Christina Boura
email: christina.boura@uvsq.fr

Nicolas David
email: nicolas.david@inria.fr

Rachelle Heim Boissier
email: rachelle.heim@uvsq.fr

María Naya-Plasencia
email: maria.naya-plasencia@inria.fr

Better Steady than Speedy: Full break of SPEEDY-7-192

Keywords: differential cryptanalysis, block ciphers, SPEEDY, security claim, key recovery

Differential attacks are among the most important families of cryptanalysis against symmetric primitives. Since their introduction in 1990, several improvements to the basic technique as well as many dedicated attacks against symmetric primitives have been proposed. Most of the proposed improvements concern the key-recovery part. However, when designing a new primitive, the security analysis regarding differential attacks is often limited to finding the best trails over a limited number of rounds with branch and bound techniques, and a poor heuristic is then applied to deduce the total number of rounds a differential attack could reach. In this work we analyze the security of the SPEEDY family of block ciphers against differential cryptanalysis and show how to optimize many of the steps of the key-recovery procedure for this type of attacks. For this, we implemented a search for finding optimal trails for this cipher and their associated multiple probabilities under some constraints and applied non-trivial techniques to obtain optimal data and key-sieving. This permitted us to fully break SPEEDY-7-192, the 7round variant of SPEEDY supposed to provide 192-bit security. Our work demonstrates among others the need to better understand the subtleties of differential cryptanalysis in order to get meaningful estimates on the security offered by a cipher against these attacks.

Introduction

Differential cryptanalysis is a very powerful technique to analyse block ciphers. It was introduced in 1990 by Biham and Shamir who used this method to break the Data Encryption Standard (DES). The idea of this technique applied to block ciphers is to exploit input differences that propagate through the cipher to output differences with a probability higher than what is expected for a random permutation.

Differential cryptanalysis is arguably the most well-known and studied technique in symmetric cryptography. Indeed, in the last 30 years, differential attacks have been applied to analyze a high number of primitives : [6-8, 4, 22, 9, 13, 19], to cite only a few. In parallel, several refinements and generalizations of the basic technique were introduced together with some new dedicated methods. One can for example mention the technique of truncated differentials [START_REF] Knudsen | Truncated and higher order differentials[END_REF], the use of structures to reduce data complexity (a technique already introduced in [START_REF] Biham | Differential cryptanalysis of the full 16-round DES[END_REF]), the technique of probabilistic neutral bits [START_REF] Choudhuri | Differential cryptanalysis of Salsa and ChaCha -An evaluation with a hybrid model[END_REF] or the conditional differential attacks [START_REF] Knellwolf | Conditional differential cryptanalysis of nlfsr-based cryptosystems[END_REF]. However, applying differential cryptanalysis on a new cipher is in general a laborious, complex and potentially error-prone procedure. Indeed, combining together the different improvements and techniques for mounting interesting differential attacks is highly non-trivial. This is the reason why the designers of a new primitive provide most of the time only basic arguments on the security of their design against differential attacks. This is done for example by applying the branch-and-bound algorithm to determine the highest number of rounds covered by a single differential trail. Based on this, and without getting into too many details, designers then provide an estimate on the number of rounds that the key recovery steps could reach on top of the differential distinguisher. This estimation is used to state security claims, sometimes conservative, sometimes not, depending on the target application scenario. Examples of such kind of claims exist for almost all modern symmetric designs [START_REF] Bogdanov | PRESENT: an ultra-lightweight block cipher[END_REF][START_REF] Beierle | The SKINNY family of block ciphers and its low-latency variant MANTIS[END_REF][START_REF] Canteaut | Saturnin: a suite of lightweight symmetric algorithms for postquantum security[END_REF][START_REF] Banik | WARP : Revisiting GFN for lightweight 128-bit block cipher[END_REF]2].

In this work we analyze SPEEDY against differential attacks. SPEEDY is a new ultra-low latency family of block ciphers [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF], designed by Leander, Moos, Moradi and Rasoolzadeh. The authors provided in [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF] a preliminary analysis that suggested that all versions of this cipher should be immune against this type of attack. However, we demonstrate here that SPEEDY-7-192 can be fully broken with differential cryptanalysis. Our attack that uses improved techniques for the key-recovery part, demonstrates in practice that a more in-depth analysis of a primitive against differential cryptanalysis is necessary in order to provide precise estimates of its security margin.

Our contribution

We analyzed SPEEDY, a new ultra-low latency family of block ciphers [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF] against differential attacks. More precisely, we managed to break the full version of SPEEDY-7-192, one of the three main variants of this family. This variant iterates over 7 rounds and its designers claimed 192-bit time and data security. Our attack has a time of 2 187.84 and data complexity of 2 187.28 , and is thus more than 2 4 times faster than exhaustive search, contradicting therefore the security claim. We shared our results with the designers, that have agreed and acknowledged our attack. This attack is based on a 5.5-round distinguisher and is extended to 7 rounds, therefore it contradicts another claim of the designers : "the attacker cannot add more than one round to extend a distinguisher". Our attack is nontrivial and is based on improved techniques for the key-recovery part. We believe that most of these ideas could be generalized to be applied to differential attacks against other ciphers and we hope that this work can be seen as a step towards a general framework that could help in the future designers precisely estimate the security margin of their design against differential cryptanalysis.

Finally, we provide a brief summary of our differential attacks on the r = 5 and r = 6-round variants of SPEEDY-r-192 even if the attacks on the other variants do not contradict the designers' security claims, but they provide the best known attacks on these variants up to date. A summary of all our attacks together with other third-party cryptanalysis results on SPEEDY is given in Table 1 The rest of the paper is organized as follows. In Section 2, we summarize the classical framework for differential attacks and deduce generic complexity formulas. In Section 3, we present the SPEEDY family of block ciphers and describe our methodology for finding good differential trails. Our attack on SPEEDY-7-192 is given in Section 4. Finally, our results on the other main variants of the SPEEDY family are briefly presented in Section 5. This section also discusses open problems and directions.

Differential cryptanalysis

Differential attacks are a very popular chosen-plaintext cryptanalysis technique against symmetric primitives [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF]. The invention of this technique in 1990 was devastating for the ciphers of the time, as demonstrated by the breaks of both full FEAL and full DES [START_REF] Biham | Differential cryptanalysis of Feal and N-Hash[END_REF][START_REF] Biham | Differential cryptanalysis of the full 16-round DES[END_REF] among others. Similarly to the majority of attacks against block ciphers, differential attacks are built around a distinguisher. A differential distinguisher exploits as a distinguishing property the existence of a pair of differences (a, b) ∈ F n 2 , where n is the block size, such that the input difference a propagates through some rounds of the cipher to the output difference b with a probability significantly higher than 2 -n . This distinguisher can then be extended a few rounds in both directions by adding some rounds that will serve as the key recovery part. In this part, an attacker will guess a reduced part of the key, and using this knowledge will be able to compute the first and/or the last state of the distinguisher in order to check if some plaintext or ciphertext pair follows the differential.

The goal of this section is to provide a global overview of a differential key recovery attack that extends a fixed differential in both directions together with generic formulas representing its time, data and memory complexity. We start by considering a differential ∆ = (δ in , δ out) of probability P = 2 -p covering r ∆ rounds. The difference δ in (resp. δ out) then maps to a truncated difference in D in , r in rounds before (resp. D out and r out) with probability 1. We denote by d in (resp. d out) the log 2 of the size of the input (resp. output) difference such that |D in | = 2 din (resp. |D out | = 2 dout). Note that the attack can be done in both directions (encryption or decryption) and the most interesting direction is determined by the concrete parameters. Without any further improvements, the data and time complexities should be the same in both directions, while the memory complexity is given by the size of one structure (2 din or 2 dout). Similarly to our attack on SPEEDY-7-192, we will present a procedure in which we make calls to the decryption oracle (i.e. by generating ciphertexts). However, the general description of the attack remains unchanged regardless of the direction. To obtain the description of a chosen plaintext attack, it suffices to replace in what follows "ciphertexts", D out and d out by "plaintexts", D in and d in .

