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ABSTRACT

Despite their importance in stellar evolution, little is known about magnetic fields in the interior of stars. The recent seismic detection
of magnetic fields in the core of several red giant stars has given measurements of their strength and information on their topology.
We revisit the puzzling case of hydrogen-shell burning giants that show deviations from the expected regular period spacing of gravity
modes. These stars also tend to have a measured period spacing that is too low compared to their counterparts. In this Letter, we show
that these two features are well accounted for by strong magnetic fields in the cores of these stars. For 11 Kepler red giants showing
these anomalies, we placed lower limits on the core field strengths ranging from 40 to 610 kG. For one star, the measured field exceeds
the critical field above which gravity waves no longer propagate in the core. We find that this star shows mixed mode suppression at
low frequency, which further suggests that this phenomenon might be related to strong core magnetic fields.
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1. Introduction

Magnetic fields affect stars at all evolutionary stages from
star-forming molecular clouds to white dwarfs and mag-
netars (McKee & Ostriker 2007; Kaspi & Beloborodov 2017;
Ferrario et al. 2020). In particular, they are expected to play
a central role in the redistribution of angular momentum
inside stars (Maeder & Meynet 2005; Cantiello et al. 2014;
Rüdiger et al. 2015), and thus in the transport of chemical ele-
ments. While surface magnetic fields have been detected and
characterized in stars across the Hertzsprung–Russell diagram
(Landstreet 1992; Donati & Landstreet 2009), internal magnetic
fields have long remained inaccessible to direct observations. In
red giant stars, the detection of mixed modes – that is, oscillation
modes that behave as gravity (g) modes in the core and as pres-
sure modes in the envelope – has given strong evidence that the
cores of red giant stars are rotating slowly (e.g., Deheuvels et al.
2012; Mosser et al. 2012b; Gehan et al. 2018). This has yielded
evidence that angular momentum is redistributed much more
efficiently than if only purely hydrodynamical processes were
at work (e.g., Marques et al. 2013). Magnetic fields could pro-
duce the additional transport that is needed (Rüdiger et al. 2015;
Jouve et al. 2015; Fuller et al. 2019; Petitdemange et al. 2023).
Observational constraints on the properties of internal magnetic
fields are crucially needed to assess the nature and the efficiency
of the magnetic transport of angular momentum inside stars.

The propagation of magneto-gravity waves is expected to be
suppressed when the magnetic field exceeds a critical strength
Bc above which Alfvén wave frequencies become comparable
to those of gravity waves. This phenomenon was invoked by
Fuller et al. (2015) to account for the unexpectedly low ampli-
tudes of dipole mixed modes in a fraction of red giants (see also

Mosser et al. 2012a; Stello et al. 2016). For core fields above Bc,
Fuller et al. (2015) suggest that the mode energy reaching the
magnetized core would be entirely dissipated and lost, giving
rise to purely p-like dipole modes. This interpretation has been
questioned by Mosser et al. (2017), who found that partially sup-
pressed dipole modes still retain a g-like character. Loi (2020b)
later showed that even with strong fields, a fraction of the incom-
ing waves could remain g-like, which would allow for partial
energy to return from the core. The interpretation of suppressed
dipole modes remains debated.

Magnetic fields also produce shifts in the oscillation mode
frequencies (Gough 1990). Several studies have recently inves-
tigated the impact of internal fields on the frequencies of mixed
modes in red giants (Gomes & Lopes 2020; Bugnet et al. 2021;
Loi 2021). Very recently, Li et al. (2022) detected clear asymme-
tries in the rotational multiplets of dipole mixed modes in three
Kepler red giants. They show that these features can only be
accounted for by internal magnetic fields with intensities ranging
from 30 to 130 kG in the vicinity of the hydrogen burning shell.
These findings have made it possible to characterize magnetic
fields in the cores of red giants.

In this Letter, we investigate the irregularity of g-mode
period spacings in a group of red giant branch (RGB) stars,
which thus far remains unexplained. High-radial-order g modes
are expected to be approximately equally spaced in period by
∆Πl, where l is the mode degree. In red giants, dipole mixed
modes can be used to measure ∆Π1 using asymptotic expres-
sions of the mode frequencies (Mosser et al. 2015). While ∆Π1
is nearly constant over the frequency range of observed modes
for the vast majority of RGB stars, some red giants show sig-
nificant variations of ∆Π1 (Mosser et al. 2018; Deheuvels et al.
2022). Here, we show that this feature is the signature of strong
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magnetic fields in the cores of these stars. This constitutes a new
way of detecting and characterizing magnetic fields in the cores
of red giants.

