. Most
of the proposed improvements concern the key-recovery part. However,
when designing a new primitive, the security analysis regarding differ-
ential attacks is often limited to finding the best trails over a limited
number of rounds with branch and bound techniques, and a poor heuris-
tic is then applied to deduce the total number of rounds a differential
attack could reach. In this work we analyze the security of the SPEEDY
family of block ciphers against differential cryptanalysis and show how
to optimize many of the steps of the key-recovery procedure for this type
of attacks. For this, we implemented a search for finding optimal trails
for this cipher and their associated multiple probabilities under some
constraints and applied non-trivial techniques to obtain optimal data
and key-sieving. This permitted us to fully break SPEEDY-7-192, the 7-
round variant of SPEEDY supposed to provide 192-bit security. Our work
demonstrates among others the need to better understand the subtleties
of differential cryptanalysis in order to get meaningful estimates on the
security offered by a cipher against these attacks.

Keywords: differential cryptanalysis · block ciphers · SPEEDY · security claim
· key recovery

1 Introduction

Differential cryptanalysis is a very powerful technique to analyse block ciphers.
It was introduced in 1990 by Biham and Shamir who used this method to break
the Data Encryption Standard (DES). The idea of this technique applied to

©IACR 2023. This article is a minor revision of the version published by Springer-
Verlag.

block ciphers is to exploit input differences that propagate through the cipher to
output differences with a probability higher than what is expected for a random
permutation.

Differential cryptanalysis is arguably the most well-known and studied tech-
nique in symmetric cryptography. Indeed, in the last 30 years, differential attacks
have been applied to analyze a high number of primitives : [6–8, 4, 22, 9, 13, 19],
to cite only a few. In parallel, several refinements and generalizations of the
basic technique were introduced together with some new dedicated methods.
One can for example mention the technique of truncated differentials [17], the
use of structures to reduce data complexity (a technique already introduced
in [8]), the technique of probabilistic neutral bits [15] or the conditional differen-
tial attacks [16]. However, applying differential cryptanalysis on a new cipher is
in general a laborious, complex and potentially error-prone procedure. Indeed,
combining together the different improvements and techniques for mounting in-
teresting differential attacks is highly non-trivial. This is the reason why the
designers of a new primitive provide most of the time only basic arguments on
the security of their design against differential attacks. This is done for example
by applying the branch-and-bound algorithm to determine the highest number
of rounds covered by a single differential trail. Based on this, and without get-
ting into too many details, designers then provide an estimate on the number of
rounds that the key recovery steps could reach on top of the differential distin-
guisher. This estimation is used to state security claims, sometimes conservative,
sometimes not, depending on the target application scenario. Examples of such
kind of claims exist for almost all modern symmetric designs [10, 3, 12, 1, 2].

In this work we analyze SPEEDY against differential attacks. SPEEDY is a new
ultra-low latency family of block ciphers [18], designed by Leander, Moos, Moradi
and Rasoolzadeh. The authors provided in [18] a preliminary analysis that sug-
gested that all versions of this cipher should be immune against this type of
attack. However, we demonstrate here that SPEEDY-7-192 can be fully broken
with differential cryptanalysis. Our attack that uses improved techniques for
the key-recovery part, demonstrates in practice that a more in-depth analysis
of a primitive against differential cryptanalysis is necessary in order to provide
precise estimates of its security margin.

Our contribution

We analyzed SPEEDY, a new ultra-low latency family of block ciphers [18] against
differential attacks. More precisely, we managed to break the full version of
SPEEDY-7-192, one of the three main variants of this family. This variant iterates
over 7 rounds and its designers claimed 192-bit time and data security. Our attack
has a time of 2187.84 and data complexity of 2187.28, and is thus more than 24

times faster than exhaustive search, contradicting therefore the security claim.
We shared our results with the designers, that have agreed and acknowledged
our attack. This attack is based on a 5.5-round distinguisher and is extended to
7 rounds, therefore it contradicts another claim of the designers : “the attacker

cannot add more than one round to extend a distinguisher”. Our attack is non-
trivial and is based on improved techniques for the key-recovery part. We believe
that most of these ideas could be generalized to be applied to differential attacks
against other ciphers and we hope that this work can be seen as a step towards
a general framework that could help in the future designers precisely estimate
the security margin of their design against differential cryptanalysis.

Finally, we provide a brief summary of our differential attacks on the r = 5
and r = 6-round variants of SPEEDY-r-192 even if the attacks on the other
variants do not contradict the designers’ security claims, but they provide the
best known attacks on these variants up to date. A summary of all our attacks
together with other third-party cryptanalysis results on SPEEDY is given in Ta-
ble 1.

Algorithm # rounds Ref. Data Time Memory Security claim

attacked (in CE) (T ,D)

SPEEDY-5-192 3 [21] 217.6 252.5 225.5 (2128, 264)

SPEEDY-5-192 5 this work 2101.65 2107.8 242 (2128, 264)

SPEEDY-6-192 5.5 this work 2121.65 2127.8 242 (2128, 2128)

SPEEDY-6-192 6 this work 2121.65 2151.67 242 (2128, 2128)

SPEEDY-7-192 7 this work 2187.28 2187.84 242 (2192, 2192)

Table 1. Summary of SPEEDY cryptanalysis

The rest of the paper is organized as follows. In Section 2, we summarize
the classical framework for differential attacks and deduce generic complexity
formulas. In Section 3, we present the SPEEDY family of block ciphers and describe
our methodology for finding good differential trails. Our attack on SPEEDY-7-192
is given in Section 4. Finally, our results on the other main variants of the
SPEEDY family are briefly presented in Section 5. This section also discusses
open problems and directions.

2 Differential cryptanalysis

Differential attacks are a very popular chosen-plaintext cryptanalysis technique
against symmetric primitives [5]. The invention of this technique in 1990 was
devastating for the ciphers of the time, as demonstrated by the breaks of both
full FEAL and full DES [6, 8] among others. Similarly to the majority of attacks
against block ciphers, differential attacks are built around a distinguisher. A
differential distinguisher exploits as a distinguishing property the existence of a

pair of differences (a, b) ∈ Fn
2 , where n is the block size, such that the input dif-

ference a propagates through some rounds of the cipher to the output difference
b with a probability significantly higher than 2−n. This distinguisher can then
be extended a few rounds in both directions by adding some rounds that will
serve as the key recovery part. In this part, an attacker will guess a reduced part
of the key, and using this knowledge will be able to compute the first and/or the
last state of the distinguisher in order to check if some plaintext or ciphertext
pair follows the differential.

The goal of this section is to provide a global overview of a differential key
recovery attack that extends a fixed differential in both directions together with
generic formulas representing its time, data and memory complexity.

Fig. 1. Differential cryptanalysis context.

We start by considering a differential ∆ = (δin, δout) of probability P = 2−p

covering r∆ rounds. The difference δin (resp. δout) then maps to a truncated
difference in Din, rin rounds before (resp. Dout and rout) with probability 1. We
denote by din (resp. dout) the log2 of the size of the input (resp. output) difference
such that |Din| = 2din (resp. |Dout| = 2dout). Note that the attack can be done
in both directions (encryption or decryption) and the most interesting direction
is determined by the concrete parameters. Without any further improvements,
the data and time complexities should be the same in both directions, while
the memory complexity is given by the size of one structure (2din or 2dout).
Similarly to our attack on SPEEDY-7-192, we will present a procedure in which we
make calls to the decryption oracle (i.e. by generating ciphertexts). However, the
general description of the attack remains unchanged regardless of the direction.
To obtain the description of a chosen plaintext attack, it suffices to replace in
what follows “ciphertexts”, Dout and dout by “plaintexts”, Din and din.

Data complexity In order to have enough data to expect that one pair satisfies
the differential, we will use structures, as it is often done in differential attacks. A
structure is a set of ciphertexts that have a fixed value in the non-active bits, and
that take all possible values in the remaining dout bits. This approach permits
us to build (22dout−1) pairs inside a structure. The probability to start from a
difference in Dout and to fall back to a difference δout is usually 2−dout . This
means that to have one pair that satisfies the differential trail, we need a total
of 2p+dout pairs that we will obtain by using 2s structures where s is such that

2s+2dout−1 = 2p+dout , that is s = p − dout + 1. Therefore, we need to generate
2dout+s = 2p+1 ciphertexts and thus the data complexity is D = 2p+1.

Pair sieving Since performing the key recovery phase with all the 2p+dout pairs
is too costly in general, the attacker will very probably need to perform a sieving
step which will permit her to discard pairs that cannot follow the differential trail.
This can be done efficiently by just looking at the plaintext corresponding to each
ciphertext inside a structure: the attacker will only keep those ciphertext pairs,
for which the difference of the corresponding plaintext pairs belongs to Din,
i.e. only those pairs that have the same value on the n − din non-active bits in
the plaintext. This can be efficiently done by ordering the list of structures of
size 2dout with respect to the values of the non-active bits in the plaintext, or
even with a hash table, in order to avoid the logarithmic factor of sorting and
sieving the table. The total number of pairs that will get through this sieve will
be 2s+2dout−1−n+din = 2p−n+din+dout . It is also possible to add an extra sieving
step by looking at the concrete differences of active S-boxes. Indeed, by looking
at the difference distribution table (DDT) of the primitive’s S-box and by taking
into account the activity pattern of each one of the active S-boxes, it is possible
to further sieve the remaining pairs by removing all those that have an impossible
difference on the concerned words. This approach was for example used in [11].
We denote by CS the average cost of sieving a pair. This cost is in general quite
small as it might simply correspond to a table lookup. However this is not always
the case, as we will see in the attack of Section 4. Indeed, in our case, this cost will
be a little higher than what it would have been with a straightforward approach,
as we will consider simultaneously several configurations for the sieving filter.

Key recovery Although all of the pairs that were kept after the sieving step are
candidates for having followed the differential, we now want to keep only those
such that there exists an associated key that actually leads to the differential.
By considering the first and last rounds, and performing partial key guesses that
we will merge thanks to efficient list merging algorithms like the ones presented
in [20], we can obtain quite low additional factors. In particular, we will denote
by CKR, the average cost to perform the key recovery steps per pair. The optimal
way of doing this will depend on the round function structure of the analyzed
cipher. However this is a step that can typically be done with a small factor. Its
goal is to generate a final number of triplets formed by plaintext (or ciphertext)
pairs and candidate associated keys that we expect smaller than the original
number of pairs (and of the exhaustive search cost), and the cost of finding the
secret key given these triplets is not expected to be the complexity bottleneck. In
Section 4.4 we show some improved techniques to reduce this cost, and provide
an example of such an accelerated key search in the context of SPEEDY.