Data complexity In order to have enough data to expect that one pair satisfies the differential, we will use structures, as it is often done in differential attacks. A structure is a set of ciphertexts that have a fixed value in the non-active bits, and that take all possible values in the remaining d out bits. This approach permits us to build (2 2dout-1) pairs inside a structure. The probability to start from a difference in D out and to fall back to a difference δ out is usually 2 -dout . This means that to have one pair that satisfies the differential trail, we need a total of 2 p+dout pairs that we will obtain by using 2 s structures where s is such that 2 s+2dout-1 = 2 p+dout , that is s = p -d out + 1. Therefore, we need to generate 2 dout+s = 2 p+1 ciphertexts and thus the data complexity is D = 2 p+1 .

Pair sieving Since performing the key recovery phase with all the 2 p+dout pairs is too costly in general, the attacker will very probably need to perform a sieving step which will permit her to discard pairs that cannot follow the differential trail. This can be done efficiently by just looking at the plaintext corresponding to each ciphertext inside a structure: the attacker will only keep those ciphertext pairs, for which the difference of the corresponding plaintext pairs belongs to D in , i.e. only those pairs that have the same value on the n -d in non-active bits in the plaintext. This can be efficiently done by ordering the list of structures of size 2 dout with respect to the values of the non-active bits in the plaintext, or even with a hash table, in order to avoid the logarithmic factor of sorting and sieving the table. The total number of pairs that will get through this sieve will be 2 s+2dout-1-n+din = 2 p-n+din+dout . It is also possible to add an extra sieving step by looking at the concrete differences of active S-boxes. Indeed, by looking at the difference distribution table (DDT) of the primitive's S-box and by taking into account the activity pattern of each one of the active S-boxes, it is possible to further sieve the remaining pairs by removing all those that have an impossible difference on the concerned words. This approach was for example used in [START_REF] Broll | New attacks from old distinguishers improved attacks on serpent[END_REF]. We denote by C S the average cost of sieving a pair. This cost is in general quite small as it might simply correspond to a table lookup. However this is not always the case, as we will see in the attack of Section 4. Indeed, in our case, this cost will be a little higher than what it would have been with a straightforward approach, as we will consider simultaneously several configurations for the sieving filter.

Key recovery Although all of the pairs that were kept after the sieving step are candidates for having followed the differential, we now want to keep only those such that there exists an associated key that actually leads to the differential. By considering the first and last rounds, and performing partial key guesses that we will merge thanks to efficient list merging algorithms like the ones presented in [START_REF] Naya-Plasencia | How to improve rebound attacks[END_REF], we can obtain quite low additional factors. In particular, we will denote by C KR , the average cost to perform the key recovery steps per pair. The optimal way of doing this will depend on the round function structure of the analyzed cipher. However this is a step that can typically be done with a small factor. Its goal is to generate a final number of triplets formed by plaintext (or ciphertext) pairs and candidate associated keys that we expect smaller than the original number of pairs (and of the exhaustive search cost), and the cost of finding the secret key given these triplets is not expected to be the complexity bottleneck. In Section 4.4 we show some improved techniques to reduce this cost, and provide an example of such an accelerated key search in the context of SPEEDY.

Total time and memory complexity We denote by C E the cost of one encryption. Taking into account the data generation, the data sieve and the key recovery steps described above, the time complexity T3 is given by

T = 2 p+1 + 2 p+1 C S C E + 2 s+2dout-1-n+din C KR C E C E .
We present in the next two sections an application of the techniques introduced in Section 2 against the SPEEDY family of block ciphers. Section 3 is dedicated to the distinguisher part, while Section 4 describes the key recovery part for SPEEDY-7-192.

Finding Good Differentials on SPEEDY

We start by briefly presenting the specifications of the SPEEDY family of ciphers.

Specifications of the SPEEDY family of block ciphers

The SPEEDY family of ciphers is a family of lightweight block ciphers introduced by Leander, Moos, Moradi and Rasoolzadeh at CHES 2021 [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF]. The main design goal of these primitives was to be fast in CMOS hardware by achieving extremely low latency. This goal was notably reached thanks to the design of a dedicated 6-bit bijective S-box.

There are different SPEEDY variants that differ in block size, key size and number of rounds. More precisely, the block cipher SPEEDY-r-6ℓ has a block and key size of 6ℓ bits and is iterated over r rounds. The internal state is viewed as a ℓ × 6 rectangle-array of bits. Following the notation of [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF], we will denote by x [i,j] , 0 ≤ i < ℓ, 0 ≤ j < 6, the bit located at row i and column j of the state x. Note that all indices start from zero and the zero-th bit or word is always considered to be the most significant one. Furthermore, if there is an addition or a subtraction in the indices of the state, this is done modulo ℓ for the first (row) index and in modulo 6 for the second (column) index.

The default block and key size for SPEEDY is 192 bits and this instance is denoted by SPEEDY-r-192. It is suggested to iterate this instance over 5,6 or 7 rounds. Next, we provide the specifications of the round function for SPEEDY-r-192. Note that for this variant, the state is seen as (ℓ × 6)-bit rectangle, with ℓ = 32.

Round function of SPEEDY-r-192

The internal state is first initialized with the 192-bit plaintext. Then, a round function R r is applied to the state r times, where r is typically 5, 6 or 7. The round function is composed of four operations: First, AddRoundKey (A kr) XORs the round subkey k r to the state. Then, the SubBox (SB) operation applies a 6-bit S-box to each row of the state. Follows the ShiftColumns (SC) operation that rotates each column of the state by a different offset. These two operations (SB and SC) are repeated twice in an alternating manner. After this, the MixColumns (MC) operation multiplies each column of the state by a binary matrix. Finally, a constant c r is XORed to the state by the AddRoundConstant (AC) operation. Note that, for the last round, the last ShiftColumns as well as the MixColumns and the AddRoundConstant operations are omitted, while a post-whitening key is XORed to the state. The round function R r for the rounds 0 ≤ r < r -1 while also for the round r -1 are depicted in Figure 2. In the rest of our paper, we assume that the input (resp. output) to each of the described operations is a vector x (resp. y) ∈ F 32×6 2 .

• AddRoundKey (A kr): The 192-bit round key k r is XORed to the internal state.

Hence,

y [i,j] = x [i,j] ⊕ k r[i,j] .
• SubBox (SB): A 6-bit S-box S is applied to each row of the state. More precisely, for each row i, 0 ≤ i < 32, SB operates as follows:

(y [i,0] , y [i,1] , y [i,2] , y [i,3] , y [i,4] , y [i,5]) = S(x [i,0] , x [i,1] , x [i,2] , x [i,3] , x [i,4] , x [i,5]).
The table representation of the S-box S is given in Table 2. • ShiftColumns (SC): This operation rotates the j-th column of the state, 0 ≤ j < 6, upside by j bits:

x
y [i,j] = y [i+j,j] .
• MixColumns (MC): The MC operation of SPEEDY applies column-wise and is based on a cyclic binary matrix α = (α 1 , α 2 , α 3 , α 4 , α 5 , α 6) whose values depend on the number of rows ℓ:

y [i,j] = x [i,j] ⊕ x [i+α1,j] ⊕ x [i+α2,j] ⊕ x [i+α3,j] ⊕ x [i+α4,j] ⊕ x [i+α5,j] ⊕ x [i+α6,j] .
Recall that the additions i + α * are considered mod ℓ.

For ℓ = 32, α = (1, 5, 9, 15, 21, 26). • AddRoundConstant (A cr): The 192-bit round constant c r is XORed to the internal state. Hence,

y [i,j] = x [i,j] ⊕ c r[i,j]
As this operation is not relevant to our analysis we omit the description of the constant values.

Key Schedule

The 192-bit master key of SPEEDY-r-192 is loaded to the state of the first round key k 0 . To obtain the next round key, the key schedule consists in simply applying a bit-permutation PB. Hence,

k r+1 = PB(k r), with k r+1[i ′ ,j ′] = k r[i,j] ,
such that

(i ′ , j ′) := P (i, j) with (6i ′ + j ′) ≡ (β • (6i + j) + γ) mod 6ℓ,
where β and γ are parameters depending on the block length of the cipher and that satisfy the condition that gcd(β, 6ℓ) = 1. For SPEEDY-r-192, the parameters β = 7 and γ = 1 are suggested, leading to the permutation P described in Table 3.