In Sect. 2, we present red giants that exhibit deviations from
the regular period spacing pattern of g modes, and we find addi-
tional such targets in Kepler data. We then show in Sect. 3 that
strong core magnetic fields can account for this phenomenon.
In Sect. 4, we determine the field strengths that are required to
match the seismic observations. We discuss these measurements
in Sect. 5, before concluding in Sect. 6.

2. Red giants with nonconstant ∆Π1

2.1. Previous detections of nonconstant ∆Π1 in RGB stars

To first order, high-radial-order gravity modes are expected to
be equally spaced in period. Among the 160 RGB stars studied
by Mosser et al. (2018), only one shows clear deviations from a
regular period spacing of g modes (KIC 3216736). The authors
attribute this irregularity to a buoyancy glitch (that is, a sharp
variation in the Brunt–Väisälä frequency N), which induces peri-
odic variations in the asymptotic period spacing ∆Π1.

More recently, Deheuvels et al. (2022) identified additional
RGB stars with nonconstant ∆Π1, in a different context. These
stars appeared among a peculiar class of RGB stars that
are located below the so-called degeneracy sequence in the
(∆ν,∆Π1) plane, where RGB stars regroup when electron degen-
eracy becomes strong in their core. Most of the stars in this
class are intermediate-mass stars and are thought to result from
mass transfer (Deheuvels et al. 2022). The only four lower-mass
stars with ∆Π1 being too low must have a different origin. Con-
trary to intermediate-mass stars, they all show clear departures
from a constant period spacing of g modes. Interestingly, the
star identified by Mosser et al. (2018; KIC 3216736) is among
these targets. This suggests that there might be a link between
the nonconstancy of ∆Π1 and the fact that its measured value is
abnormally low. These four stars show only one detected mode
per rotational multiplet.

2.2. Additional targets

We searched for other targets showing nonconstant ∆Π1 among
RGB stars with detected oscillations using the catalog of
Yu et al. (2018). To estimate the period spacings of g modes
using dipole mixed modes, we computed the so-called stretched
periods τ, defined by the differential equation dτ = dP/ζ
(Mosser et al. 2015), where ζ corresponds to the fraction of the
mode kinetic energy that is enclosed in the g-mode cavity (ζ
tends to 1 for pure g modes, and 0 for pure p modes). When
building échelle diagrams of these stretched periods, mixed
modes are expected to align in a vertical ridge if ∆Π1 is constant
and deviations from a regular period spacing induce curvature in
this ridge.

We searched for stars with only one curved ridge detected
in order to avoid the additional complication coming from rota-
tional effects (these effects will be addressed in a subsequent
work). This can mean that these stars are seen pole-on, so that
only the m = 0 modes can be detected. This could also arise
if the core rotation is too weak to produce detectable rotational
splitting in Kepler data. We thus found seven additional targets,
bringing the total of the sample to 11 stars (see Table B.1).
Their stretched period échelle diagrams are shown in Figs. 1
and B.1. They were folded using an average value of the asymp-
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Fig. 1. Stretched period échelle diagrams of two red giants showing
distortion from the regular g-mode pattern. Blue circles show detected
dipole modes. Red crosses correspond to the best-fit asymptotic mixed
mode frequencies obtained by including a magnetic perturbation.

Fig. 2. Location of RGB stars with nonconstant ∆Π1 in the (∆ν,∆Π1)
plane. Black star symbols correspond to the values of ∆Π1 that produce
the best vertical alignment of modes in the stretched period échelle dia-
gram (Sect. 2). Colored star symbols correspond to the corrected values
of ∆Π1 obtained by taking into account the magnetic perturbation to the
mode frequencies (Sect. 4). Other RGB stars from Vrard et al. (2016)
are shown as gray circles (for clarity, stars flagged by the authors as
potential aliases were omitted).

totic period spacing over the frequency range of the observations,
which is further referred to as ∆Π

(meas)
1 .

The location of these 11 targets in the (∆ν,∆Π1) plane is
shown in Fig. 2 (black star symbols), where we have used
the values ∆Π

(meas)
1 as the measured asymptotic period spacing.

Three of the seven additional targets lie well below the degen-
eracy sequence of RGB stars, which confirms the link between
nonconstant ∆Π1 and low measured values for these quantities.

2.3. Origin of the observed distortions in the g-mode pattern

Deviations from a regular ∆Π1 are generally attributed to buoy-
ancy glitches (e.g., Mosser et al. 2015). To produce the observed
distortions in ∆Π1, we show in Appendix A that a buoyancy
glitch needs to have a large amplitude (the local value of N must
be multiplied by a factor of at least six) and be located either
deep inside the inert He core, or well above the H-burning shell.
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While this cannot be excluded, no known process is expected to
produce such strong features in these regions of an RGB star.
Secondly, the shape of the modulation in ∆Π1 that is produced
by a large-amplitude glitch strongly differs from the observations
(see Appendix A). Finally, the hypothesis of a buoyancy glitch
would not explain why the measured values of ∆Π1 are unex-
pectedly low for most of our stars. It thus seems unlikely that the
observed deviations in ∆Π1 arise from buoyancy glitches. In the
following sections, we explore the possibility that the irregulari-
ties in ∆Π1 are produced by internal magnetic fields.