Total time and memory complexity We denote by CE the cost of one
encryption. Taking into account the data generation, the data sieve and the key
recovery steps described above, the time complexity T 3 is given by

T =
(
2p+1 + 2p+1 CS

CE
+ 2s+2dout−1−n+din

CKR

CE

)
CE .

We present in the next two sections an application of the techniques in-
troduced in Section 2 against the SPEEDY family of block ciphers. Section 3 is
dedicated to the distinguisher part, while Section 4 describes the key recovery
part for SPEEDY-7-192.

3 Finding Good Differentials on SPEEDY

We start by briefly presenting the specifications of the SPEEDY family of ciphers.

3.1 Specifications of the SPEEDY family of block ciphers

The SPEEDY family of ciphers is a family of lightweight block ciphers introduced
by Leander, Moos, Moradi and Rasoolzadeh at CHES 2021 [18]. The main design
goal of these primitives was to be fast in CMOS hardware by achieving extremely
low latency. This goal was notably reached thanks to the design of a dedicated
6-bit bijective S-box.

There are different SPEEDY variants that differ in block size, key size and
number of rounds. More precisely, the block cipher SPEEDY-r-6ℓ has a block
and key size of 6ℓ bits and is iterated over r rounds. The internal state is viewed
as a ℓ× 6 rectangle-array of bits. Following the notation of [18], we will denote
by x[i,j], 0 ≤ i < ℓ, 0 ≤ j < 6, the bit located at row i and column j of the state
x. Note that all indices start from zero and the zero-th bit or word is always
considered to be the most significant one. Furthermore, if there is an addition
or a subtraction in the indices of the state, this is done modulo ℓ for the first
(row) index and in modulo 6 for the second (column) index.

The default block and key size for SPEEDY is 192 bits and this instance is
denoted by SPEEDY-r-192. It is suggested to iterate this instance over 5,6 or 7
rounds. Next, we provide the specifications of the round function for SPEEDY-r-192.
Note that for this variant, the state is seen as (ℓ× 6)-bit rectangle, with ℓ = 32.

Round function of SPEEDY-r-192 The internal state is first initialized with
the 192-bit plaintext. Then, a round function Rr is applied to the state r times,
where r is typically 5, 6 or 7. The round function is composed of four operations:
First, AddRoundKey (Akr) XORs the round subkey kr to the state. Then, the
SubBox (SB) operation applies a 6-bit S-box to each row of the state. Follows
the ShiftColumns (SC) operation that rotates each column of the state by
3 If k is the size of the secret key, for the attack to be valid, the time complexity T

should be smaller than 2kCE .

a different offset. These two operations (SB and SC) are repeated twice in an
alternating manner. After this, the MixColumns (MC) operation multiplies each
column of the state by a binary matrix. Finally, a constant cr is XORed to the
state by the AddRoundConstant (AC) operation. Note that, for the last round,
the last ShiftColumns as well as the MixColumns and the AddRoundConstant
operations are omitted, while a post-whitening key is XORed to the state. The
round function Rr for the rounds 0 ≤ r < r − 1 while also for the round r − 1
are depicted in Figure 2.

Fig. 2. The round function of SPEEDY-r-192 for the first r − 1 rounds (left) and the
last round (right).

In the rest of our paper, we assume that the input (resp. output) to each of
the described operations is a vector x (resp. y) ∈ F32×6

2 .

• AddRoundKey (Akr
): The 192-bit round key kr is XORed to the internal state.

Hence,
y[i,j] = x[i,j] ⊕ kr[i,j].

• SubBox (SB): A 6-bit S-box S is applied to each row of the state. More
precisely, for each row i, 0 ≤ i < 32, SB operates as follows:

(y[i,0], y[i,1], y[i,2], y[i,3], y[i,4], y[i,5]) = S(x[i,0], x[i,1], x[i,2], x[i,3], x[i,4], x[i,5]).

The table representation of the S-box S is given in Table 2.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 8 0 9 3 56 16 41 19 12 13 4 7 48 1 32 35

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 26 18 24 50 62 22 44 54 28 29 20 55 52 5 36 39

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

S(x) 2 6 11 15 51 23 33 21 10 27 14 31 49 17 37 53

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

S(x) 34 38 42 46 58 30 40 60 43 59 47 63 57 25 45 61
Table 2. Table representation of the 6-bit S-box S

• ShiftColumns (SC): This operation rotates the j-th column of the state,
0 ≤ j < 6, upside by j bits:

y[i,j] = y[i+j,j].

• MixColumns (MC): The MC operation of SPEEDY applies column-wise and is
based on a cyclic binary matrix α = (α1, α2, α3, α4, α5, α6) whose values
depend on the number of rows ℓ:

y[i,j] = x[i,j]⊕x[i+α1,j]⊕x[i+α2,j]⊕x[i+α3,j]⊕x[i+α4,j]⊕x[i+α5,j]⊕x[i+α6,j].

Recall that the additions i+ α∗ are considered mod ℓ.
For ℓ = 32, α = (1, 5, 9, 15, 21, 26).

• AddRoundConstant (Acr): The 192-bit round constant cr is XORed to the
internal state. Hence,

y[i,j] = x[i,j] ⊕ cr[i,j]

As this operation is not relevant to our analysis we omit the description of
the constant values.

Key Schedule The 192-bit master key of SPEEDY-r-192 is loaded to the state
of the first round key k0. To obtain the next round key, the key schedule consists
in simply applying a bit-permutation PB. Hence,

kr+1 = PB(kr), with kr+1[i′,j′] = kr[i,j],

such that

(i′, j′) := P (i, j) with (6i′ + j′) ≡ (β · (6i+ j) + γ) mod 6ℓ,

where β and γ are parameters depending on the block length of the cipher and
that satisfy the condition that gcd(β, 6ℓ) = 1. For SPEEDY-r-192, the parameters
β = 7 and γ = 1 are suggested, leading to the permutation P described in
Table 3.

Security Claims The authors made security claims for the three main ver-
sions of SPEEDY-r-192. For the 5-round version the authors expect no attack
with complexity better than 2128 in time when data complexity is limited to
264. On the other hand, SPEEDY-6-192 should achieve 128-bit security, while
SPEEDY-7-192 is expected to provide full 192-bit security.

3.2 Differential properties of SPEEDY

We describe in this section the differential properties of the non-linear and linear
layer of SPEEDY.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 113 120 127 134 141 148 155 162 169 176 183 190 5 12 19 26

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 33 40 47 54 61 68 75 82 89 96 103 110 117 124 131 138

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 145 152 159 166 173 180 187 2 9 16 23 30 37 44 51 58

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

P(i) 65 72 79 86 93 100 107 114 121 128 135 142 149 156 163 170

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P(i) 177 184 191 6 13 20 27 34 41 48 55 62 69 76 83 90

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

P(i) 97 104 111 118 125 132 139 146 153 160 167 174 181 188 3 10

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

P(i) 17 24 31 38 45 52 59 66 73 80 87 94 101 108 115 122

i 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

P(i) 129 136 143 150 157 164 171 178 185 0 7 14 21 28 35 42

i 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

P(i) 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154

i 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

P(i) 161 168 175 182 189 4 11 18 25 32 39 46 53 60 67 74

i 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

P(i) 81 88 95 102 109 116 123 130 137 144 151 158 165 172 179 186
Table 3. The bit-permutation P for SPEEDY-r-192 with β = 7 and γ = 1.

Differential properties of the S-box The SPEEDY family of cipher employs a
6-bit S-box S whose differential uniformity is δS = 8. This means that the highest
probability of a differential transition through S is 2−3. One particularity of this
S-box that we exploit in our attacks is that almost all 1-bit to 1-bit differential
transitions are possible. Moreover, these minimal weight transitions often have
a relatively high probability. Table 4 summarizes all these transitions, together
with their corresponding probability.

α/β 1 2 4 8 16 32
1 2 - 4 2 4 2
2 1 2 4 4 2 2
4 - 3 2 - 3 1
8 1 1 3 3 1 1
16 - - 4 4 3 4
32 1 1 2 3 1 -

Table 4. Summary of all the 1-bit input differences α to 1-bit output differences β.
The corresponding probability can be obtained by multiplying the coefficients of the
table by 2−5. The symbol - means that the corresponding transition is impossible.

The entire Difference Distribution Table (DDT) of S is provided in Ap-
pendix A. Another particularity is that 1-bit to 1-bit differential transitions can
be chained within one round through the SB ◦ SC ◦ SB operation. All of them
are possible and three of them achieve the maximum probability of 2−6.

Differential properties of the MixColumns operation The branch number
of the MC operation is 8, which is the maximum possible value for the vector α
chosen. As the maximum differential probability over 1 round is 2−6, this means
that an upper bound on the probability of any differential transition over two
rounds is (2−6)8 = 2−48. The inverse MixColumns operation is defined with the
vector

α−1 = (4, 5, 6, 7, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28).

This means in particular, that a column with a single active bit, will lead after
the inverse of the MixColumns operation to 19 active bits, while a column with
two active bits will be transformed after the inverse MixColumns to a column
with at least 12 active bits.

3.3 Searching for good differential trails

We describe in this section the methodology we followed to find the trails used
in our attacks. Our idea was to precompute at first all good one-round trails and
then chain them to create longer trails with high probability.

Searching for good one-round trails. Let M be the matrix used in the
MixColumns operation. In order to find good one-round trails, we first computed
and stored all ordered pairs of columns (x,M(x)) ∈ F32

2 × F32
2 such that both

columns x and M(x) have at most 7 active bits each. This led to a total of 5248
pairs (x,M(x)) ∈ F32

2 × F32
2 . However, these 5248 pairs can be divided into 164

equivalence classes, each equivalence class corresponding to the 32 rotations of
a different activity pattern inside a column. We then stored in a table T one
representative per equivalence class and used these pairs to precompute and
store all 1-round trails satisfying some particular criteria. To describe this phase
we need to introduce the following notation. Let st[0] be the initial state for
our computation. We denote by st[1] the resulting state after applying MC to
st[0], st[2] the state after applying SB to st[1], st[3] the state after applying
SC to st[2], st[4] the state after applying SB to st[3], st[5] the state after
applying SC to st[4] and finally st[6] the state after applying MC to st[5]:

st[0] MC−→ st[1] SB−→ st[2] SC−→ st[3] SB−→ st[4] SC−→ st[5] MC−→ st[6].