Security Claims

The authors made security claims for the three main versions of SPEEDY-r-192. For the 5-round version the authors expect no attack with complexity better than 2 128 in time when data complexity is limited to 2 64 . On the other hand, SPEEDY-6-192 should achieve 128-bit security, while SPEEDY-7-192 is expected to provide full 192-bit security.

Differential properties of SPEEDY

We describe in this section the differential properties of the non-linear and linear layer of SPEEDY.

Differential properties of the S-box

The SPEEDY family of cipher employs a 6-bit S-box S whose differential uniformity is δ S = 8. This means that the highest probability of a differential transition through S is 2 -3 . One particularity of this S-box that we exploit in our attacks is that almost all 1-bit to 1-bit differential transitions are possible. Moreover, these minimal weight transitions often have a relatively high probability. Table 4 summarizes all these transitions, together with their corresponding probability. 4. Summary of all the 1-bit input differences α to 1-bit output differences β.

α/β 1 2 4 8 16 32 1 2 -4 2 4 2 2 1 2 4 4 2 2 4 -3 2 -3 1 8 1 1 3 3 1 1 16 --4 4 3 4 32 1 1 2 3 1 - Table
The corresponding probability can be obtained by multiplying the coefficients of the table by 2 -5 . The symbolmeans that the corresponding transition is impossible.

The entire Difference Distribution Table (DDT) of S is provided in Appendix A. Another particularity is that 1-bit to 1-bit differential transitions can be chained within one round through the SB • SC • SB operation. All of them are possible and three of them achieve the maximum probability of 2 -6 .

Differential properties of the MixColumns operation

The branch number of the MC operation is 8, which is the maximum possible value for the vector α chosen. As the maximum differential probability over 1 round is 2 -6 , this means that an upper bound on the probability of any differential transition over two rounds is (2 -6) 8 = 2 -48 . The inverse MixColumns operation is defined with the vector α -1 = (4, [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF][START_REF] Biham | Differential cryptanalysis of Feal and N-Hash[END_REF][START_REF] Biham | Differential cryptanalysis of Snefru, Khafre, REDOC-II, LOKI and Lucifer[END_REF][START_REF] Bogdanov | PRESENT: an ultra-lightweight block cipher[END_REF][START_REF] Canteaut | Saturnin: a suite of lightweight symmetric algorithms for postquantum security[END_REF][START_REF] Canteaut | Sieve-in-the-middle: Improved MITM attacks[END_REF][START_REF] Choudhuri | Differential cryptanalysis of Salsa and ChaCha -An evaluation with a hybrid model[END_REF][START_REF] Knellwolf | Conditional differential cryptanalysis of nlfsr-based cryptosystems[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF][START_REF] Naya-Plasencia | How to improve rebound attacks[END_REF][START_REF] Rohit | Cryptanalysis of reduced round SPEEDY[END_REF][START_REF] Wang | Differential cryptanalysis of reduced-round PRESENT[END_REF]23,24,25,28). This means in particular, that a column with a single active bit, will lead after the inverse of the MixColumns operation to 19 active bits, while a column with two active bits will be transformed after the inverse MixColumns to a column with at least 12 active bits.

Searching for good differential trails

We describe in this section the methodology we followed to find the trails used in our attacks. Our idea was to precompute at first all good one-round trails and then chain them to create longer trails with high probability.

Searching for good one-round trails. Let M be the matrix used in the MixColumns operation. In order to find good one-round trails, we first computed and stored all ordered pairs of columns (x, M (x)) ∈ F 32 2 × F 32 2 such that both columns x and M (x) have at most 7 active bits each. This led to a total of 5248 pairs (x, M (x)) ∈ F 32 2 × F 32 2 . However, these 5248 pairs can be divided into 164 equivalence classes, each equivalence class corresponding to the 32 rotations of a different activity pattern inside a column. We then stored in a table T one representative per equivalence class and used these pairs to precompute and store all 1-round trails satisfying some particular criteria. To describe this phase we need to introduce the following notation. Let st[0] be the initial state for our computation. We denote by st [START_REF] Banik | WARP : Revisiting GFN for lightweight 128-bit block cipher[END_REF] the resulting state after applying MC to st[0], st [2] the state after applying SB to st [START_REF] Banik | WARP : Revisiting GFN for lightweight 128-bit block cipher[END_REF], st [START_REF] Beierle | The SKINNY family of block ciphers and its low-latency variant MANTIS[END_REF] the state after applying SC to st [2], st [START_REF] Biham | Differential cryptanalysis of Q[END_REF] the state after applying SB to st [START_REF] Beierle | The SKINNY family of block ciphers and its low-latency variant MANTIS[END_REF], st [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF] the state after applying SC to st [START_REF] Biham | Differential cryptanalysis of Q[END_REF] and finally st [START_REF] Biham | Differential cryptanalysis of Feal and N-Hash[END_REF] the state after applying MC to st [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF]:

st[0] MC -→ st[1] SB -→ st[2] SC -→ st[3] SB -→ st[4] SC -→ st[5] MC -→ st[6].
We computed all such propagations (st[0], st [START_REF] Biham | Differential cryptanalysis of Feal and N-Hash[END_REF]) satisfying the following conditions:

• st[0] has a single active column c 0 such that (c 0 , M (c 0)) ∈ T,

• st [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF] has a single active column c 5 such that (c 5 , M (c 5)) ∈ T,

• st [2] has at most two active bits per row,

• the probability of the trail (st[0], st [START_REF] Biham | Differential cryptanalysis of Feal and N-Hash[END_REF]) is strictly higher than 2 -49 . For all trails satisfying the above conditions, we stored in a table the states (st[0], st [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF]) together with the probability of the corresponding trail. We obtained a total number of 48923 one-round trails, which we stored. Note that each trail can be be shifted column-wise to form 32 other valid one-round trails. Thus, in total, there are 1565536 one-round trails which satisfy our criteria.

We now justify the criteria used for computing these 1-round trails. Our main constraint was computing time, as considering all 1-round trails is computationally infeasible. Furthermore, as we wanted to store the trails and reuse them, memory needed to be reasonable as well. Limiting the computation to states with a single active column before and after each MixColumns computation is a reasonable assumption, as states with more active columns would lead by the inverse ShiftColumns operation to many active rows. Furthermore, by doing initial experiments for computing long trails, we noticed that all good trails found never had more than 7 active bits in a column. This can be explained by the fact that more active rows naturally lead to lower probability transitions through the SubBox operation. We then limited the transition through the first SubBox operation to only transitions from rows with Hamming weight one to rows with Hamming weight at most two. While transitions activating in the output more bits per row can still lead to good trails respecting the other criteria, only a small proportion of these transitions does so, while the computational gain for not considering them is huge. Finally, we limited the probability of the trails to 2 -49 in order not to have to store too many trails for the second phase. This particular bound came from our initial experiments, were we noticed that the probability of all 1-round trails that were part of the longer trails we found, had probability strictly higher than this bound.

We claim by no means that the chosen criteria lead to all the one-round trails that could be part of optimal longer trails, however we believe that our strategy is a reasonable trade-off between optimality and efficiency.

Searching for longer trails. In a second step we used the precomputed 1round trails to create longer ones. To do so, we started by chaining our precomputed one-round trails in order to obtain r-round trails.

To begin, we exhaustively ran through all the precomputed one-round trails and searched for the ones that can be chained. Recall here that the starting state and ending state of each round trail are the states just before the MixColumns application. The chaining condition is very simple and consists in simply verifying that the final state of a one-round trail is the same as a column-wise rotation of the starting state of the following one by an integer 0 ≤ ι < 32. Note that when ι ̸ = 0, the full one-round trail concerned is also rotated column-wise. Also note that doing so, we only obtain an element of an equivalence class modulo the column-wise rotation. In order to make our search efficient, we first sorted the states by Hamming weight and active column coordinate of their initial and final state. Following this procedure, we found 1476978 2-round trails, each of them giving by rotation another 32 valid 2-round trails. We followed a similar procedure to obtain 46471749 3-round trails which can also be rotated columnwise to obtain 32 times more valid 3-round trails. To compute the 4-round trails we use in our attack on the 7-round version, we chained the 2-round trails with themselves rather than using the 3-round trails in order for the search to be more efficient. We stored the most interesting 4-round trails we found based on criteria of low probability and adaptability to the key recovery step as described in the next section.