3. Effects of magnetic fields on g-mode period
spacings

The influence of magnetic fields over oscillation mode frequen-
cies has been studied over the last decades using a perturba-
tive approach (Unno et al. 1989; Gough 1990). Recently, their
effects on mixed modes in red giants have been addressed in
the special case of dipolar fields with specific radial profiles,
which are either aligned with the rotation axis (Hasan et al.
2005; Gomes & Lopes 2020; Mathis et al. 2021; Bugnet et al.
2021) or inclined (Loi 2021).

Li et al. (2022) extended these studies to an arbitrary mag-
netic field and obtained a general expression for the magnetic
frequency shift that is valid provided that the azimuthal compo-
nent is not much larger than the radial one (Bφ/Br � ωmax/N,
where ωmax is the angular frequency at the maximum power of
oscillations and N is the Brunt–Väisälä frequency1). Accord-
ingly, the multiplets of l = 1 pure g modes (that is, g modes
that are not coupled to p modes) undergo an average shift ωB,
given by

ωB =
I

µ0ω3

∫ ro

ri

K(r)B2
r dr, (1)

where K(r) is a weight function that probes the g-mode cavity
and sharply peaks in the vicinity of the H-burning shell (HBS),
I is a factor that depends on the core structure (see Eq. (45)
and (46) of Li et al. 2022), and B2

r = (4π)−1
!

B2
r sin θ dθ dφ.

The angular frequency shifts of the components of g-mode
dipole multiplets are then given by

δωg(m = 0) = (1 − a)ωB (2)

δωg(m = ±1) =

(
1 +

a
2

)
ωB, (3)

where a is a dimensionless coefficient that depends on the hor-
izontal geometry of B2

r (a ∝
!

B2
r P2(cos θ) sin θ dθdφ, where

P2(cos θ) is the second order Legendre polynomial).
The dependency of magnetic shifts with ω−3 shows that low-

frequency (that is, high-radial-order) g modes are more affected
by magnetic fields. For this reason, magnetic shifts create a devi-
ation from the regular period spacing of pure g modes, as was
already pointed out by Loi (2020a), Bugnet et al. (2021), and
Li et al. (2022). Very recently Bugnet (2022) proposed a method
to detect the signature of magnetic fields exploiting this property.

For illustration purposes, Fig. 1 shows stretched échelle dia-
grams of mixed modes with magnetic perturbations (see Sect. 4).
The left panel corresponds to a case where the unperturbed
g modes have an asymptotic period spacing of ∆Π1 = 85 s,
and we have added a magnetic perturbation corresponding to a
frequency shift of 3.9 µHz at νmax. The ridge appears strongly

1 The ratio ωmax/N typically exceeds 102 for red giants.

curved, similarly to the observations. To visualize the ridge prop-
erly, the stretched échelle diagram was folded using a period
spacing of ∆Π

(meas)
1 = 73.8 s, which is much lower than the

unperturbed period spacing ∆Π1.
Magnetic perturbations thus account for both characteristics

of the stars identified in Sect. 2. First, they produce curved ridges
in the period échelle diagram. Since magnetic shifts are always
positive, the period spacings of g modes decrease with decreas-
ing mode frequency. Thus, the curvature always has the same
shape, with the low-frequency part of the ridge being bent to
the left of the period échelle diagram. Interestingly, all the tar-
gets identified in Sect. 2 show ridges that are curved in this
direction (see Fig. B.1). Secondly, magnetic perturbations yield
a measured period spacing that is significantly lower than the
asymptotic unperturbed period spacing ∆Π1. This can explain
why most of the targets identified in Sect. 2 are located below
the degenerate sequence in the (∆ν,∆Π1) plane.

4. Measurement of magnetic field strengths

We then estimated the field strengths that are required to account
for the observations. For this purpose, we computed asymp-
totic expressions of the mixed mode frequencies including mag-
netic perturbations. We followed the method that we propose
in Li et al. (2022), which is briefly recalled here. The effects of
magnetic fields are taken into account by adding a magnetic per-
turbation to the frequencies of pure p and g modes. These per-
turbed frequencies are then plugged into the asymptotic expres-
sion of mixed mode frequencies given by Shibahashi (1979).
While the frequencies of p modes are unaffected (Li et al. 2022),
the periods of g modes are expressed as

Pg = Pg,0

(
1 +

δωg

2π
Pg,0

)−1

, (4)

where Pg,0 = (ng + 1/2 + εg)∆Π1 is the first-order asymp-
totic expression of l = 1 g modes without a perturbation, and
δωg is the magnetic perturbation to g-mode frequencies. Using
Eqs. (1)–(3), δωg can be written as δωg = δω0 (ωmax/ω)3 , where
δω0 corresponds to the magnetic shift at ωmax.