We computed all such propagations (st[0], st[6]) satisfying the following
conditions:

• st[0] has a single active column c0 such that (c0,M(c0)) ∈ T,
• st[5] has a single active column c5 such that (c5,M(c5)) ∈ T,
• st[2] has at most two active bits per row,
• the probability of the trail (st[0], st[6]) is strictly higher than 2−49.

For all trails satisfying the above conditions, we stored in a table the states
(st[0], st[5]) together with the probability of the corresponding trail. We
obtained a total number of 48923 one-round trails, which we stored. Note that
each trail can be be shifted column-wise to form 32 other valid one-round trails.
Thus, in total, there are 1565536 one-round trails which satisfy our criteria.

We now justify the criteria used for computing these 1-round trails. Our main
constraint was computing time, as considering all 1-round trails is computation-
ally infeasible. Furthermore, as we wanted to store the trails and reuse them,
memory needed to be reasonable as well. Limiting the computation to states
with a single active column before and after each MixColumns computation is
a reasonable assumption, as states with more active columns would lead by the
inverse ShiftColumns operation to many active rows. Furthermore, by doing ini-
tial experiments for computing long trails, we noticed that all good trails found
never had more than 7 active bits in a column. This can be explained by the fact
that more active rows naturally lead to lower probability transitions through
the SubBox operation. We then limited the transition through the first SubBox
operation to only transitions from rows with Hamming weight one to rows with
Hamming weight at most two. While transitions activating in the output more
bits per row can still lead to good trails respecting the other criteria, only a
small proportion of these transitions does so, while the computational gain for
not considering them is huge. Finally, we limited the probability of the trails to

2−49 in order not to have to store too many trails for the second phase. This
particular bound came from our initial experiments, were we noticed that the
probability of all 1-round trails that were part of the longer trails we found, had
probability strictly higher than this bound.

We claim by no means that the chosen criteria lead to all the one-round trails
that could be part of optimal longer trails, however we believe that our strategy
is a reasonable trade-off between optimality and efficiency.

Searching for longer trails. In a second step we used the precomputed 1-
round trails to create longer ones. To do so, we started by chaining our pre-
computed one-round trails in order to obtain r-round trails.

To begin, we exhaustively ran through all the precomputed one-round trails
and searched for the ones that can be chained. Recall here that the starting state
and ending state of each round trail are the states just before the MixColumns
application. The chaining condition is very simple and consists in simply verify-
ing that the final state of a one-round trail is the same as a column-wise rotation
of the starting state of the following one by an integer 0 ≤ ι < 32. Note that
when ι ̸= 0, the full one-round trail concerned is also rotated column-wise. Also
note that doing so, we only obtain an element of an equivalence class modulo
the column-wise rotation. In order to make our search efficient, we first sorted
the states by Hamming weight and active column coordinate of their initial and
final state. Following this procedure, we found 1476978 2-round trails, each of
them giving by rotation another 32 valid 2-round trails. We followed a similar
procedure to obtain 46471749 3-round trails which can also be rotated column-
wise to obtain 32 times more valid 3-round trails. To compute the 4-round trails
we use in our attack on the 7-round version, we chained the 2-round trails with
themselves rather than using the 3-round trails in order for the search to be
more efficient. We stored the most interesting 4-round trails we found based on
criteria of low probability and adaptability to the key recovery step as described
in the next section.

From now on, for each r-round trail, we use the following notations. Let
ststart[k] (resp. stend[k]) be the starting state (resp. the ending state) of each
one-round trail composing the r-round trail, for 0 ≤ k < r. Denote also by cstart
the active column of ststart[0] and by cend the active column of stend[r− 1]. Let
w0 be the Hamming weight of cstart (i.e. the number of active bits in cstart)
and let w1 be the Hamming weight of M(cend), where M is the matrix used in
MixColumns. Finally denote by Pk, the probability of the round k, for 0 ≤ k < r.
The probability of the r-round trail, that we will call from now on core trail, is
then given by P0 × P1 × · · · × Pr−1.

Extending the core trail. To build our attack, we need to choose an r-round
trail that will be extended one round backwards and half a round forwards as
shown in Figure 3. In this section, we describe the criteria that we used to select
an r-round trail that is likely to result in a good (r + 1.5)-round trail. The
resulting (r + 1.5)-round trail must have good probability, but also needs to be

adapted to our key recovery step. In particular, as we will argue in detail in
Section 4, it is important to have differentials that will allow for efficient sieving
in the plaintext. In particular, it is desirable that the (r + 1.5)-round trail we
construct has a sufficient number of inactive rows on the plaintext.

First, as described above, we need to make sure that the r-round trail se-
lected leads to a (r+1.5)-round trail with good probability. For a r-round trail,
the probability of the resulting (r + 1.5)-round trail can be upper-bounded by
2−(w0+1)×3 × P0 × P1 × · · · × Pr−1 × 2−w1×3. Indeed, if w0 is the Hamming
weight of cstart, then by computing backwards one round there will be at least
w0 + 1 active S-boxes. As the highest probability transition through an S-box
has probability 2−3, the highest possible probability of this prepended round will
be 2−(w0+1)×3. In the same way, if w1 is the Hamming weight of M(cend), then
there will be exactly w1 active S-boxes through the first S-box layer of the next
round. Thus, the probability of the appended half round will be at most 2−w1×3.
We generated all possible r-round core trails following the procedure described
above and kept the ones providing high estimated probabilities.

Fig. 3. Generating (r + 1.5)-round trails from core r-round trails and extending them
to mount (r + 3)-round attacks on SPEEDY.

Second, we want the r-round trail selected to lead to a (r + 1.5)-round trail
that has a significant number of inactive rows on the plaintext in order for the
sieving step to be efficient. First, consider the initial state of the r-round trail.
The rows that are active in this state are exactly the rows that will be active
in the state that follows the first SC operation in round 0 of the (r + 1.5)-round
trail. To achieve better sieving, we want the transition from this state through
SC−1◦ SB−1 to lead to an initial state of the (r + 1.5)-round trail that has low
Hamming weight. To achieve this, not only the number of active rows but also
the way those are distributed inside this state play a role for the efficiency of
the sieving procedure. Let L be the size of a block of consecutive rows, where
all rows are non-active except for l out of them. An example of such a state is
shown below with L = 15 and l = 3.

Large values of L combined with small values of l naturally lead to better
complexities. Indeed, we can carefully control the l active rows with some prob-
ability at a given cost. By doing so, we can generate a number of inactive rows
in the plaintext as high as L− 5− l, thus leading to a sieving of 2−[(L−5−l)]×6.

Using the above criteria, we selected an r-round trail, which we then extended
in two ways, starting first by appending a round backwards. This led to an (r+1)-
round trail. Then, to further improve the probability of our trail (r + 1)-round
trail, we relied on the technique of multiple differentials.

3.4 Multiple differentials

The technique of multiple differentials consists in considering multiple (r + 1)-
round differential trails that all have the same input and output difference. To
make the description of our technique simpler, we will describe how we built
our multiple differentials in the case of our 7-round attack. In this case, r = 4.
For our 7-round attack, the chosen 4-round core trail is the one displayed in
red in Figure 4. This trail has probability 2−161.15. As shown in Figure 4, we
extended it by one round backwards and obtained a 5-round trail of probability
pmain = 2−170.56. We call this trail the main trail. Note that it is possible to
extend the 4-round core trail backwards with probability 2−6 for one round. How-
ever, this propagation, due to the diffusion properties of the inverse MixColumns
transformation would lead to a column with 19 active bits (see Section 3.2). Such
a scenario would have complicated the key-recovery phase and was not retained.

We limited our search to trails with probability smaller or equal to pmax =
pmain × 2−25. Our new trails must thus verify that

• their input difference is such that the bits of coordinate

(i, j) ∈ {2, 3, 4, 7, 8, 10, 12, 14, 16, 17, 18, 25, 27, 29} × {1}

are active, whilst the other bits are inactive in the first state of Figure 4;
• their output difference is such the bits of coordinate

(i, j) ∈ {1, 15, 16, 19, 21, 25, 31} × {3}

are active, whilst the other bits are inactive in the second state surrounded
by red in Figure 4.

To build our new trails, we rely on an algorithm that operates round by
round.

Initial round. We start by building a list of potential initial one-round trails.
We denote the initial state by st[0], the state after the application of MC by
st[1], and so on so forth as we did when constructing our one-round trails.
We construct our initial one-round trails in a similar fashion to the way we
constructed the one-round trails used to build our main trail. More precisely, we
want our potential initial one-round trails to satisfy the following conditions:

• st[0] verifies the input condition;
• st[5] has a single active column c5 such that (c5,M(c5)) ∈ T;
• st[2] has at most two active bits per row.

In order to make the search more efficient, we added constraints on these ini-
tial round trails’ probability and Hamming weight, using the fact that (st[0], st[6])
must belong to a larger 5-round trail such that the probability of this larger trail
is at most pmax. We will not describe these constraints in detail as they are very
similar to previous techniques we used to build trails of reasonable probability.
We obtained 6 potential initial round trails. Because of the second condition
above, these new trails can be chained to our previously computed one-round
trails. This property will be used to build our multiples.

Chaining the initial round. In order to find trails that satisfy our truncated
differential constraints, we must now chain the potential initial round trails to
the previously computed one-round trails. We do so in two steps in order for the
chaining to be computationally feasible.

1. We chain the 2-round trails pre-computed to the potential initial one-round
trails to form potential initial three-round trails. We get 8049 such 3-round
trails.

2. We chain these potential initial 3-round trails to the previously computed
2-round trails to obtain 5-round trails.

We found 409 5-round trails that matched all our criteria. By adding their cor-
responding probabilities, we found a final probability of 2−169.95. As one can
notice, using multiple differentials allows to improve the probability of the r-
round differential, but this improvement is not as important as one would have
expected by the number of found trails. This is due to the fact that all of the
additional trails found had unfortunately quite bad probabilities compared to
the main one.

5.5-round differential trail We describe now the 5.5-round differential trail
we used to attack SPEEDY-7-192 in the following section. This trail is depicted
in Figure 4.