From now on, for each r-round trail, we use the following notations. Let st start [k] (resp. st end [k]) be the starting state (resp. the ending state) of each one-round trail composing the r-round trail, for 0 ≤ k < r. Denote also by c start the active column of st start [0] and by c end the active column of st end [r -1]. Let w 0 be the Hamming weight of c start (i.e. the number of active bits in c start) and let w 1 be the Hamming weight of M (c end), where M is the matrix used in MixColumns. Finally denote by P k , the probability of the round k, for 0 ≤ k < r. The probability of the r-round trail, that we will call from now on core trail, is then given by

P 0 × P 1 × • • • × P r-1 .
Extending the core trail. To build our attack, we need to choose an r-round trail that will be extended one round backwards and half a round forwards as shown in Figure 3. In this section, we describe the criteria that we used to select an r-round trail that is likely to result in a good (r + 1.5)-round trail. The resulting (r + 1.5)-round trail must have good probability, but also needs to be adapted to our key recovery step. In particular, as we will argue in detail in Section 4, it is important to have differentials that will allow for efficient sieving in the plaintext. In particular, it is desirable that the (r + 1.5)-round trail we construct has a sufficient number of inactive rows on the plaintext.

First, as described above, we need to make sure that the r-round trail selected leads to a (r + 1.5)-round trail with good probability. For a r-round trail, the probability of the resulting (r + 1.5)-round trail can be upper-bounded by

2 -(w0+1)×3 × P 0 × P 1 × • • • × P r-1 × 2 -w1×3
. Indeed, if w 0 is the Hamming weight of c start , then by computing backwards one round there will be at least w 0 + 1 active S-boxes. As the highest probability transition through an S-box has probability 2 -3 , the highest possible probability of this prepended round will be 2 -(w0+1)×3 . In the same way, if w 1 is the Hamming weight of M (c end), then there will be exactly w 1 active S-boxes through the first S-box layer of the next round. Thus, the probability of the appended half round will be at most 2 -w1×3 . We generated all possible r-round core trails following the procedure described above and kept the ones providing high estimated probabilities. Second, we want the r-round trail selected to lead to a (r + 1.5)-round trail that has a significant number of inactive rows on the plaintext in order for the sieving step to be efficient. First, consider the initial state of the r-round trail. The rows that are active in this state are exactly the rows that will be active in the state that follows the first SC operation in round 0 of the (r + 1.5)-round trail. To achieve better sieving, we want the transition from this state through SC -1 • SB -1 to lead to an initial state of the (r + 1.5)-round trail that has low Hamming weight. To achieve this, not only the number of active rows but also the way those are distributed inside this state play a role for the efficiency of the sieving procedure. Let L be the size of a block of consecutive rows, where all rows are non-active except for l out of them. An example of such a state is shown below with L = 15 and l = 3.

Large values of L combined with small values of l naturally lead to better complexities. Indeed, we can carefully control the l active rows with some probability at a given cost. By doing so, we can generate a number of inactive rows in the plaintext as high as L -5 -l, thus leading to a sieving of 2 -[(L-5-l)]×6 .

Using the above criteria, we selected an r-round trail, which we then extended in two ways, starting first by appending a round backwards. This led to an (r+1)round trail. Then, to further improve the probability of our trail (r + 1)-round trail, we relied on the technique of multiple differentials.

Multiple differentials

The technique of multiple differentials consists in considering multiple (r + 1)round differential trails that all have the same input and output difference. To make the description of our technique simpler, we will describe how we built our multiple differentials in the case of our 7-round attack. In this case, r = 4. For our 7-round attack, the chosen 4-round core trail is the one displayed in red in Figure 4. This trail has probability 2 -161. 15 . As shown in Figure 4, we extended it by one round backwards and obtained a 5-round trail of probability p main = 2 -170.56 . We call this trail the main trail. Note that it is possible to extend the 4-round core trail backwards with probability 2 -6 for one round. However, this propagation, due to the diffusion properties of the inverse MixColumns transformation would lead to a column with 19 active bits (see Section 3.2). Such a scenario would have complicated the key-recovery phase and was not retained.

We limited our search to trails with probability smaller or equal to p max = p main × 2 -25 . Our new trails must thus verify that

• their input difference is such that the bits of coordinate (i, j) ∈ {2, 3, 4, 7, 8, 10, 12, 14, 16, 17, 18, 25, 27, 29} × {1} are active, whilst the other bits are inactive in the first state of Figure 4; • their output difference is such the bits of coordinate (i, j) ∈ {1, 15, 16, 19, 21, 25, 31} × {3} are active, whilst the other bits are inactive in the second state surrounded by red in Figure 4.

To build our new trails, we rely on an algorithm that operates round by round.

Initial round. We start by building a list of potential initial one-round trails. We denote the initial state by st[0], the state after the application of MC by st [START_REF] Banik | WARP : Revisiting GFN for lightweight 128-bit block cipher[END_REF], and so on so forth as we did when constructing our one-round trails. We construct our initial one-round trails in a similar fashion to the way we constructed the one-round trails used to build our main trail. More precisely, we want our potential initial one-round trails to satisfy the following conditions:

• st[0] verifies the input condition;

• st [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF] has a single active column c 5 such that (c 5 , M (c 5)) ∈ T;

• st [2] has at most two active bits per row.

In order to make the search more efficient, we added constraints on these initial round trails' probability and Hamming weight, using the fact that (st[0], st [START_REF] Biham | Differential cryptanalysis of Feal and N-Hash[END_REF]) must belong to a larger 5-round trail such that the probability of this larger trail is at most p max . We will not describe these constraints in detail as they are very similar to previous techniques we used to build trails of reasonable probability. We obtained 6 potential initial round trails. Because of the second condition above, these new trails can be chained to our previously computed one-round trails. This property will be used to build our multiples.

Chaining the initial round. In order to find trails that satisfy our truncated differential constraints, we must now chain the potential initial round trails to the previously computed one-round trails. We do so in two steps in order for the chaining to be computationally feasible.

1. We chain the 2-round trails pre-computed to the potential initial one-round trails to form potential initial three-round trails. We get 8049 such 3-round trails. 2. We chain these potential initial 3-round trails to the previously computed 2-round trails to obtain 5-round trails.

We found 409 5-round trails that matched all our criteria. By adding their corresponding probabilities, we found a final probability of 2 -169.95 . As one can notice, using multiple differentials allows to improve the probability of the rround differential, but this improvement is not as important as one would have expected by the number of found trails. This is due to the fact that all of the additional trails found had unfortunately quite bad probabilities compared to the main one.

5.5-round differential trail

We describe now the 5.5-round differential trail we used to attack SPEEDY-7-192 in the following section. This trail is depicted in Figure 4.

As stated before, the 5-round trail has probability 2 -170.56 , which is improved to 2 -169.95 by using multiple trails. We then extended this differential 0.5 round forwards. For this step we followed a particular approach. To go through the last S-box layer of the distinguisher part (see the before last state of Figure 4) an attacker has several choices. One extreme would be to fix to some concrete output value the transitions through all active S-boxes. This comes at a cost of a certain probability, but if we choose the transitions carefully we can guarantee very few active rows on the ciphertext. The other extreme is to consider truncated output differences for all the active S-boxes of this state. Thus the transition through the SubBox layer happens with probability 1, but almost all rows will be active in the output leading to very large structures of ciphertexts. What we decided to do is a trade-off between these two scenarios. More precisely, we decided to fix the transition 0x4 → 0x10 for the active S-boxes of rows 5, 11 and 19 and to allow more transitions for the S-boxes of rows 0 and 28. The choice of these two rows comes from the fact that after the SC operation, these two S-boxes activate some common rows. Our goal was to activate at most 7 rows after the SC operation (last state of Figure 4) and for this we computed the highest probability to have at most 4 rows active between rows 23 and 31 and also row 0 after SC. We exhausted all possible configurations and we found the best one to be the one having the rows 24, 27, 28 and 31 active after SC. One possibility for this was to force the output difference of the S-box of row 0 to be of the form (0,*,0,0,*,0) and the output difference of the S-box of row 28 to be of the form (*,*,0,0,*,0), where * means that the corresponding bit is potentially active. The probability then to start from any difference of the above form in rows 0 and 28 and to activate at most the rows 24, 27, 28 and 31 after the SC is 2 -3.41 . This fact, together with the probability of 2 -3.41 for the transition 0x4 → 0x10 for the other three active rows, gives a total probability of 2 -13.64 .