For the 11 stars of our sample, we optimized the values of
∆Π1, δω0, εg, and d01 (defined below) to match the observations
as best as possible using a Markov chain Monte Carlo approach.
Based on the measurements of εg for hundreds of Kepler red
giants by Mosser et al. (2018), we assumed a Gaussian prior on
εg with a mean of 0.28 and a standard deviation of 0.08, and we
considered uniform priors for the other parameters. The charac-
teristics of pure p modes were derived from the observed radial
modes, with the exception of d01, defined as the average small
separation νp,l=0 − νp,l=1 + ∆ν/2, which was considered as a free
parameter of the fit.

The optimal parameters of the fit are given in Table B.1. The
corresponding asymptotic frequencies are shown as red crosses
in Figs. 1 and B.1. The agreement with the observations is very
good, with the curvature of the ridge being well reproduced for
all the stars. The fit also provides an estimate of the unper-
turbed asymptotic period spacing ∆Π1 for these stars, which is,
as expected, larger than the apparent period spacing ∆Π

(meas)
1 .

We used the newly determined values of ∆Π1 to update the loca-
tion of the 11 targets in the (∆ν,∆Π1) plane in Fig. 2 (colored
star symbols). It is striking to observe that they now lie on the
degenerate sequence, as expected for stars in this mass range and
evolutionary state. Thus, there is a body of evidence that the dis-
tortions to the g-mode pattern that are observed in the 11 targets
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Fig. 3. Minimal field strength 〈B2
r 〉

0.5
min required to account for the

observed distortions in the g-mode period spacing for the 11 stars of
our sample (black circles). They are plotted as a function of the mixed
mode density N = ∆ν/(∆Π1ν

2
max), which is a proxy for evolution along

the RGB (Gehan et al. 2018). The red dashed line indicates the critical
field Bc and the gray long-dashed line shows the minimal field strength
Bth required to detect the distortions in the g-mode pattern. The blue star
symbols show the stars from Li et al. (2022).

of the sample are indeed produced by internal magnetic fields.
This yields the opportunity to characterize these fields.

The measurement of δω0 can be used to derive an estimate
of 〈B2

r 〉 =
∫ ro

ri
K(r)B2

r dr using Eqs. (1)–(3). The obtained expres-
sion depends on the asymmetry parameter a, which can unfor-
tunately not be measured with only one component detected per
multiplet. However, we have shown that −1/2 6 a 6 1 (Li et al.
2022), so that we could place a lower limit on the value of 〈B2

r 〉.
We obtain

〈B2
r 〉min =

2
3
δω0ω

3
maxµ0

I
, (5)

where µ0 is the magnetic permeability. This expression is valid
regardless of whether the observed modes have an azimuthal
number of m = 0 or m = ±1 (indeed, the factors 1 − a and
1+a/2 appearing in Eq. (2) and (3), respectively, are both always
inferior to 3/2). Only in the very specific case of a field that
is entirely concentrated on the poles (a → 1) would the mea-
sured field be much larger than 〈B2

r 〉min. For instance, if B2
r had

an axisymmetric dipolar configuration (a = 2/5), we would have
〈B2

r 〉 = 5/2〈B2
r 〉min.

To calculate 〈B2
r 〉min, the term I must be known, for which a

model of the stellar internal structure is needed. For this purpose,
we used a precomputed grid of stellar models of red giants with
various masses, metallicities, and evolutionary stages, built with
the evolution code mesa (Paxton et al. 2011). For each target,
we selected models from the grid that simultaneously reproduce
the asymptotic large separation of p modes ∆ν and the asymp-
totic period spacing of dipole g modes ∆Π1. The models that
satisfy this condition all give similar estimates of I. We thus
obtained measurements of 〈B2

r 〉
0.5
min ranging from about 40 kG to

about 610 kG (see Table B.1).

5. Discussion

5.1. Magnetic field strength versus evolution

In Fig. 3, we plotted the measured field strengths as a func-
tion of the density of mixed modes N = ∆ν/(∆Π1ν

2
max), which

is a good proxy for the evolution along the red giant branch

Fig. 4. Power spectrum of KIC 6975038 obtained from Kepler data.
Color-shaded areas indicate the location of l = 0 (blue), l = 1 (red),
and l = 2 (green) modes.