As stated before, the 5-round trail has probability 2−170.56, which is improved
to 2−169.95 by using multiple trails. We then extended this differential 0.5 round
forwards. For this step we followed a particular approach. To go through the last
S-box layer of the distinguisher part (see the before last state of Figure 4) an
attacker has several choices. One extreme would be to fix to some concrete output

value the transitions through all active S-boxes. This comes at a cost of a certain
probability, but if we choose the transitions carefully we can guarantee very few
active rows on the ciphertext. The other extreme is to consider truncated output
differences for all the active S-boxes of this state. Thus the transition through
the SubBox layer happens with probability 1, but almost all rows will be active
in the output leading to very large structures of ciphertexts. What we decided
to do is a trade-off between these two scenarios. More precisely, we decided to
fix the transition 0x4 → 0x10 for the active S-boxes of rows 5, 11 and 19 and
to allow more transitions for the S-boxes of rows 0 and 28. The choice of these
two rows comes from the fact that after the SC operation, these two S-boxes
activate some common rows. Our goal was to activate at most 7 rows after
the SC operation (last state of Figure 4) and for this we computed the highest
probability to have at most 4 rows active between rows 23 and 31 and also row
0 after SC. We exhausted all possible configurations and we found the best one
to be the one having the rows 24, 27, 28 and 31 active after SC. One possibility
for this was to force the output difference of the S-box of row 0 to be of the form
(0,*,0,0,*,0) and the output difference of the S-box of row 28 to be of the
form (*,*,0,0,*,0), where * means that the corresponding bit is potentially
active. The probability then to start from any difference of the above form in
rows 0 and 28 and to activate at most the rows 24, 27, 28 and 31 after the SC is
2−3.41. This fact, together with the probability of 2−3.41 for the transition 0x4
→ 0x10 for the other three active rows, gives a total probability of 2−13.64.

To summarize, as can be seen from Figure 4, our 5.5-round trail has then a
total probability of

2−169.95 × 2−13.64 = 2−183.59.

4 Attack on SPEEDY-7-192

SPEEDY-7-192 is the variant of the SPEEDY family suggested for applications
where a security of 192 bits is needed. We show in this section, by using the
techniques and ideas introduced earlier, how to recover the secret key of this
version with less than 2192 encryptions. In addition, we will propose two ideas
that will allow us to optimize the complexity of the attack: one, already used for
instance in [11], is to not consider the rounds as blocks regarding their treatment
with respect to the differential distinguisher or the truncated part, but include
some row transitions in the differential and let the rest go as truncated in the
same round which we will apply in the input and output of the attack; the other
is to consider the detailed equations over two rounds with merging techniques
that will allow us to optimize the complexity of the key guessing part.

Our attack has a data complexity of 2187.28, a time complexity of 2187.84

and a memory complexity of 242 and contradicts thus the designers’ security
claim for this variant, as has been acknowledged by them. More importantly,
this cryptanalysis highlights that the security margin for this variant was over-
estimated. Our attack uses the differential found with the ideas from Section 2
and the implemented method described in Section 3.3. As described before, the

Fig. 4. 5.5-round differential trail used to attack SPEEDY-7-192. The red part corre-
sponds to the 4-round core trail, while the blue part corresponds to the 1.5-round
extension. Grey bits are bits with unknown difference. The two states surrounded in
red are the starting and final states of the multiple differentials considered.

main differential trail depicted in Figure 4 covers 5.5 rounds and its probability,
when taken together with its associated multiple trails described in Section 3.4,
is 2183.59. The trail of Figure 4 can then be extended one round backwards and
half a round forwards as shown in Figure 5, to finally cover 7 rounds. This fact
contradicts a particular statement of the designers that wrote that a one-round
security margin for the key-recovery part should be sufficient.

4.1 Trade-off between differential probability and efficient sieving

Our attack is performed in the decryption direction. The first step is to generate
a number of relevant ciphertexts to implement the attack. If we impose no extra
condition on the extension of the distinguisher to the plaintexts (δin → Din as

Fig. 5. Key recovery part of the 7-round attack against SPEEDY-7-192

denoted in Figure 1) then Din will have all but one rows active (see Figure 4).
This would lead to a very limited sieving and would thus leave us with too many
potential pairs on which to perform the key recovery. For this reason, we pro-
pose a first improvement. This improvement consists in restricting the permitted
transitions through the second S-box layer of Round 0. More precisely, the con-
dition is that the three active bits in rows 26, 28 and 30 after the second S-box
only generate a maximum of three active rows in the plaintext state (among rows
26 to 31 and among rows 0 to 2). This condition allows to have 7 inactive rows
(instead of 1 before) in the plaintext state at the cost of decreasing the overall
differential probability. We denote by Pin the probability that it is verified. As
we show next, since this probability is relatively high, the impact on the overall
differential probability is limited.

Fig. 6. Transition of rows 26, 28 and 30 through the inverse of the second SB of round 0.

To compute Pin, we start with the state Z, corresponding to the state after
the second S-box application of Round 0, where the rows 26, 28 and 30 all have
an active difference of 010000. Therefore, on the state Y, we consider differences
δ1, δ2, δ3 that propagate to 010000 through the S-box layer with probability
P(δ1),P(δ2),P(δ3) respectively. Propagating backwards through SC, we obtain
Xδ1,δ2,δ3 = SC−1(Yδ1,δ2,δ3). We are interested in states Xδ1,δ2,δ3 that have at

most three nonzero rows among rows 26 to 31 and among rows 0 to 2. We define
the function 13 as follows:

13(Xδ1,δ2,δ3) =

{
0 if Xδ1,δ2,δ3has more than 3 nonzero rows
1 else.

The overall probability for the transition is given by the formula

Pin =

∫
δ1,δ2,δ3

13(Xδ1,δ2,δ3)P(δ1)P(δ2)P(δ3) .

The obtained probability is Pin = 2−2.69. We take this probability into ac-
count as part of the overall probability of the differential distinguisher, which
now becomes 2p

∗
= 2−(183.59+2.69) = 2−186.28. Note that only 78 (instead of(

9
3

)
= 84) difference patterns are possible in the plaintext. These patterns are

provided as supplementary material.

4.2 Data generation

We build the data required for our attack in the decryption direction. Since there
are 7 active rows on the ciphertexts, the size of each structure is 27×6 = 242.
By following now the notations introduced in Section 2, we build 2s structures
of size 242 each, such that 2s+42 equals 2186.28+1. This implies that there are
2s = 2145.28 structures and 2145.28+2·42−1 = 2228.28 potential pairs. The cost of
the data generation is 2187.28CE , where CE is the cost of one encryption and can
be estimated as 6 ∗ (1 + 6 + 6 + 6) + 1 + 6 + 6 = 128 bit-operations. Indeed, MC,
SB are 6 bit-operations, the cost of AK is 1, and all these transformations can be
applied in parallel.

4.3 Sieving of the pairs

Performing the key-recovery step on all 2228.28 pairs would exceed the complexity
of the exhaustive search. Therefore, we will start with a sieving step to eliminate
pairs that cannot have followed the differential. This sieving is done by looking
at the differences in the plaintext. As can be seen from Figure 5, the ‘good’
plaintext pairs have a zero-difference in row 25 as well as 6 inactive rows among
rows 26 to 31 and 0 to 2. The sieving will be performed on both the inactive
and the active rows.

Inactive rows. Each inactive row represents a 6-bit filter. We consider each of
the 78 possible difference pattern in the plaintext. For each pattern, since there
are 7 inactive rows at the input, the sieving obtained from these rows is 2−42.

Active rows [3 − 24]. We can proceed to a sieving on each of these 22 active
rows by taking into account the first S-box layer of Round 0. To make this step
clear, we start by explaining the sieve on row 6. As can be seen from Figure 5,
to follow the differential, a plaintext pair should generate after the application

of the S-box a truncated difference of the form (0,*,*,*,0,0). By looking at
the DDT of SPEEDY’s S-box, we see that the input differences 0x16, 0x2d and
0x3c never propagate to an output difference of the form (0,*,*,*,0,0). Thus,
any pair with one of those three plaintext differences at row 0 can be sieved out.
This gives us a filter of log2(61/64) = 0.07, as shown in Table 5. The filters for
the other active rows are computed similarly and are reported in Table 5.

row filter row filter row filter row filter
3 0.42 9 0.02 15 0.09 21 0.07
4 0.48 10 0.05 16 0.07 22 0.17
5 0.07 11 0.07 17 0.09 23 0.51
6 0.07 12 0.12 18 0 24 1.42
7 0.07 13 0.02 19 0.02
8 0 14 0.07 20 0

total filter 3.9

Table 5. Sieving in the active rows [3− 24] of the plaintext.

Considering the 78 different patterns in the rows [26-31] and [0-2]. Recall
that there are in total 78 possible patterns pat, and each one corresponds to a
subset of exactly 3 active rows among rows 26 to 31 and 0 to 2 in the plaintext.
We start from the difference (0,1,0,0,0,0) on the rows 26, 28 and 30 after
the second S-box of Round 0. Then we propagate this difference backwards
through the two S-box layers of Round 0 and discard all the differences that
do not follow the pattern considered. The number of possible differences on the
plaintext allows us to filter 2−fpat = #Possible differences

23·6 (see Appendix B for the
78 possible values of fpat).

Summarizing the sieving step. For a pattern pat, the sieving corresponding to
the inactive rows is 2−42 while the one on the active rows is 2−3.9 · 2−fpat . Thus,
the total number of potential pairs for the key recovery step is∑

pat

2228.28−45.9−fpat = 2182.38
∑
pat

2−fpat = 2186.42 .

This sieving step is the reason why we decided to perform the attack in the
decryption direction. Indeed, using the 78 patterns in initial structures would
have further increased the complexity.

4.4 Recovering the key

In this section, we describe our improved key recovery step. The key recovery
algorithm is performed for each pair on the fly. As explained in the last section,

the total number of pairs we will try in this step is 2186.42. For each pair, we
check whether there exists a key that allows the pair to follow the differential.
If not, the pair is discarded. Otherwise, as we will show, we obtain a partial key
on which all bits are determined but a small number nl which is equal to 8 on
average. For each of the remaining pairs and associated partial key, we then try
exhaustively all possible 2nl keys. For each pair, the key recovery is divided into
three stages which can be summarized as follows. First, we determine bits of
the last subkey k7 using the fact that if the pair follows the trail, then it must
belong to δout before the last SB application. Since the key schedule of SPEEDY
consists simply in a permutation of the key bits, this in turn constrains the bits
of k0. Second, we determine more bits of k0 using the fact that the pair must
belong to δin. Lastly, we determine a few extra key bits using the penultimate
S-box application (first S-box application of the last round).