To summarize, as can be seen from Figure 4, our 5.5-round trail has then a total probability of 2 -169.95 × 2 -13.64 = 2 -183.59 .

4 Attack on SPEEDY-7-192 SPEEDY-7-192 is the variant of the SPEEDY family suggested for applications where a security of 192 bits is needed. We show in this section, by using the techniques and ideas introduced earlier, how to recover the secret key of this version with less than 2 192 encryptions. In addition, we will propose two ideas that will allow us to optimize the complexity of the attack: one, already used for instance in [START_REF] Broll | New attacks from old distinguishers improved attacks on serpent[END_REF], is to not consider the rounds as blocks regarding their treatment with respect to the differential distinguisher or the truncated part, but include some row transitions in the differential and let the rest go as truncated in the same round which we will apply in the input and output of the attack; the other is to consider the detailed equations over two rounds with merging techniques that will allow us to optimize the complexity of the key guessing part. Our attack has a data complexity of 2 187.28 , a time complexity of 2 187.84 and a memory complexity of 2 42 and contradicts thus the designers' security claim for this variant, as has been acknowledged by them. More importantly, this cryptanalysis highlights that the security margin for this variant was overestimated. Our attack uses the differential found with the ideas from Section 2 and the implemented method described in Section 3.3. As described before, the main differential trail depicted in Figure 4 covers 5.5 rounds and its probability, when taken together with its associated multiple trails described in Section 3.4, is 2 183.59 . The trail of Figure 4 can then be extended one round backwards and half a round forwards as shown in Figure 5, to finally cover 7 rounds. This fact contradicts a particular statement of the designers that wrote that a one-round security margin for the key-recovery part should be sufficient.

Trade-off between differential probability and efficient sieving

Our attack is performed in the decryption direction. The first step is to generate a number of relevant ciphertexts to implement the attack. If we impose no extra condition on the extension of the distinguisher to the plaintexts (δ in → D in as Fig. 5. Key recovery part of the 7-round attack against SPEEDY-7-192 denoted in Figure 1) then D in will have all but one rows active (see Figure 4). This would lead to a very limited sieving and would thus leave us with too many potential pairs on which to perform the key recovery. For this reason, we propose a first improvement. This improvement consists in restricting the permitted transitions through the second S-box layer of Round 0. More precisely, the condition is that the three active bits in rows 26, 28 and 30 after the second S-box only generate a maximum of three active rows in the plaintext state (among rows 26 to 31 and among rows 0 to 2). This condition allows to have 7 inactive rows (instead of 1 before) in the plaintext state at the cost of decreasing the overall differential probability. We denote by P in the probability that it is verified. As we show next, since this probability is relatively high, the impact on the overall differential probability is limited. To compute P in , we start with the state Z, corresponding to the state after the second S-box application of Round 0, where the rows 26, 28 and 30 all have an active difference of 010000. Therefore, on the state Y, we consider differences δ 1 , δ 2 , δ 3 that propagate to 010000 through the S-box layer with probability P(δ 1), P(δ 2), P(δ 3) respectively. Propagating backwards through SC, we obtain X δ1,δ2,δ3 = SC -1 (Y δ1,δ2,δ3). We are interested in states X δ1,δ2,δ3 that have at most three nonzero rows among rows 26 to 31 and among rows 0 to 2. We define the function 1 3 as follows:

1 3 (X δ1,δ2,δ3) = 0 if X δ1,δ2
,δ3 has more than 3 nonzero rows 1 else.

The overall probability for the transition is given by the formula

P in = δ1,δ2,δ3
1 3 (X δ1,δ2,δ3)P(δ 1)P(δ 2)P(δ 3) .

The obtained probability is P in = 2 -2.69 . We take this probability into account as part of the overall probability of the differential distinguisher, which now becomes 2 p * = 2 -(183.59+2.69) = 2 -186.28 . Note that only 78 (instead of 9 3 = 84) difference patterns are possible in the plaintext. These patterns are provided as supplementary material.

Data generation

We build the data required for our attack in the decryption direction. Since there are 7 active rows on the ciphertexts, the size of each structure is 2 7×6 = 2 42 . By following now the notations introduced in Section 2, we build 2 s structures of size 2 42 each, such that 2 s+42 equals 2 186.28+1 . This implies that there are 2 s = 2 145.28 structures and 2 145.28+2•42-1 = 2 228.28 potential pairs. The cost of the data generation is 2 187.28 C E , where C E is the cost of one encryption and can be estimated as 6 * (1 + 6 + 6 + 6) + 1 + 6 + 6 = 128 bit-operations. Indeed, MC, SB are 6 bit-operations, the cost of AK is 1, and all these transformations can be applied in parallel.

Sieving of the pairs

Performing the key-recovery step on all 2 228.28 pairs would exceed the complexity of the exhaustive search. Therefore, we will start with a sieving step to eliminate pairs that cannot have followed the differential. This sieving is done by looking at the differences in the plaintext. As can be seen from Figure 5, the 'good' plaintext pairs have a zero-difference in row 25 as well as 6 inactive rows among rows 26 to 31 and 0 to 2. The sieving will be performed on both the inactive and the active rows.

Inactive rows. Each inactive row represents a 6-bit filter. We consider each of the 78 possible difference pattern in the plaintext. For each pattern, since there are 7 inactive rows at the input, the sieving obtained from these rows is 2 -42 .

Active rows [3 -24]. We can proceed to a sieving on each of these 22 active rows by taking into account the first S-box layer of Round 0. To make this step clear, we start by explaining the sieve on row 6. As can be seen from Figure 5, to follow the differential, a plaintext pair should generate after the application of the S-box a truncated difference of the form (0,*,*,*,0,0). By looking at the DDT of SPEEDY's S-box, we see that the input differences 0x16, 0x2d and 0x3c never propagate to an output difference of the form (0,*,*,*,0,0). Thus, any pair with one of those three plaintext differences at row 0 can be sieved out. This gives us a filter of log 2 (61/64) = 0.07, as shown in Table 5. The filters for the other active rows are computed similarly and are reported in Table 5. Considering the 78 different patterns in the rows [26-31] and [0-2]. Recall that there are in total 78 possible patterns pat, and each one corresponds to a subset of exactly 3 active rows among rows 26 to 31 and 0 to 2 in the plaintext. We start from the difference (0,1,0,0,0,0) on the rows 26, 28 and 30 after the second S-box of Round 0. Then we propagate this difference backwards through the two S-box layers of Round 0 and discard all the differences that do not follow the pattern considered. The number of possible differences on the plaintext allows us to filter 2 -fpat = #Possible differences 2 3•6 (see Appendix B for the 78 possible values of f pat).

row
Summarizing the sieving step. For a pattern pat, the sieving corresponding to the inactive rows is 2 -42 while the one on the active rows is 2 -3.9 • 2 -fpat . Thus, the total number of potential pairs for the key recovery step is pat 2 228.28-45.9-fpat = 2 182.38 pat 2 -fpat = 2 186.42 . This sieving step is the reason why we decided to perform the attack in the decryption direction. Indeed, using the 78 patterns in initial structures would have further increased the complexity.

Recovering the key

In this section, we describe our improved key recovery step. The key recovery algorithm is performed for each pair on the fly. As explained in the last section, the total number of pairs we will try in this step is 2 186.42 . For each pair, we check whether there exists a key that allows the pair to follow the differential. If not, the pair is discarded. Otherwise, as we will show, we obtain a partial key on which all bits are determined but a small number n l which is equal to 8 on average. For each of the remaining pairs and associated partial key, we then try exhaustively all possible 2 n l keys. For each pair, the key recovery is divided into three stages which can be summarized as follows. First, we determine bits of the last subkey k 7 using the fact that if the pair follows the trail, then it must belong to δ out before the last SB application. Since the key schedule of SPEEDY consists simply in a permutation of the key bits, this in turn constrains the bits of k 0 . Second, we determine more bits of k 0 using the fact that the pair must belong to δ in . Lastly, we determine a few extra key bits using the penultimate S-box application (first S-box application of the last round).