(Gehan et al. 2018). We observe a clear decrease in the measured
field intensities along the evolution. At first sight, this trend is
surprising. Indeed, assuming conservation of the magnetic flux,
the contraction of the core as red giants evolve should increase
the field intensity, so that one would have expected the opposite
trend. Before interpreting this trend, we address the question of
potential observational biases. In Appendix C, we calculate the
threshold field strength Bth that is required to produce detectable
variations in the g-mode period spacing over the observed fre-
quency range. As shown in Fig. 3, Bth decreases along the
evolution on the RGB. This explains why we do not detect lower-
intensity fields in unevolved red giants. However, the lack of
higher-intensity fields in more evolved stars cannot be explained
by this observational bias, and thus the decrease in the field
strength with evolution seems real.

5.2. Comparison with the critical field

We compared the measured minimal field intensities with the
critical field Bc. We stress that for fields over Bc, a local analysis
shows that gravity waves can no longer propagate (Fuller et al.
2015). While the details of how global modes are affected remain
uncertain, it is clear that they will be impacted. We used the
stellar models selected from our grid in Sect. 4 to estimate Bc
for each star of the sample. We evaluated Bc in the HBS, where
it reaches a sharp minimum (Fuller et al. 2015), and where our
field measurements have the highest sensitivity. Figure 3 shows
that the value of Bc in the HBS decreases with evolution, as
has already been pointed out by Fuller et al. (2015). We observe
that our minimal field strength measurements closely follow the
trend of Bc with evolution. One possible explanation for the trend
observed in Fig. 3 is that the core field increases with evolution,
owing to magnetic flux conservation, and eventually reaches
the critical field Bc. Above this field, mixed modes would no
longer form, making the seismic detection of core magnetic
fields impossible.

5.3. Link with stars with suppressed dipole mixed modes

The ratio between the minimal measured field strength and the
critical field Bc is maximal for KIC 6975038, where it reaches
a factor of about 1.7. Interestingly, this star shows clear signs
of dipole mixed mode suppression. Figure 4 shows the power
spectrum of KIC 6975038 built with Kepler data. The regions
of the spectrum where dipole mixed modes are expected are
highlighted in red. While the dipole mixed mode pattern clearly
appears at high frequency, it is nearly absent for frequencies
around νmax and below.

This type of behavior is expected, assuming that field intensi-
ties above the critical field Bc can suppress mixed modes. Indeed,
Bc varies as ω2, so that for a given field strength, there exists
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a transition frequency ωc below which mixed modes should be
strongly suppressed and above which they should be unaffected
(Fuller et al. 2015; Loi 2020b). This can be used to estimate
the field strength for stars where the transition between sup-
pressed and normal modes can be detected, as was proposed
by Fuller et al. (2015) for KIC 8561221 (García et al. 2014). For
KIC 6975038, the observed transition frequency ωc yields a
radial field intensity of about 180 kG in the HBS. This estimate
has the same order of magnitude as the minimal field strength
〈B2

r 〉
0.5
min = 301 kG that was inferred in an independent way using

the perturbations to the g-mode period spacing (Sect. 4). This
star thus combines two different features that have been inter-
preted as potential indications of the presence of core magnetic
fields and they both lead to comparable estimates of magnetic
field strength. While more stars of this type would be required to
draw conclusions, this is a further indication that there might be
a link between mixed mode suppression and strong core fields.

5.4. Origin of the detected fields

One possibility is that the detected fields were produced by
a dynamo in the convective core during the main sequence.
The stars of our sample have masses ranging from 1.11 to
1.56 M� (see Table B.1). Contrary to the three stars studied
in Li et al. (2022), the lowest-mass stars likely had a radiative
core during most of the main sequence. However, even these
stars possessed a small initial convective core at the beginning
of the main sequence, owing to the burning of 3He and 12C
outside of equilibrium (Deheuvels et al. 2010). With the ohmic
diffusion timescale being longer than the evolution timescale
(Cantiello et al. 2016), these fields can survive until the red giant
phase and relax into stable configurations (Braithwaite & Spruit
2004). By using the stellar models introduced in Sect. 4 and
assuming a conservation of the magnetic flux, we estimated the
main-sequence field strengths that would be required to pro-
duce the detected fields (Appendix D). We found minimal field
intensities ranging from 1 to 26 kG inside the main-sequence
convective cores. This is in general lower than the radial mag-
netic field strengths found by the numerical simulation of a
convective core (Brun et al. 2005) or order-of-magnitude esti-
mates assuming equipartition with the convective motion kinetic
energy (Cantiello et al. 2016). A dedicated study will be nec-
essary to determine whether the measured core fields can be
accounted for by this possible origin of the fields, taking into
account the diversity of the dynamo-generated fields and the
dissipation provoked by their relaxation (Becerra et al. 2022)
and potential instabilities (Gouhier et al. 2022) in the post-main-
sequence phase.