Stage 1 - Last subkey addition (k7). For each pair, we start by determining
several bits of k7. As can be seen from Figure 5, the ciphertext pairs are active on
the rows [4,10,18,24,27,28,31]. For the rows [4,10,18,27,31] (respectively
row 24), we want the partial key to be such that these rows satisfy the differential
(0,1,0,0,0,0) (respectively (0,0,0,0,1,0)) before the last SB application. For
each pair, this determines 6 × 6 = 36 key bits on average. The case of row 28
is only slightly different. If active, there are 26 possibilities for the six key bits,
but 4 different patterns are possible before SB. A correct pattern is thus reached
with probability 2−4. The row 28 can thus determine 6 additional key bits at
the cost of 22 guesses on average. This stage thus allows us to determine up to
42 key bits at the cost of 22 guesses. In Table 6, we detail which key bits of the
master key are fixed after determining the value of k7 on the rows corresponding
to one of the 7 active rows in the ciphertext.

row row
4 145 8 63 118 173 36 27 55 110 165 28 83 138
10 13 68 123 178 41 96 28 1 56 111 166 29 84
18 157 20 75 130 185 48 31 31 86 141 4 59 114
24 25 80 135 190 53 108

Table 6. Guessed master key bits from the subkey k7. Each row corresponds to one
of the 7 active rows of the ciphertexts.

About the potentially active ciphertext rows. For the sake of simplicity, we con-
sider in this analysis that the four ciphertext rows [24,27,28,31] are active,
as it simplifies the key guessing procedure. In fact, we could just discard the
pairs that do not verify this, leaving us with 224+24−1 − 247−6 ≈ 246.91 pairs for
the partial structure on 4 lines instead of 247, but with a higher probability of

reaching a good difference before the penultimate SB. In practice, there is no
need to discard this data. It can also be treated with similar methods to the one
presented here. Although these methods are slightly more expensive than the one
presented here as a few more key bits might have to be partially guessed, they
are used to handle a very small proportion of data. Thus, the difference in the
cost will be negligible. We thus limit our explanations to the predominant case,
with all the rows active. We allow rows [4,10,18] to be non active. For each of
these rows, this gives on average a probability of 2−6 of having a difference that
can match the required one (including the 0 difference). Thus, on average, only
one 6-bit key word leads to the desired difference.

Stage 2 - First subkey addition (k0) We now focus on the addition of the
first subkey k0. This key recovery stage is performed row by row, and the order
in which each row is treated is important in order to keep our time complexity as
low as possible. For each row, we will use available information from both SubBox
layers of Round 0 to determine more triplets of possible pairs and associated key.
Table 7 helps us understand how to exploit the first S-box of Round 0 for rows
[3,...,24]. Recall that these rows are active rows in the plaintext and that
they allowed us to perform a specific sieving given in Section 4.3. For each row,
Table 7 provides the following information:

– Key determined gives the number of key bits already determined during
Stage 1 (i.e. with subkey k7).

– Key left gives the number of key bits that remain to be determined for this
row (note that the sum of Key determined and Key left is always 6).

– Differential Filter gives the value of the filter that was applied during
the sieving step to each pair.

– Fixed bits gives the amount of inactive bits after the first SubBox layer.
– First S-box Cost gives the overall cost in bits for a given row to check

the propagation through the first SubBox. Since one can precompute the
valid pairs of values and associated partial keys for each row, this cost is
equal to (Key left + Differential filter - Fixed bits) rather than
Key left. For each row and for each key, the probability that they satisfy
the differential is 2Differential filter−Fixed bits. In particular, for rows where
the value of First S-box Cost is negative, then for each pair, there exists
a key that satisfies the differential with probability < 1. Such rows allow us
to discard more pairs.

Since row 25 is inactive, it does not provide any information about k0 through
the first SB. For the sake of simplicity, we do not analyze how to exploit the rows
0 to 2 and 26 to 31. This could have been done by looking at the case of each
specific pattern, but it wouldn’t have significantly improved the attack whilst
considerably lengthening the description of the key recovery step.

To perform the key recovery, we will also look into the propagation through
the second S-box. More precisely, we will use the conditions set on the rows
[3,4,5,8,9,11,13,15,17,18,19] after the application of the second S-box to

row Key Key Differential Fixed First
determined left Filter bits S-box Cost

0 0 1 2 3 4 5 2 4 * * *
1 6 7 8 9 10 11 1 5 * * *
2 12 13 14 15 16 17 1 5 * * *
3 18 19 20 21 22 23 1 5 0.42 4 1.42
4 24 25 26 27 28 29 3 3 0.48 4 -0.52
5 30 31 32 33 34 35 1 5 0.07 3 2.07
6 36 37 38 39 40 41 2 4 0.07 3 1.07
7 42 43 44 45 46 47 0 6 0.07 3 3.07
8 48 49 50 51 52 53 2 4 0 2 2
9 54 55 56 57 58 59 3 3 0.02 2 1.02
10 60 61 62 63 64 65 1 5 0.05 3 2.05
11 66 67 68 69 70 71 1 5 0.07 3 2.07
12 72 73 74 75 76 77 1 5 0.12 3 2.12
13 78 79 80 81 82 83 2 4 0.02 2 2.02
14 84 85 86 87 88 89 2 4 0.07 3 1.07
15 90 91 92 93 94 95 0 6 0.09 3 3.09
16 96 97 98 99 100 101 1 5 0.07 3 2.07
17 102 103 104 105 106 107 0 6 0.09 3 3.09
18 108 109 110 111 112 113 3 3 0 2 1
19 114 115 116 117 118 119 2 4 0.02 2 2.02
20 120 121 122 123 124 125 1 5 0 2 3
21 126 127 128 129 130 131 1 5 0.07 3 2.07
22 132 133 134 135 136 137 1 5 0.17 3 2.17
23 138 139 140 141 142 143 2 4 0.51 4 0.51
24 144 145 146 147 148 149 1 5 1.42 5 1.42
25 150 151 152 153 154 155 0 6 * * *
26 156 157 158 159 160 161 1 5 * * *
27 162 163 164 165 166 167 2 4 * * *
28 168 169 170 171 172 173 1 5 * * *
29 174 175 176 177 178 179 1 5 * * *
30 180 181 182 183 184 185 1 5 * * *
31 186 187 188 189 190 191 1 5 * * *

Table 7. This table represents the information used for efficiently solving the key-
recovery part of the attack. Each line in the table is associated to the same row in
the state. The column Key determined indicates how many bits are already known
from Stage 1 (those bits are depicted in red), and Key left is the number of bits that
remains to be known. Fixed bits represents the number of inactive bits after the first
SB of Round 0 and that therefore can be used to perform a sieving on the candidate
keys. The cost is the difference between the previous values, and the second filter
denotes the active rows in the second SB, as they will provide an additional filtering to
produce the fixed output difference.

sieve the pairs. At the output of the second S-box, these rows must have the
exact difference (0,1,0,0,0,0). This provides us with a 2−6 filter, but it is not
straightforward how to exploit it. Indeed, because of the SC step, each row at
the output of the second S-box layer depends on 6 rows at the output of the
first S-box layer. It thus seems that in order to get a 2−6 filter, one first has
to guess 6 rows of k7, which is very costly. However, we use several improved
techniques in order to get filters without having to guess too many rows before
the first S-box step. We describe these techniques through an example which can
be found in the paragraph dedicated to the rows [18,19,22,21,23] below. We
now describe in detail the first three steps of Stage 2. Table 8 sums up the rest
of Stage 2.

Rows [4]. We start by considering row 4. This row allows us to perform a filter
of −0.52 at the first S-box level of Round 0.

Rows [18,19,20,21,23]. We next consider the rows 18,19,20,21 and 23. To
understand why these rows are the next ones we consider, one must take into
account the second S-box transition. Indeed, consider the rows [17,18,19] after
the second S-box transition. These three rows are active, and must thus have the
exact difference (0,1,0,0,0,0). Since these rows are positioned next to each
other, one does not need to guess 3×6 = 18 rows at the input of the first S-box,
but only 8, namely the rows [17,18,...,24]. Further, we show that to get a
filter, one does not need to guess all of the 8 rows on which the rows [17,18,19]
after the second S-box transition depend. We start by precomputing all the pairs
of values that are in the codomain of the function

a, b, c, d, e, f 7→
(
S−1(a, b, c, d, e, f), S−1(a, b, c, d, e⊕ 1, f)

)
and store them in a table of size 26. We can thus build precomputed table of size
218 which contains all possible valid values of rows [17,18,19] at the entry the
second S-box layer. We guess the rows [18,19,20,21,23] at the entry of the
first S-box. In total, 13 bits of the rows [18,19,22,21,23] later impact the rows
[17,18,19] at the entry of the second S-box. There are thus 226 possible pairs
of values for these bits, whilst in total, the table contains 218 possible pairs that
verify the condition at the output of the S-box on the rows [17,18,19]. This
thus results in a 2−8 filter. More precisely each pair matches a pre-computed
valid pair in the table of size 218 with probability 2−8. In particular, when-
ever a pair is not discarded, the rows [17,18,19] before the second S-box are
completely determined. This will allow us to filter more pairs as we guess more
rows in the plaintext which impact the value of the rows [17,18,19] before the
second S-box. The guess of rows 18,19,21 and 23 can be done with merging
techniques developed in [14] resulting in a reduction of the guessing cost from
22.02+2.07+1+0.51+2.17 = 27.77 to 24.09 + 23.68 + 27.77−8 = 24.94, or else can be
more efficiently performed with small precomputations regarding these partial
transitions with a cost for each step given by the number of remaining solutions,
so 27.77−8 = 2−0.23 in this example.

Row 24. The next step consists in guessing row 24. As we have described previ-
ously, for the pairs that have not been discarded yet, the three rows [17,18,19]
before the second S-box are fixed. Two bits of row 24 later impact the value of
these rows. Thus, we obtain an extra 2−2 filter. Therefore, as can be seen from
Table 7 we obtain a partial guessing cost of 21.42 and a partial data cost of 2−0.58.

The next steps of the key recovery are described in Table 8. This table must
to be read from top to bottom. Its columns provide the following informations:

– Row guessed at the input. This column displays the coordinate of the
row guessed. The column considered first is at the top and the last one is at
the bottom.

– Partial guessing cost. This column displays the cost of guessing each
row and checking that the first S-box transition is valid (See Table 7).