Stage 1 -Last subkey addition (k 7). For each pair, we start by determining several bits of k 7 . As can be seen from Figure 5, the ciphertext pairs are active on the rows [START_REF] Biham | Differential cryptanalysis of Q[END_REF][START_REF] Bogdanov | PRESENT: an ultra-lightweight block cipher[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF]24,27,28,31]. For the rows [START_REF] Biham | Differential cryptanalysis of Q[END_REF][START_REF] Bogdanov | PRESENT: an ultra-lightweight block cipher[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF]27,31] (respectively row 24), we want the partial key to be such that these rows satisfy the differential (0,1,0,0,0,0) (respectively (0,0,0,0,1,0)) before the last SB application. For each pair, this determines 6 × 6 = 36 key bits on average. The case of row 28 is only slightly different. If active, there are 2 6 possibilities for the six key bits, but 4 different patterns are possible before SB. A correct pattern is thus reached with probability 2 -4 . The row 28 can thus determine 6 additional key bits at the cost of 2 2 guesses on average. This stage thus allows us to determine up to 42 key bits at the cost of 2 2 guesses. In Table 6, we detail which key bits of the master key are fixed after determining the value of k 7 on the rows corresponding to one of the 7 active rows in the ciphertext. 6. Guessed master key bits from the subkey k7. Each row corresponds to one of the 7 active rows of the ciphertexts.

About the potentially active ciphertext rows. For the sake of simplicity, we consider in this analysis that the four ciphertext rows [24,27,28,31] are active, as it simplifies the key guessing procedure. In fact, we could just discard the pairs that do not verify this, leaving us with 2 24+24-1 -2 47-6 ≈ 2 46.91 pairs for the partial structure on 4 lines instead of 2 47 , but with a higher probability of reaching a good difference before the penultimate SB. In practice, there is no need to discard this data. It can also be treated with similar methods to the one presented here. Although these methods are slightly more expensive than the one presented here as a few more key bits might have to be partially guessed, they are used to handle a very small proportion of data. Thus, the difference in the cost will be negligible. We thus limit our explanations to the predominant case, with all the rows active. We allow rows [START_REF] Biham | Differential cryptanalysis of Q[END_REF][START_REF] Bogdanov | PRESENT: an ultra-lightweight block cipher[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF] to be non active. For each of these rows, this gives on average a probability of 2 -6 of having a difference that can match the required one (including the 0 difference). Thus, on average, only one 6-bit key word leads to the desired difference.

Stage 2 -First subkey addition (k 0) We now focus on the addition of the first subkey k 0 . This key recovery stage is performed row by row, and the order in which each row is treated is important in order to keep our time complexity as low as possible. For each row, we will use available information from both SubBox layers of Round 0 to determine more triplets of possible pairs and associated key. Table 7 helps us understand how to exploit the first S-box of Round 0 for rows [3,...,24]. Recall that these rows are active rows in the plaintext and that they allowed us to perform a specific sieving given in Section 4.3. For each row, Table 7 provides the following information:

-Key determined gives the number of key bits already determined during Stage 1 (i.e. with subkey k 7). -Key left gives the number of key bits that remain to be determined for this row (note that the sum of Key determined and Key left is always 6). -Differential Filter gives the value of the filter that was applied during the sieving step to each pair. -Fixed bits gives the amount of inactive bits after the first SubBox layer.

-First S-box Cost gives the overall cost in bits for a given row to check the propagation through the first SubBox. Since one can precompute the valid pairs of values and associated partial keys for each row, this cost is equal to (Key left + Differential filter -Fixed bits) rather than Key left. For each row and for each key, the probability that they satisfy the differential is 2 Differential filter-Fixed bits . In particular, for rows where the value of First S-box Cost is negative, then for each pair, there exists a key that satisfies the differential with probability < 1. Such rows allow us to discard more pairs.

Since row 25 is inactive, it does not provide any information about k 0 through the first SB. For the sake of simplicity, we do not analyze how to exploit the rows 0 to 2 and 26 to 31. This could have been done by looking at the case of each specific pattern, but it wouldn't have significantly improved the attack whilst considerably lengthening the description of the key recovery step.

To perform the key recovery, we will also look into the propagation through the second S-box. More precisely, we will use the conditions set on the rows [START_REF] Beierle | The SKINNY family of block ciphers and its low-latency variant MANTIS[END_REF][START_REF] Biham | Differential cryptanalysis of Q[END_REF][START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF][START_REF] Biham | Differential cryptanalysis of the full 16-round DES[END_REF][START_REF] Blondeau | Multiple differential cryptanalysis: Theory and practice[END_REF][START_REF] Broll | New attacks from old distinguishers improved attacks on serpent[END_REF][START_REF] Canteaut | Multiple differential cryptanalysis of round-reduced PRINCE[END_REF][START_REF] Choudhuri | Differential cryptanalysis of Salsa and ChaCha -An evaluation with a hybrid model[END_REF][START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF] 7. This table represents the information used for efficiently solving the keyrecovery part of the attack. Each line in the table is associated to the same row in the state. The column Key determined indicates how many bits are already known from Stage 1 (those bits are depicted in red), and Key left is the number of bits that remains to be known. Fixed bits represents the number of inactive bits after the first SB of Round 0 and that therefore can be used to perform a sieving on the candidate keys. The cost is the difference between the previous values, and the second filter denotes the active rows in the second SB, as they will provide an additional filtering to produce the fixed output difference.

sieve the pairs. At the output of the second S-box, these rows must have the exact difference (0,1,0,0,0,0). This provides us with a 2 -6 filter, but it is not straightforward how to exploit it. Indeed, because of the SC step, each row at the output of the second S-box layer depends on 6 rows at the output of the first S-box layer. It thus seems that in order to get a 2 -6 filter, one first has to guess 6 rows of k 7 , which is very costly. However, we use several improved techniques in order to get filters without having to guess too many rows before the first S-box step. We describe these techniques through an example which can be found in the paragraph dedicated to the rows [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF][START_REF] Wang | Differential cryptanalysis of reduced-round PRESENT[END_REF][START_REF] Rohit | Cryptanalysis of reduced round SPEEDY[END_REF]23] below. We now describe in detail the first three steps of Stage 2. Table 8 sums up the rest of Stage 2.

Rows [START_REF] Biham | Differential cryptanalysis of Q[END_REF]. We start by considering row 4. This row allows us to perform a filter of -0.52 at the first S-box level of Round 0.

Rows [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF][START_REF] Naya-Plasencia | How to improve rebound attacks[END_REF][START_REF] Rohit | Cryptanalysis of reduced round SPEEDY[END_REF]23]. We next consider the rows 18,19,20,21 and 23. To understand why these rows are the next ones we consider, one must take into account the second S-box transition. Indeed, consider the rows [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF] after the second S-box transition. These three rows are active, and must thus have the exact difference (0,1,0,0,0,0). Since these rows are positioned next to each other, one does not need to guess 3 × 6 = 18 rows at the input of the first S-box, but only 8, namely the rows [17,18,...,24]. Further, we show that to get a filter, one does not need to guess all of the 8 rows on which the rows [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF] after the second S-box transition depend. We start by precomputing all the pairs of values that are in the codomain of the function and store them in a table of size 2 6 . We can thus build precomputed table of size 2 18 which contains all possible valid values of rows [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF] at the entry the second S-box layer. We guess the rows [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF][START_REF] Naya-Plasencia | How to improve rebound attacks[END_REF][START_REF] Rohit | Cryptanalysis of reduced round SPEEDY[END_REF]23] at the entry of the first S-box. In total, 13 bits of the rows [START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF][START_REF] Wang | Differential cryptanalysis of reduced-round PRESENT[END_REF][START_REF] Rohit | Cryptanalysis of reduced round SPEEDY[END_REF]23] later impact the rows [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF] at the entry of the second S-box. There are thus 2 26 possible pairs of values for these bits, whilst in total, the table contains 2 18 possible pairs that verify the condition at the output of the S-box on the rows [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF]. This thus results in a 2 -8 filter. More precisely each pair matches a pre-computed valid pair in the table of size 2 18 with probability 2 -8 . In particular, whenever a pair is not discarded, the rows [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF] before the second S-box are completely determined. This will allow us to filter more pairs as we guess more rows in the plaintext which impact the value of the rows [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF] before the second S-box. The guess of rows 18,19,21 and 23 can be done with merging techniques developed in [START_REF] Canteaut | Sieve-in-the-middle: Improved MITM attacks[END_REF] resulting in a reduction of the guessing cost from 2 2.02+2.07+1+0.51+2.17 = 2 7.77 to 2 4.09 + 2 3.68 + 2 7.77-8 = 2 4.94 , or else can be more efficiently performed with small precomputations regarding these partial transitions with a cost for each step given by the number of remaining solutions, so 2 7.77-8 = 2 -0.23 in this example.