6. Conclusion

In this Letter, we have revisited the puzzling case of H-shell
burning red giants that exhibit strong deviations from the reg-
ular period spacing that gravity modes should reach in the high-
radial-order limit (Deheuvels et al. 2022). We have shown that
this peculiarity is unlikely to be produced by buoyancy glitches
and, on the contrary, very well accounted for by strong magnetic
fields in the core of these stars. We thus placed lower limits on
the strength of the radial field in the vicinity of the H-burning
shell, ranging from 40 to 610 kG for the 11 stars of our sam-
ple. We have also shown that for one star, the measured field
exceeds the critical field Bc above which gravity waves can no
longer propagate in the core (Fuller et al. 2015). Interestingly,
this star shows mixed mode suppression at low frequency, which

further suggests that this phenomenon might be related to strong
core magnetic fields, although it should be noted that the mecha-
nisms leading to mode suppression remain uncertain. This study
has focused on red giants without signs of rotational splitting, to
avoid the additional complication arising from rotational effects.
We plan to search more generally for similar behavior in Kepler
data in the near future.

Acknowledgements. We thank the anonymous referee for suggestions that
improved the clarity of the manuscript. S.D., J.B. and F.L. acknowledge support
from from the project BEAMING ANR-18-CE31-0001 of the French National
Research Agency (ANR) and from the Centre National d’Etudes Spatiales
(CNES).

References
Becerra, L., Reisenegger, A., Valdivia, J. A., & Gusakov, M. E. 2022, MNRAS,

511, 732
Braithwaite, J., & Spruit, H. C. 2004, Nature, 431, 819
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ, 629, 461
Bugnet, L. 2022, A&A, 667, A68
Bugnet, L., Prat, V., Mathis, S., et al. 2021, A&A, 650, A53
Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J., & Paxton,

B. 2014, ApJ, 788, 93
Cantiello, M., Fuller, J., & Bildsten, L. 2016, ApJ, 824, 14
Cunha, M. S., Stello, D., Avelino, P. P., Christensen-Dalsgaard, J., & Townsend,

R. H. D. 2015, ApJ, 805, 127
Cunha, M. S., Avelino, P. P., Christensen-Dalsgaard, J., et al. 2019, MNRAS,

490, 909
Deheuvels, S., Michel, E., Goupil, M. J., et al. 2010, A&A, 514, A31
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19
Deheuvels, S., Ballot, J., Gehan, C., & Mosser, B. 2022, A&A, 659, A106
Donati, J. F., & Landstreet, J. D. 2009, ARA&A, 47, 333
Ferrario, L., Wickramasinghe, D., & Kawka, A. 2020, AdSpR, 66, 1025
Fuller, J., Cantiello, M., Stello, D., Garcia, R. A., & Bildsten, L. 2015, Science,

350, 423
Fuller, J., Piro, A. L., & Jermyn, A. S. 2019, MNRAS, 485, 3661
García, R. A., Ceillier, T., Salabert, D., et al. 2014, A&A, 572, A34
Gehan, C., Mosser, B., Michel, E., Samadi, R., & Kallinger, T. 2018, A&A, 616,

A24
Gomes, P., & Lopes, I. 2020, MNRAS, 496, 620
Gough, D. O. 1990, in Progress of Seismology of the Sun and Stars, eds. Y.

Osaki, & H. Shibahashi (Berlin: Springer Verlag), Lecture Notes in Physics,
367, 283

Gouhier, B., Jouve, L., & Lignières, F. 2022, A&A, 661, A119
Hasan, S. S., Zahn, J. P., & Christensen-Dalsgaard, J. 2005, A&A, 444, L29
Jouve, L., Gastine, T., & Lignières, F. 2015, A&A, 575, A106
Kaspi, V. M., & Beloborodov, A. M. 2017, ARA&A, 55, 261
Landstreet, J. D. 1992, A&ARv, 4, 35
Li, G., Deheuvels, S., Ballot, J., & Lignières, F. 2022, Nature, 610, 43
Loi, S. T. 2020a, MNRAS, 496, 3829
Loi, S. T. 2020b, MNRAS, 493, 5726
Loi, S. T. 2021, MNRAS, 504, 3711
Maeder, A., & Meynet, G. 2005, A&A, 440, 1041
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74
Mathis, S., Bugnet, L., Prat, V., et al. 2021, A&A, 647, A122
McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
Miglio, A., Montalbán, J., Noels, A., & Eggenberger, P. 2008, MNRAS, 386,