– Partial data filter. For each row, this column displays the log of the
probability that a valid partial key exists for each pair, taking into account
the filter provided by the constraints after the second S-box. This column
provides information on the evolution of the data after guessing each row (or
group of rows). For a (group of) row(s), if the entry on this column is −x,
then the number of pairs remaining after handling this (these) column(s) is
multiplied by 2−x.

– Row determined at second S-box. This column displays the second S-box
rows that are fully determined after a given guess.

The complexity of the key recovery so far is given by the formula[
2186.42+22−0.52(24.94 + 2−0.23(21.42 + 2−0.58(23 + 2−3(· · · (21.42 + 20.58)))))

]
2−7CE

= 2186.15CE

and there are 2168.3 remaining pairs.

Stage 3 - Back to k7 using the penultimate S-box. For the remaining key
bits, we will go back to k7 and study the penultimate S-box. A similar approach
to the second S-box is applied here: instead of using the second S-box transition
to perform a guess and filter approach, the penultimate S-box is used. For each
row of k7, Table 9 shows which bits of the master key still need to be guessed
(the bits in black). For each pair, we wish to find partial keys such that they
lead to the difference 000100 before the first S-box of the last round on rows
[0,5,11,19,31]. For each of these rows, Table 10 displays which rows of k7
need to be guessed in order to check the transition to 000100 before the first
S-box of the last round. More precisely, it provides the following information.

– Row considered. This column displays the coordinate of the row before the
first S-box of the last round which will be used to filter the right key guesses.

– Involved rows of k7. This column displays which rows of k7 must be
guessed in order to check the condition on the row considered before the
first S-box of the last round.

Row guessed Partial guessing Partial data Row determined
at the input cost filter at second S-box

4 -0.52 -0.52
18,19,22,21,23 4.9 -0.23 17,18,19

24 1.42 -0.58
20 3 -3 15
17 3.09 -0.91
16 2.07 0.07 13
15 3.09 -0.91
14 1.07 -0.93 11
13 2.02 -1.98
11 2.07 0.07 9
12 2.12 -1.88 8
9 1 -3
10 2.05 -1.95
8 2 0 5
6 1.07 -0.93 3
5 2.07 -1.93
7 3.07 -0.93
3 1.42 -0.58

Table 8. Description of Stage 2 of the key recovery.

– Number of missing bits. This columns displays the number of bits in the
involved rows of k7 that have not yet been determined.

For each remaining pair and for each of these five transitions, we recover the
key bits that allow this transition and put them in tabs. By merging them, we
then recover the pairs and associated partial keys that allow the whole state tran-
sition. After this step, only the key bits [15,16,152,153,159,180,187,188] are
left to determine. This is done by guessing them. The complexity associated to
this step is

2168.3(28 + 28 + 29 + 210 + 210 + 211(1 + 28)) = 2180.31CE .

Complexity summary. The final time complexity of our attack is

T = 2187.28CE + 2179.42CE + 2186.15CE + 2180.31CE = 2187.84CE

5 Discussion and conclusion

We presented in this work an attack on SPEEDY-7-192 that fully breaks this
variant of the SPEEDY family of ciphers. In parallel, we could also build attacks
on other variants, even if our attacks on these smaller-round versions do not

row Key row Key
left left

0 169 32 87 142 5 60 2 16 73 128 183 46 101 156 2
1 115 170 33 88 143 6 2 17 19 74 129 184 47 102 1
2 61 116 171 34 89 144 1 18 157 20 75 130 185 48 0
3 7 62 117 172 35 90 2 19 103 158 21 76 131 186 2
4 145 8 63 118 173 36 0 20 49 104 159 22 77 132 1
5 91 146 9 64 119 174 2 21 187 50 105 160 23 78 1
6 37 92 147 10 65 120 1 22 133 188 51 106 161 24 1
7 175 38 93 148 11 66 2 23 79 134 189 52 107 162 2
8 121 176 39 94 149 12 2 24 25 80 135 190 53 108 0
9 67 122 177 40 95 150 2 25 163 26 81 136 191 54 2
10 13 68 123 178 41 96 0 26 109 164 27 82 137 0 2
11 151 14 69 124 179 42 3 27 55 110 165 28 83 138 0
12 97 152 15 70 125 180 3 28 1 56 111 166 29 84 2
13 43 98 153 16 71 126 2 29 139 2 57 112 167 30 2
14 181 44 99 154 17 72 3 30 85 140 3 58 113 168 2
15 127 182 45 100 155 18 2 31 31 86 141 4 59 114 0

Table 9. In red, the master key bits that have already been determined. In black, the
bits that still need to be determined.

Row Involved rows Number of
considered of k7 missing bits

0 27,28,29,30,31,0 8
5 0,1,2,3,4,5 9
11 6,7,8,9,10,11 10
19 14,15,16,17,18,19 10
31 23,24,25,26,27,28 8

Table 10. Description of Stage 3 of the key recovery.

contradict the corresponding security claims. For completeness we provide a
summary of these attacks, that are at the best of our knowledge the best known
attacks on these versions.

SPEEDY-5-192. Following the trail depicted in Figure 7 and its associated mul-
tiple differential probability of 2104.02, computed as explained in Section 3.4, we
can build a differential attack on 5 rounds, very similar to the 7-round one. We
just need to take into account the new parameters. Note that the complexity for
the key recovery is extrapolated from the 7 round version, since the first round is
the same and we have the same amount of key bits, we expect similar complexity
for the first part of the key recovery. Regarding 5 rounds the new complexity is
given by (with CE = 26.47 here):

T = 2107.71CE + 2100.38CE + 2105.38CE + 286.85CE ≈ 2107.98CE ,

a data complexity of 2107.71 and a memory complexity of 242. The authors stated
that this version should achieve 128-bit security when data complexity is limited
to 264. Therefore, due to the data limitation, our attack does not contradict the
security claim of the designers but still represents the best known attack against
SPEEDY-5-192.

Fig. 7. 3.5-round differential trail used to attack SPEEDY-5-192. The red part corre-
sponds to the 2-round core trail, while the blue part corresponds to the 1.5-round
extension.

SPEEDY-6-192. For 5.5 and 6 rounds we can use the trail depicted in Figure 7
with multiple differential probability of 2125.41 and 2149.28 respectively. We take
into account the new parameters and the complexities are (with C5.5

E = 26.67

and C6
E = 26.75):

T6 = 2152.97CE + 2145.36CE + 2150.36CE + 2132.36 ≈ 2153.19CE ,

and data complexity given by the first term and still a memory complexity of 242.
We can do similar computations for 5.5 rounds to obtain T5.5 = 2129.34CE with
the same memory complexity and a data of 2129.1. To the best of our knowledge,
our results are the best known attacks on SPEEDY and represent a significant
gain over previous results.

Open problems. We believe, as a future research, that it would be interesting to
develop different algorithmic methods in order to search for higher-probability

Fig. 8. 4.5-round differential trail used to attack SPEEDY-6-192. The red part corre-
sponds to the 3-round core trail, while the blue part corresponds to the 1.5-round
extension.

trails for SPEEDY. In parallel, different theoretical but also programming tech-
niques should permit to improve our approach for finding multiple differentials.
Being able to find more trails of good probability would greatly increase the
complexities of the attacks. In parallel, new tools that would permit to compute
propagations through two rows at once with no constraint in the middle part
would potentially permit to find better differentials. Finally, we believe that it
would be interesting to develop an automatic tool for differential cryptanalysis
that could give an approximate of the best attack complexity for certain types
of ciphers.

Acknowledgements. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement no. 714294 - acronym QUASYModo).
It was also partially supported by the French Agence Nationale de la Recherche
through the SWAP project under Contract ANR-21-CE39-0012. We would also
like to thank Shahram Rasoolzadeh and Zahra Ahmadian for fruitful discussions
and for pointing out an error in our initial analysis.

References

1. Banik, S., Bao, Z., Isobe, T., Kubo, H., Liu, F., Minematsu, K., Sakamoto, K.,
Shibata, N., Shigeri, M.: WARP : Revisiting GFN for lightweight 128-bit block
cipher. In: SAC 2020. LNCS, vol. 12804, pp. 535–564. Springer (2020)

2. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small Present - towards reaching the limit of lightweight encryption. In: CHES
2017. LNCS, vol. 10529, pp. 321–345. Springer (2017)

3. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In: CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 123–153. Springer
(2016)

4. Biham, E., Furman, V., Misztal, M., Rijmen, V.: Differential cryptanalysis of Q.
In: FSE 2001. LNCS, vol. 2355, pp. 174–186. Springer (2001)

5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
CRYPTO ’90. LNCS, vol. 537, pp. 2–21. Springer (1990)

6. Biham, E., Shamir, A.: Differential cryptanalysis of Feal and N-Hash. In: EURO-
CRYPT ’91. LNCS, vol. 547, pp. 1–16. Springer (1991)

7. Biham, E., Shamir, A.: Differential cryptanalysis of Snefru, Khafre, REDOC-II,
LOKI and Lucifer. In: CRYPTO ’91. LNCS, vol. 576, pp. 156–171. Springer (1991)

8. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In:
CRYPTO ’92. LNCS, vol. 740, pp. 487–496. Springer (1992)

9. Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: Theory and practice.
In: FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer (2011)

10. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer (2007)

11. Broll, M., Canale, F., David, N., Flórez-Gutiérrez, A., Leander, G., Naya-Plasencia,
M., Todo, Y.: New attacks from old distinguishers improved attacks on serpent.
In: CT-RSA 2022. LNCS, vol. 13161, pp. 484–510. Springer (2022)

12. Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin, T.,
Schrottenloher, A.: Saturnin: a suite of lightweight symmetric algorithms for post-
quantum security. IACR Trans. Symmetric Cryptol. 2020(S1), 160–207 (2020)

13. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.: Multiple dif-
ferential cryptanalysis of round-reduced PRINCE. In: FSE 2014. LNCS, vol. 8540,
pp. 591–610. Springer (2014)

14. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: Improved
MITM attacks. In: CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 222–240. Springer
(2013)

15. Choudhuri, A.R., Maitra, S.: Differential cryptanalysis of Salsa and ChaCha –
An evaluation with a hybrid model. Cryptology ePrint Archive, Paper 2016/377
(2016), https://eprint.iacr.org/2016/377

16. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of nlfsr-based cryptosystems. In: ASIACRYPT 2010. LNCS, vol. 6477, pp. 130–145.
Springer (2010)

17. Knudsen, L.R.: Truncated and higher order differentials. In: FSE 1994. LNCS,
vol. 1008, pp. 196–211. Springer (1994)

18. Leander, G., Moos, T., Moradi, A., Rasoolzadeh, S.: The SPEEDY family of block
ciphers engineering an ultra low-latency cipher from gate level for secure proces-
sor architectures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 510–545
(2021)

19. Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with
partitioning. In: EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 344–371.
Springer (2016)

20. Naya-Plasencia, M.: How to improve rebound attacks. In: CRYPTO 2011. LNCS,
vol. 6841, pp. 188–205. Springer (2011)

21. Rohit, R., Sarkar, S.: Cryptanalysis of reduced round SPEEDY. In:
AFRICACRYPT 2022. pp. 133–149. LNCS, Springer Nature Switzerland (2022)

22. Wang, M.: Differential cryptanalysis of reduced-round PRESENT. In:
AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer (2008)

A DDT of the SPEEDY S-box

Table 11 describes the Difference Distribution Table (DDT) of the S-box S. The
rows correspond to input differences α and the columns to output differences β.
An entry DDT[α][β] provides the number of solutions to the equation:

DDT[α][β] = #{x ∈ F64
2 : S(x)⊕ S(x⊕ α) = β}.