Row 24. The next step consists in guessing row 24. As we have described previously, for the pairs that have not been discarded yet, the three rows [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Leander | The SPEEDY family of block ciphers engineering an ultra low-latency cipher from gate level for secure processor architectures[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF] before the second S-box are fixed. Two bits of row 24 later impact the value of these rows. Thus, we obtain an extra 2 -2 filter. Therefore, as can be seen from Table 7 we obtain a partial guessing cost of 2 1.42 and a partial data cost of 2 -0.58 .

The next steps of the key recovery are described in Table 8. This table must to be read from top to bottom. Its columns provide the following informations:

-Row guessed at the input. This column displays the coordinate of the row guessed. The column considered first is at the top and the last one is at the bottom. -Partial guessing cost. This column displays the cost of guessing each row and checking that the first S-box transition is valid (See Table 7). -Partial data filter. For each row, this column displays the log of the probability that a valid partial key exists for each pair, taking into account the filter provided by the constraints after the second S-box. This column provides information on the evolution of the data after guessing each row (or group of rows). For a (group of) row(s), if the entry on this column is -x, then the number of pairs remaining after handling this (these) column(s) is multiplied by 2 -x . -Row determined at second S-box. This column displays the second S-box rows that are fully determined after a given guess.

The complexity of the key recovery so far is given by the formula 2 186.42+2 2 -0.52 (2 Stage 3 -Back to k 7 using the penultimate S-box. For the remaining key bits, we will go back to k 7 and study the penultimate S-box. A similar approach to the second S-box is applied here: instead of using the second S-box transition to perform a guess and filter approach, the penultimate S-box is used. For each row of k 7 , Table 9 shows which bits of the master key still need to be guessed (the bits in black). For each pair, we wish to find partial keys such that they lead to the difference 000100 before the first S-box of the last round on rows [0, [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF][START_REF] Broll | New attacks from old distinguishers improved attacks on serpent[END_REF][START_REF] Leurent | Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning[END_REF]31]. For each of these rows, Table 10 displays which rows of k 7 need to be guessed in order to check the transition to 000100 before the first S-box of the last round. More precisely, it provides the following information.

-Row considered. This column displays the coordinate of the row before the first S-box of the last round which will be used to filter the right key guesses. -Involved rows of k 7 . This column displays which rows of k 7 must be guessed in order to check the condition on the row considered before the first S-box of the last round. -Number of missing bits. This columns displays the number of bits in the involved rows of k 7 that have not yet been determined.

For each remaining pair and for each of these five transitions, we recover the key bits that allow this transition and put them in tabs. By merging them, we then recover the pairs and associated partial keys that allow the whole state transition. After this step, only the key bits [START_REF] Choudhuri | Differential cryptanalysis of Salsa and ChaCha -An evaluation with a hybrid model[END_REF][START_REF] Knellwolf | Conditional differential cryptanalysis of nlfsr-based cryptosystems[END_REF]152,153,159,180,187,188] are left to determine. This is done by guessing them. The complexity associated to this step is We presented in this work an attack on SPEEDY-7-192 that fully breaks this variant of the SPEEDY family of ciphers. In parallel, we could also build attacks on other variants, even if our attacks on these smaller-round versions do not contradict the corresponding security claims. For completeness we provide a summary of these attacks, that are at the best of our knowledge the best known attacks on these versions.

SPEEDY-5-192. Following the trail depicted in Figure 7 and its associated multiple differential probability of 2 104.02 , computed as explained in Section 3.4, we can build a differential attack on 5 rounds, very similar to the 7-round one. We just need to take into account the new parameters. Note that the complexity for the key recovery is extrapolated from the 7 round version, since the first round is the same and we have the same amount of key bits, we expect similar complexity for the first part of the key recovery. Regarding 5 rounds the new complexity is given by (with C E = 2 SPEEDY-6-192. For 5.5 and 6 rounds we can use the trail depicted in Figure 7 with multiple differential probability of 2 125.41 and 2 149.28 respectively. We take into account the new parameters and the complexities are (with C 5.5 E = 2 6.67 and C 6 E = 2 and data complexity given by the first term and still a memory complexity of 2 42 . We can do similar computations for 5.5 rounds to obtain T 5.5 = 2 129.34 C E with the same memory complexity and a data of 2 129.1 . To the best of our knowledge, our results are the best known attacks on SPEEDY and represent a significant gain over previous results.

Open problems. We believe, as a future research, that it would be interesting to develop different algorithmic methods in order to search for higher-probability trails for SPEEDY. In parallel, different theoretical but also programming techniques should permit to improve our approach for finding multiple differentials.

Being able to find more trails of good probability would greatly increase the complexities of the attacks. In parallel, new tools that would permit to compute propagations through two rows at once with no constraint in the middle part would potentially permit to find better differentials. Finally, we believe that it would be interesting to develop an automatic tool for differential cryptanalysis that could give an approximate of the best attack complexity for certain types of ciphers.

Fig. 1 .

 1 Fig. 1. Differential cryptanalysis context.

Fig. 2 .

 2 Fig. 2. The round function of SPEEDY-r-192 for the first r -1 rounds (left) and the last round (right).

Fig. 3 .

 3 Fig.3. Generating (r + 1.5)-round trails from core r-round trails and extending them to mount (r + 3)-round attacks on SPEEDY.

Fig. 4 .

 4 Fig. 4. 5.5-round differential trail used to attack SPEEDY-7-192. The red part corresponds to the 4-round core trail, while the blue part corresponds to the 1.5-round extension. Grey bits are bits with unknown difference. The two states surrounded in red are the starting and final states of the multiple differentials considered.

Fig. 6 .

 6 Fig. 6. Transition of rows 26, 28 and 30 through the inverse of the second SB of round 0.

 a, b, c, d, e, f → S -1 (a, b, c, d, e, f), S -1 (a, b, c, d, e ⊕ 1, f)

2

 168.3 (2 8 + 2 8 + 2 9 + 2 10 + 2 10 + 211 (1 + 2 8)) = 2 180.31 C E . Complexity summary. The final time complexity of our attack is T = 2 187.28 C E + 2 179.42 C E + 2 186.15 C E + 2 180.31 C E = 2 187.84 C E 5 Discussion and conclusion

Fig. 7 .

 7 Fig. 7. 3.5-round differential trail used to attack SPEEDY-5-192. The red part corresponds to the 2-round core trail, while the blue part corresponds to the 1.5-round extension.

Fig. 8 .

 8 Fig. 8. 4.5-round differential trail used to attack SPEEDY-6-192. The red part corresponds to the 3-round core trail, while the blue part corresponds to the 1.5-round extension.

Table 1 .

 1 . Summary of SPEEDY cryptanalysis

	Algorithm # rounds	Ref.	Data Time Memory Security claim
		attacked			(in CE)		(T , D)
	SPEEDY-5-192	3	[21]	2 17.6	2 52.5	2 25.5	(2 128 , 2 64)
	SPEEDY-5-192	5	this work 2 101.65 2 107.8	2 42	(2 128 , 2 64)
	SPEEDY-6-192	5.5	this work 2 121.65 2 127.8	2 42	(2 128 , 2 128)
	SPEEDY-6-192	6	this work 2 121.65 2 151.67	2 42	(2 128 , 2 128)
	SPEEDY-7-192	7	this work 2 187.28 2 187.84	2 42	(2 192 , 2 192)

Table 2 .

 2 Table representation of the 6-bit S-box S

	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
	S(x) 8 0 9 3 56 16 41 19 12 13 4 7 48 1 32 35
	x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	S(x) 26 18 24 50 62 22 44 54 28 29 20 55 52 5 36 39
	x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
	S(x) 2 6 11 15 51 23 33 21 10 27 14 31 49 17 37 53
	x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	S(x) 34 38 42 46 58 30 40 60 43 59 47 63 57 25 45 61

Table 3 .