1487
Mosser, B., Elsworth, Y., Hekker, S., et al. 2012a, A&A, 537, A30
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012b, A&A, 548, A10
Mosser, B., Vrard, M., Belkacem, K., Deheuvels, S., & Goupil, M. J. 2015,

A&A, 584, A50
Mosser, B., Pinçon, C., Belkacem, K., Takata, M., & Vrard, M. 2017, A&A, 600,

A1
Mosser, B., Gehan, C., Belkacem, K., et al. 2018, A&A, 618, A109
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Petitdemange, L., Marcotte, F., & Gissinger, C. 2023, Science, 379
Rüdiger, G., Gellert, M., Spada, F., & Tereshin, I. 2015, A&A, 573, A80
Shibahashi, H. 1979, PASJ, 31, 87
Stello, D., Cantiello, M., Fuller, J., et al. 2016, Nature, 529, 364
Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial

Oscillations of Stars (Tokyo: University of Tokyo Press)
Vrard, M., Mosser, B., & Samadi, R. 2016, A&A, 588, A87
Yu, J., Huber, D., Bedding, T. R., et al. 2018, ApJS, 236, 42

L16, page 5 of 9

http://linker.aanda.org/10.1051/0004-6361/202245282/1
http://linker.aanda.org/10.1051/0004-6361/202245282/1
http://linker.aanda.org/10.1051/0004-6361/202245282/2
http://linker.aanda.org/10.1051/0004-6361/202245282/3
http://linker.aanda.org/10.1051/0004-6361/202245282/4
http://linker.aanda.org/10.1051/0004-6361/202245282/5
http://linker.aanda.org/10.1051/0004-6361/202245282/6
http://linker.aanda.org/10.1051/0004-6361/202245282/7
http://linker.aanda.org/10.1051/0004-6361/202245282/8
http://linker.aanda.org/10.1051/0004-6361/202245282/9
http://linker.aanda.org/10.1051/0004-6361/202245282/9
http://linker.aanda.org/10.1051/0004-6361/202245282/10
http://linker.aanda.org/10.1051/0004-6361/202245282/11
http://linker.aanda.org/10.1051/0004-6361/202245282/12
http://linker.aanda.org/10.1051/0004-6361/202245282/13
http://linker.aanda.org/10.1051/0004-6361/202245282/14
http://linker.aanda.org/10.1051/0004-6361/202245282/15
http://linker.aanda.org/10.1051/0004-6361/202245282/15
http://linker.aanda.org/10.1051/0004-6361/202245282/16
http://linker.aanda.org/10.1051/0004-6361/202245282/17
http://linker.aanda.org/10.1051/0004-6361/202245282/18
http://linker.aanda.org/10.1051/0004-6361/202245282/18
http://linker.aanda.org/10.1051/0004-6361/202245282/19
http://linker.aanda.org/10.1051/0004-6361/202245282/20
http://linker.aanda.org/10.1051/0004-6361/202245282/20
http://linker.aanda.org/10.1051/0004-6361/202245282/21
http://linker.aanda.org/10.1051/0004-6361/202245282/22
http://linker.aanda.org/10.1051/0004-6361/202245282/23
http://linker.aanda.org/10.1051/0004-6361/202245282/24
http://linker.aanda.org/10.1051/0004-6361/202245282/25
http://linker.aanda.org/10.1051/0004-6361/202245282/26
http://linker.aanda.org/10.1051/0004-6361/202245282/27
http://linker.aanda.org/10.1051/0004-6361/202245282/28
http://linker.aanda.org/10.1051/0004-6361/202245282/29
http://linker.aanda.org/10.1051/0004-6361/202245282/30
http://linker.aanda.org/10.1051/0004-6361/202245282/31
http://linker.aanda.org/10.1051/0004-6361/202245282/32
http://linker.aanda.org/10.1051/0004-6361/202245282/33
http://linker.aanda.org/10.1051/0004-6361/202245282/34
http://linker.aanda.org/10.1051/0004-6361/202245282/34
http://linker.aanda.org/10.1051/0004-6361/202245282/35
http://linker.aanda.org/10.1051/0004-6361/202245282/36
http://linker.aanda.org/10.1051/0004-6361/202245282/37
http://linker.aanda.org/10.1051/0004-6361/202245282/38
http://linker.aanda.org/10.1051/0004-6361/202245282/38
http://linker.aanda.org/10.1051/0004-6361/202245282/39
http://linker.aanda.org/10.1051/0004-6361/202245282/40
http://linker.aanda.org/10.1051/0004-6361/202245282/41
http://linker.aanda.org/10.1051/0004-6361/202245282/42
http://linker.aanda.org/10.1051/0004-6361/202245282/43
http://linker.aanda.org/10.1051/0004-6361/202245282/44
http://linker.aanda.org/10.1051/0004-6361/202245282/45
http://linker.aanda.org/10.1051/0004-6361/202245282/45
http://linker.aanda.org/10.1051/0004-6361/202245282/46
http://linker.aanda.org/10.1051/0004-6361/202245282/47