To ease readability, impossible transitions are represented with a ’.’.

B Top Pattern

We detail here the 78 patterns used for the sieving of the pairs on the plaintext
together with the filter fpat associated. Each vector describes a set of 3 active
rows among rows 26 to 31 and among rows 0 and 2. A 1 describes an active row.
The leftmost coordinate corresponds to row 26, while the rightmost one to row
2.

26 27 28 29 30 31 0 1 2 filter 26 27 28 29 30 31 0 1 2 filter
1. [1, 1, 1, 0, 0, 0, 0, 0, 0] 3.49 40. [0, 0, 1, 0, 1, 0, 0, 1, 0] 1.34
2. [1, 1, 0, 1, 0, 0, 0, 0, 0] 3.30 41. [0, 0, 0, 1, 1, 0, 0, 1, 0] 1.17
3. [1, 1, 0, 0, 1, 0, 0, 0, 0] 2.96 42. [1, 0, 0, 0, 0, 1, 0, 1, 0] 2.03
4. [1, 0, 1, 0, 1, 0, 0, 0, 0] 2.19 43. [0, 1, 0, 0, 0, 1, 0, 1, 0] 3.04
5. [0, 1, 1, 0, 1, 0, 0, 0, 0] 3.28 44. [0, 0, 1, 0, 0, 1, 0, 1, 0] 1.42
6. [1, 0, 0, 1, 1, 0, 0, 0, 0] 2.02 45. [0, 0, 0, 1, 0, 1, 0, 1, 0] 2.25
7. [0, 1, 0, 1, 1, 0, 0, 0, 0] 3.11 46. [0, 0, 0, 0, 1, 1, 0, 1, 0] 0.76
8. [0, 0, 1, 1, 1, 0, 0, 0, 0] 1.26 47. [1, 0, 0, 0, 0, 0, 1, 1, 0] 3.54
9. [1, 1, 0, 0, 0, 1, 0, 0, 0] 2.91 48. [0, 1, 0, 0, 0, 0, 1, 1, 0] 3.36
10. [1, 0, 1, 0, 0, 1, 0, 0, 0] 2.37 49. [0, 0, 1, 0, 0, 0, 1, 1, 0] 2.15
11. [0, 1, 1, 0, 0, 1, 0, 0, 0] 4.08 50. [0, 0, 0, 1, 0, 0, 1, 1, 0] 2.93
12. [1, 0, 0, 1, 0, 1, 0, 0, 0] 2.20 51. [0, 0, 0, 0, 1, 0, 1, 1, 0] 1.50
13. [0, 1, 0, 1, 0, 1, 0, 0, 0] 3.90 52. [0, 0, 0, 0, 0, 1, 1, 1, 0] 2.71
14. [0, 0, 1, 1, 0, 1, 0, 0, 0] 1.35 53. [1, 0, 1, 0, 0, 0, 0, 0, 1] 3.72
15. [1, 0, 0, 0, 1, 1, 0, 0, 0] 1.63 54. [0, 1, 1, 0, 0, 0, 0, 0, 1] 4.25
16. [0, 1, 0, 0, 1, 1, 0, 0, 0] 1.90 55. [1, 0, 0, 1, 0, 0, 0, 0, 1] 3.53
17. [0, 0, 1, 0, 1, 1, 0, 0, 0] 0.89 56. [0, 1, 0, 1, 0, 0, 0, 0, 1] 4.08
18. [0, 0, 0, 1, 1, 1, 0, 0, 0] 0.87 57. [0, 0, 1, 1, 0, 0, 0, 0, 1] 3.39
19. [1, 0, 1, 0, 0, 0, 1, 0, 0] 2.67 58. [1, 0, 0, 0, 1, 0, 0, 0, 1] 3.19
20. [0, 1, 1, 0, 0, 0, 1, 0, 0] 3.32 59. [0, 1, 0, 0, 1, 0, 0, 0, 1] 3.08
21. [1, 0, 0, 1, 0, 0, 1, 0, 0] 2.53 60. [0, 0, 1, 0, 1, 0, 0, 0, 1] 2.25