 3 The

	i	0	1	2	3	4	5	6	7	8	9 10 11 12 13 14 15
	P(i) 1	8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
	i	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
	P(i) 113 120 127 134 141 148 155 162 169 176 183 190 5 12 19 26
	i	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
	P(i) 33 40 47 54 61 68 75 82 89 96 103 110 117 131 138
	i	48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	P(i) 145 152 159 166 173 180 187 2	9 16 23 30 37 44 51 58
	i	64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
	P(i) 65 72 79 86 93 100 107 114 121 128 135 142 149 163 170
	i	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
	P(i) 177 184 191 6 13 20 27 34 41 48 55 62 69 76 83 90
	i	96 97 98 99 100 101 102 103 104 105 106 107 108 110 111
	P(i) 97 104 111 118 125 132 139 146 153 160 167 174 181 3 10
	i 112 113 114 115 116 117 118 119 120 121 122 123 124 126 127
	P(i) 17 24 31 38 45 52 59 66 73 80 87 94 101 115 122
	i 128 129 130 131 132 133 134 135 136 137 138 139 140 142 143
	P(i) 129 136 143 150 157 164 171 178 185 0	7 14 21 28 35 42
	i 144 145 146 147 148 149 150 151 152 153 154 155 156 158 159
	P(i) 49 56 63 70 77 84 91 98 105 112 119 126 133 147 154
	i 160 161 162 163 164 165 166 167 168 169 170 171 172 174 175
	P(i) 161 168 175 182 189 4 11 18 25 32 39 46 53 60 67 74
	i 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191
	P(i) 81 88 95 102 109 116 123 130 137 144 151 158 165 179 186

bit-permutation P for SPEEDY-r-192 with β = 7 and γ = 1.

Table 5 .

 5 Sieving in the active rows[3 -24] of the plaintext.

		filter row filter row filter row filter
	3 0.42	9 0.02 15 0.09 21 0.07
	4 0.48 10 0.05 16 0.07 22 0.17
	5 0.07 11 0.07 17 0.09 23 0.51
	6 0.07 12 0.12 18	0	24 1.42
	7 0.07 13 0.02 19 0.02
	8	0	14 0.07 20	0
			total filter 3.9

Table

 after the application of the second S-box to

	row	Key	Key Differential Fixed	First
		determined left	Filter	bits S-box Cost
	0 0 1 2 3 4 5	2	4	*	*	*
	1 6 7 8 9 10 11	1	5	*	*	*
	2 12 13 14 15 16 17	1	5	*	*	*
	3 18 19 20 21 22 23	1	5	0.42	4	1.42
	4 24 25 26 27 28 29	3	3	0.48	4	-0.52
	5 30 31 32 33 34 35	1	5	0.07	3	2.07
	6 36 37 38 39 40 41	2	4	0.07	3	1.07
	7 42 43 44 45 46 47	0	6	0.07	3	3.07
	8 48 49 50 51 52 53	2	4	0	2	2
	9 54 55 56 57 58 59	3	3	0.02	2	1.02
	10 60 61 62 63 64 65	1	5	0.05	3	2.05
	11 66 67 68 69 70 71	1	5	0.07	3	2.07
	12 72 73 74 75 76 77	1	5	0.12	3	2.12
	13 78 79 80 81 82 83	2	4	0.02	2	2.02
	14 84 85 86 87 88 89	2	4	0.07	3	1.07
	15 90 91 92 93 94 95	0	6	0.09	3	3.09
	16 96 97 98 99 100 101	1	5	0.07	3	2.07
	17 102 103 104 105 106 107	0	6	0.09	3	3.09
	18 108 109 110 111 112 113	3	3	0	2	1
	19 114 115 116 117 118 119	2	4	0.02	2	2.02
	20 120 121 122 123 124 125	1	5	0	2	3
	21 126 127 128 129 130 131	1	5	0.07	3	2.07
	22 132 133 134 135 136 137	1	5	0.17	3	2.17
	23 138 139 140 141 142 143	2	4	0.51	4	0.51
	24 144 145 146 147 148 149	1	5	1.42	5	1.42
	25 150 151 152 153 154 155	0	6	*	*	*
	26 156 157 158 159 160 161	1	5	*	*	*
	27 162 163 164 165 166 167	2	4	*	*	*
	28 168 169 170 171 172 173	1	5	*	*	*
	29 174 175 176 177 178 179	1	5	*	*	*
	30 180 181 182 183 184 185	1	5	*	*	*
	31 186 187 188 189 190 191	1	5	*	*	*

 4.94 + 2 -0.23 (21.42 + 2 -0.58 (2 3 + 2 -3 (• • • (2 1.42 + 2 0.58))))) 2 -7 C

E = 2 186.15 C E and there are 2 168.3 remaining pairs.

Table 8 .

 8 Description of Stage 2 of the key recovery.

	Row guessed Partial guessing Partial data Row determined
	at the input	cost	filter	at second S-box
	4	-0.52	-0.52	
	18,19,22,21,23	4.9	-0.23	17,18,19
	24	1.42	-0.58	
	20	3	-3	15
	17	3.09	-0.91	
	16	2.07	0.07	13
	15	3.09	-0.91	
	14	1.07	-0.93	11
	13	2.02	-1.98	
	11	2.07	0.07	9
	12	2.12	-1.88	8
	9	1	-3	
	10	2.05	-1.95	
	8	2	0	5
	6	1.07	-0.93	3
	5	2.07	-1.93	
	7	3.07	-0.93	
	3	1.42	-0.58	

Table 9 .

 9 In red, the master key bits that have already been determined. In black, the bits that still need to be determined.

	row		Key row	Key
			left	left
	0 169 32 87 142 5 60 2	16 73 128 183 46 101 156 2
	1 115 170 33 88 143 6	2	17 19 74 129 184 47 102 1
	2 61 116 171 34 89 144 1	18 157 20 75 130 185 48 0
	3 7 62 117 172 35 90 2	19 103 158 21 76 131 186 2
	4 145 8 63 118 173 36 0	20 49 104 159 22 77 132 1
	5 91 146 9 64 119 174 2	21 187 50 105 160 23 78 1
	6 37 92 147 10 65 120 1	22 133 188 51 106 161 24 1
	7 175 38 93 148 11 66 2	23 79 134 189 52 107 162 2
	8 121 176 39 94 149 12 2	24 25 80 135 190 53 108 0
	9 67 122 177 40 95 150 2	25 163 26 81 136 191 54 2
	10 13 68 123 178 41 96 0	26 109 164 27 82 137 0	2
	11 151 14 69 124 179 42 3	27 55 110 165 28 83 138 0
	12 97 152 15 70 125 180 3	28 1 56 111 166 29 84 2
	13 43 98 153 16 71 126 2	29 139 2 57 112 167 30 2
	14 181 44 99 154 17 72 3	30 85 140 3 58 113 168 2
	15 127 182 45 100 155 18 2	31 31 86 141 4 59 114 0
	Row	Involved rows	Number of
	considered		of k7	missing bits
	0	27,28,29,30,31,0	8
	5	0,1,2,3,4,5	9
	11	6,7,8,9,10,11	10
	19	14,15,16,17,18,19	10
	31	23,24,25,26,27,28	8

Table 10 .

 10 Description of Stage 3 of the key recovery.

 6.47 here):T = 2 107.71 C E + 2 100.38 C E + 2 105.38 C E + 2 86.85 C E ≈ 2 107.98 C E ,a data complexity of 2 107.71 and a memory complexity of 2 42 . The authors stated that this version should achieve 128-bit security when data complexity is limited to 2 64 . Therefore, due to the data limitation, our attack does not contradict the security claim of the designers but still represents the best known attack against SPEEDY-5-192.

 6.75):T 6 = 2 152.97 C E + 2 145.36 C E + 2 150.36 C E + 2 132.36 ≈ 2 153.19 C E ,

If k is the size of the secret key, for the attack to be valid, the time complexity T should be smaller than 2 k CE.

Acknowledgements. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 714294 -acronym QUASYModo). It was also partially supported by the French Agence Nationale de la Recherche through the SWAP project under Contract ANR-21-CE39-0012. We would also like to thank Shahram Rasoolzadeh and Zahra Ahmadian for fruitful discussions and for pointing out an error in our initial analysis.