α/β 0 1 2 4 8 16 32
0 64 .
1 . 4 . 6 8 . . . 4 . 2 8 4 . . 2 2 4 . . 2 4 . . . 4 . 2 4 . . 2 2 0
2 . 2 4 4 8 . . . 8 4 2 4 2 6 . 4 4 . 6 . 4 2 . 0
3 4 . 2 . 2 6 2 4 4 4 4 4 4 4 2 . 2 . . 4 4 . 4 . . 2 2 0
4 . . 6 . 4 2 . 2 . . . 6 2 4 4 . 2 2 . 2 . 6 . . . 2 . 4 2 4 2 . . 2 . . . 2 . . 2 2 . . 0
5 . . 2 . . . 2 2 2 4 2 . 2 2 . 2 2 2 2 2 . 4 4 . 2 4 . 2 . 4 . . . 2 2 . 2 . . 2 . 2 2 2 2 . 0
6 6 . . . 2 . . . 2 . 2 . . 6 . . 2 . 2 . 2 2 2 . 2 4 . 4 2 . 4 2 2 2 2 . 2 . 2 . 4 . 2 2
7 . . . 2 . 2 2 2 . 4 . . 2 . . 2 . 4 2 . 2 . 2 2 . 2 2 2 . 2 . . 2 2 2 2 2 . 2 2 . 2 . 4 2 . 4 2
8 . 2 2 2 6 8 4 2 6 4 2 . 2 4 . 2 2 6 . 2 4 . . 2 2 0
9 . 4 . . . 2 . 4 . . 2 2 4 2 4 . . 2 2 . 4 4 . . . 4 2 . 4 2 . . 4 2 2 2 . . 2 2 . 2 . . . 0
10 . 4 . . 4 2 . 2 4 2 4 . 2 2 2 . 2 2 2 2 4 6 2 2 2 . 4 2 . 2 . 4 0
11 . . 2 . 4 8 4 2 2 2 4 2 2 2 . 2 . 4 2 2 . . . 2 2 . . . 2 2 . 4 2 4 2 0
12 . 4 . 2 . . . 4 . . 2 2 2 2 . 2 2 2 . 4 . . . 2 . 2 . . 2 . 2 . . 2 . . . 2 . . . 2 4 2 . . . 2 2 . . . 4 2 2 . 2 . . 2
13 . 2 . 2 2 2 4 . . 2 6 . . . 4 2 2 . 4 . . 2 4 . . 2 . 2 . 4 . . . 2 . 2 4 . 2 . . . 2 . . 4 2
14 . . 2 2 . . . 2 2 2 2 . . . 2 . 2 . 2 . . . 2 . . 4 . . 4 . 2 . 2 . 2 2 . 2 4 2 . . . 2 . . 2 . 2 . 4 . 2 2 . 2 2 2 0
15 . . 2 . . 2 2 . 2 2 . 2 2 2 . . 4 . 2 2 . . 2 . 6 2 . . 2 2 2 2 2 4 . 4 . . 2 2 . . 2 . . 2 2 2
16 8 2 4 . 8 6 6 2 4 8 8 . . . 2 . . . 2 2 2 0
17 4 4 . 2 4 . 4 2 . 2 . 2 4 4 . . 4 4 4 . 4 4 . 2 . 4 2 . 2 . 2
18 2 2 2 2 . 2 6 . . 2 4 . 2 4 4 4 4 6 . 4 4 . 2 4 2 2 0
19 4 . 2 2 4 2 6 . 4 4 4 6 . 2 4 4 2 2 6 . . 6
20 . . 4 2 . 4 2 2 . . 2 . 2 . 2 . 2 . 2 . . . 4 2 4 4 . 2 2 . 2 4 . 4 2 2 2 . 4 . . 2 . . . 0
21 2 4 2 . . . 2 . . . 2 . 2 . 2 . . 4 2 2 2 2 . . . 2 4 . . . 2 . . 2 . . 2 . 2 . . 2 2 . 2 . 4 . 2 2 . 2 . 2 4
22 . 2 2 2 . . 2 4 . . 2 . . . 2 . . . 2 2 . 2 . 2 . 4 . 2 2 2 . 4 . . . 2 . 2 2 . 4 . . 4 4 . 2 2 . 2 . 2 0
23 . 2 4 2 2 2 . . . 2 4 . 2 2 4 2 2 . . 2 . 2 2 . 2 2 . 2 2 4 . . . 2 . 6 6 2
24 2 2 2 6 4 4 2 2 4 2 2 2 4 . 2 4 . . . 4 2 2 2 . . 4 2 4 . 0
25 2 2 2 2 4 . 2 . . 4 2 2 2 4 . . . 2 . 2 . . . 2 2 2 2 2 2 2 2 2 2 2 4 . . . 2 2 2
26 2 2 4 2 . 2 2 . . 6 2 8 2 4 2 2 2 4 2 4 . 6 . 4 2
27 2 2 2 2 4 2 2 4 . 4 4 . . 2 2 2 . . 4 2 . . 2 2 . . 2 . 2 . 2 2 2 2 . 4 2 2
28 4 2 2 2 . 2 . 4 2 . . 4 . . . 2 . . . 2 6 . 4 . 2 . 4 . 2 2 . . 2 2 4 2 2 . . 2 2 2 . 0
29 2 2 . . 2 2 2 2 . 2 . . 2 . . 2 4 . . 4 2 . 2 4 . . 2 . 2 . . . 2 . . 2 . . . 4 4 2 . 2 2 . . 2 2 2 . . 2
30 . 2 2 2 . . 2 . . . 2 . . 2 . 2 . . 2 2 2 . . . 2 . 2 6 4 . . . 4 . 2 2 . 2 2 2 2 2 4 4 . 2 . 2
31 . . 2 2 2 4 . . 4 2 . 4 2 . 2 2 2 . 2 . . 2 2 2 . . . 2 . . 2 2 2 . 4 2 2 4 2 2 . . 2 2
32 . 2 2 . 4 2 6 2 6 2 6 2 2 2 . . 2 4 . 2 . 2 . 4 2 2 . 2 . . 2 2 . . 2 . . . 0
33 . . 2 . . . 4 2 2 2 2 . . . 2 . 2 2 . 2 4 2 . 2 . . 2 . 2 2 . 2 . . . 2 . . . 2 2 2 . 2 4 . 2 . . . 4 6 . . 0
34 . . 2 2 2 4 2 2 . 2 2 . 2 2 . 2 2 4 . . 4 2 . 2 2 2 2 . 2 2 . 2 2 2 . . . 2 . 2 . 2 . 2 2
35 . 2 2 2 . 2 . 2 . 2 . 2 2 2 . 2 2 . 2 2 2 . 2 2 2 . . 2 2 . . . 2 2 . 2 . 4 4 . 2 . . . 2 2 6 0
36 2 . 2 . . . 2 2 2 . 2 4 2 4 . 2 . 6 . . 2 2 2 2 . . 2 . . 2 2 . 4 . 2 2 4 2 2 2 2 0
37 . . 2 . 2 2 . . 2 . . 2 . . . 2 . . 2 4 . 4 2 4 2 . 2 . . 4 . 4 . 2 . 2 2 . 2 . 2 2 . . 2 . 2 2 2 . 2 2
38 2 2 2 . . . 4 4 2 2 2 . 2 2 2 . 2 4 2 2 2 2 4 . . 2 2 2 . 2 . . 6 . 4 . . . 2 0
39 2 . 2 . 2 2 2 2 2 2 2 2 . . 2 2 2 . 2 2 2 . 4 2 . 2 2 2 4 4 2 2 . 2 2 2 2 . . 0
40 . 6 2 2 . . . 4 2 2 . 4 4 2 4 4 2 . . 2 . 6 2 2 . . 2 2 2 2 . . . 2 . . 4 0
41 . . 2 4 2 2 2 . 4 . 2 . 2 . . 2 . 2 . . 2 2 4 . . . 4 6 . 2 2 2 . . 2 . . 2 2 . . 2 4 4
42 . 2 4 2 . . 4 2 . 2 4 . 4 2 2 . . 4 . . . 2 2 2 2 2 2 . 2 . 2 . . . 4 2 2 4 . . 4 0
43 . . 2 4 . 2 2 . 2 2 . . . 2 2 2 2 . 2 . . 2 . 2 . 2 . . . 2 . . 2 . 2 2 . 4 2 4 . . 4 . 4 2 . 2 2 . 2 . 0
44 . . . 4 . . . 2 . 4 . 6 2 . 2 2 . 2 2 . . 2 2 . . . 2 4 . 2 2 2 . . . 2 4 2 4 . . 2 2 . . 2 . . 2 . . 2
45 . . 2 4 . 2 2 . . 2 . . . 2 2 2 4 2 2 . 2 . 4 . . . 2 . 2 4 4 4 . . 2 . . . 2 . 2 4 2 2 2 0
46 . 2 2 2 2 2 2 2 2 2 2 2 2 . . 4 2 2 . 2 . . . 4 . 4 . 4 2 2 2 2 2 4 2 . . 2 . . . 0
47 . 4 2 . . 2 4 2 . 2 2 . . . 2 2 4 2 . . 2 2 . 2 2 . . . 2 2 4 2 . . 2 . . 4 . 2 2 . . . 2 . . . 2 . 4
48 . 6 2 . . 2 2 . . 2 . . . 6 2 . . . 2 2 4 . 2 . 4 . 2 . . . 2 4 . . 2 2 2 . 2 2 . 2 . 2 2 . 2 2 . 0
49 . . 2 2 . . . 2 . . 2 . 2 2 . . . 2 . 6 2 2 2 . . 4 4 2 2 6 2 . . . 2 2 . . 2 2 6 . 4 . . . 0
50 . . 2 2 2 . . 2 4 2 2 . 2 . . . 2 2 . . 4 2 4 . 2 2 2 . 2 2 4 . 2 2 2 . 2 . 2 . 2 . . . 2 . 4 . . 0
51 . 2 . 2 2 2 2 . 2 . . . 2 . 2 2 . . 2 2 . . . 2 . 2 2 2 . . . 2 . . 2 2 2 4 . . 2 2 . . 2 . 2 . 4 2 2 . 2 . 2 . 2
52 . . 2 2 . 2 2 . . 2 2 . . . 2 2 2 2 . 4 . . 2 4 . 4 2 . . 2 . . . 2 2 . . 2 2 . 2 4 4 . 2 2 2 2
53 2 . . . 2 2 6 . 2 . . 2 2 2 2 2 2 2 . 4 . 2 2 4 2 2 . . 2 . . 2 . 2 2 . . 2 4 2 2 . 2 . 0
54 2 . . . 4 2 2 2 2 . . 2 2 2 2 2 . . . 4 2 . 2 . . 2 . . 4 . 4 . . 2 . 4 . . . 2 2 2 4 2 4 0
55 . 2 . . . 2 2 . 2 . . 2 . . . 8 2 2 . . . 2 . 4 . . 2 2 2 2 2 . 2 2 . . 6 . 2 4 . . . 2 2 2 . . . 2 2
56 . 2 . 2 2 2 . 4 2 6 2 2 2 . 2 . . . 2 2 . . 2 6 . . . 2 . . 2 . . 2 . 2 . 2 6 . . . 2 2 . . 2 2 . . 0
57 . 2 2 2 . . . 2 2 2 . . . 2 2 2 2 2 . . 2 . 2 . 2 . . . 2 . 2 4 2 2 2 2 4 . 2 . 2 . . 4 2 4 . 2 0
58 2 . . 2 . . 4 . 4 . 2 4 2 4 2 . 2 2 . 2 . . . 2 2 4 . . 4 4 . 2 . . . 2 . . 2 2 2 4 . 2
59 . . . 2 . 4 . 2 . . . 2 2 2 2 2 . 2 . . 2 . . 2 2 4 . 2 2 . 2 2 2 2 2 2 . 2 4 . 2 . 2 2 4 2 0
60 . . . 4 . . 2 2 . . 4 . . 4 2 4 2 4 . 2 . . 2 2 2 . 4 4 . . 4 . 2 . . 2 2 4 2 . 2 2 0
61 . 2 . 2 . . . 2 . 2 . 4 . . 2 . . 2 2 . . . 6 2 2 4 . 2 2 2 2 4 2 . . 2 2 2 . . 2 4 2 . 2 2 . . 0
62 . . 4 . . 2 . . 2 2 2 2 . 2 4 2 2 . 2 2 2 4 4 2 2 . . . 2 . 4 4 2 4 2 4
63 . 2 . 4 2 . 2 2 . 4 2 . 2 . 2 2 . 2 . . . 2 . . 2 2 . . 4 2 . 2 . 2 2 2 . 4 2 . 2 2 4 2 . 2

Table 11. DDT of the SPEEDY S-box

22. [0, 1, 0, 1, 0, 0, 1, 0, 0] 3.21 61. [0, 0, 0, 1, 1, 0, 0, 0, 1] 2.08
23. [0, 0, 1, 1, 0, 0, 1, 0, 0] 1.79 62. [1, 0, 0, 0, 0, 1, 0, 0, 1] 3.14
24. [1, 0, 0, 0, 1, 0, 1, 0, 0] 2.12 63. [0, 1, 0, 0, 0, 1, 0, 0, 1] 3.65
25. [0, 1, 0, 0, 1, 0, 1, 0, 0] 2.00 64. [0, 0, 1, 0, 0, 1, 0, 0, 1] 2.43
26. [0, 0, 1, 0, 1, 0, 1, 0, 0] 1.38 65. [0, 0, 0, 1, 0, 1, 0, 0, 1] 2.26
27. [0, 0, 0, 1, 1, 0, 1, 0, 0] 1.21 66. [0, 0, 0, 0, 1, 1, 0, 0, 1] 1.69
28. [1, 0, 0, 0, 0, 1, 1, 0, 0] 2.14 67. [1, 0, 0, 0, 0, 0, 1, 0, 1] 3.67
29. [0, 1, 0, 0, 0, 1, 1, 0, 0] 2.42 68. [0, 1, 0, 0, 0, 0, 1, 0, 1] 3.49
30. [0, 0, 1, 0, 0, 1, 1, 0, 0] 1.45 69. [0, 0, 1, 0, 0, 0, 1, 0, 1] 3.18
31. [0, 0, 0, 1, 0, 1, 1, 0, 0] 1.39 70. [0, 0, 0, 1, 0, 0, 1, 0, 1] 2.95
32. [0, 0, 0, 0, 1, 1, 1, 0, 0] 0.82 71. [0, 0, 0, 0, 1, 0, 1, 0, 1] 2.36
33. [1, 0, 1, 0, 0, 0, 0, 1, 0] 2.50 72. [0, 0, 0, 0, 0, 1, 1, 0, 1] 2.36
34. [0, 1, 1, 0, 0, 0, 0, 1, 0] 3.16 73. [1, 0, 0, 0, 0, 0, 0, 1, 1] 3.60
35. [1, 0, 0, 1, 0, 0, 0, 1, 0] 2.37 74. [0, 1, 0, 0, 0, 0, 0, 1, 1] 3.42
36. [0, 1, 0, 1, 0, 0, 0, 1, 0] 4.21 75. [0, 0, 1, 0, 0, 0, 0, 1, 1] 3.01
37. [0, 0, 1, 1, 0, 0, 0, 1, 0] 1.63 76. [0, 0, 0, 1, 0, 0, 0, 1, 1] 2.79
38. [1, 0, 0, 0, 1, 0, 0, 1, 0] 2.08 77. [0, 0, 0, 0, 1, 0, 0, 1, 1] 2.19
39. [0, 1, 0, 0, 1, 0, 0, 1, 0] 1.96 78. [0, 0, 0, 0, 0, 1, 0, 1, 1] 2.34