A&A 670, L16 (2023)

Appendix A: Role of buoyancy glitches in
deviations from constant ∆Π1

It is well known that buoyancy glitches induce deviations in
the pattern of high-radial-order g modes (e.g., Miglio et al.
2008). Such deviations were already found by exploiting the
mixed modes of core-helium burning giants (Mosser et al.
2015). Cunha et al. (2015) and Cunha et al. (2019) provide the
appropriate formalism to determine the properties of buoyancy
glitches (location and amplitude) from their seismic signature.
Here, we investigate what types of glitches could produce the
strong deviations in the period spacings of g modes that we
observed in our sample of Kepler red giants.

A buoyancy glitch produces a periodic modulation in the
period spacings of g modes. The period of this modulation is
directly related to the position of the glitch. This position is gen-
erally expressed in terms of its buoyancy radius or depth. Fol-
lowing the notations of Cunha et al. (2019), the buoyancy radius
ωr

g and depth ω̃r
g at a radius r are defined as

ωr
g =

∫ r

r1

LN
r

dr ; ω̃r
g =

∫ r2

r

LN
r

dr, (A.1)

respectively, where L = [l(l + 1)]1/2, and r1 and r2 are the inner
and outer turning points of the g-mode cavity. We also intro-
duced the total buoyancy radius of the g-mode cavity ωg ≡ ω

r2
g .

For a glitch located at a radius r?, one period of the modulation
covers ∆n radial orders, where

∆n = ωg/ω
r?
g (A.2)

if the glitch is located in the inner half of the cavity (ωr?
g < 0.5).

If it is located in the outer half, then ωr?
g needs to be replaced by

ω̃r?
g in Eq. A.2. The amplitude of the modulation depends on the

sharpness of the variations in N.

A.1. Glitch location

The g-mode period spacings can be obtained from the periods
of mixed modes by applying a stretching (see Sect. 2). The dif-
ference ∆τ between the stretched periods of consecutive mixed
modes (shown as an illustration for KIC5180345 in Fig. A.1)
provides an estimate of the g-mode period spacing. For all the
stars in our sample, the observed deviations do not show the
periodic behavior that is expected for buoyancy glitches. If the
observed deviations arise from glitches, the period of the modu-
lation needs to be larger than the range defined by the observed
modes. For example, for KIC5180345 the glitch period would
have to cover at least 40 radial orders. Using Eq. A.2 and the
stellar model of KIC5180345 obtained in Sect. 4, this means that
the buoyancy glitch would need to be located either very deep
within the g-mode cavity (below a fractional radius of 10−4, that
is, deep within the inert He core) or nearly at the outer edge of
the g-mode cavity (that is, well above the H-burning shell).

A.2. Glitch amplitude

We also addressed the question of the glitch amplitude that
would be required to reproduce the observations. As shown

Fig. A.1. Variations in the g-mode period spacings as a function of mode
frequency for KIC5180345. The observed period spacings (filled cir-
cles) were computed as the difference ∆τ between the stretched peri-
ods τ of consecutive dipolar mixed modes (see Sect. 2.2). The blue
dashed line indicates the g-mode period spacings for the best-fit buoy-
ancy glitch perturbation. The red long-dashed line corresponds to the
best-fit magnetic perturbation (see Sect. 4). For the magnetic perturba-
tion, we also show the ∆τ differences, which are directly comparable to
the observations (black solid line).

in Fig. A.1, the observed deviations have an amplitude that
reaches about 30% of the average period spacing. For compari-
son, Cunha et al. (2019) show the example of a Gaussian-shaped
glitch in an RGB star, with an amplitude of about twice the local
value of N and a width of about 0.001 R (see their Fig. 1). They
find that it yields a modulation in the g-mode period spacing cor-
responding to only 1.5% of the asymptotic period spacing (see
their Fig. 5).

To roughly estimate the glitch amplitude that would be
needed in our case, we used the formalism of Cunha et al.
(2019). We assumed a Gaussian-shaped buoyancy glitch and
we used a Markov chain Monte Carlo (MCMC) to optimize
the glitch properties (amplitude and width) in order to repro-
duce the observed g-mode period spacings as best as possible.
Fig. A.1 shows the best-fit solution (blue dashed line). This
fitting problem appears to be highly degenerated: similar pro-
files may be generated by different sets of parameters. How-
ever, some properties of the glitch can be derived from the
MCMC. In particular, we conclude that its amplitude must be
greater than six times the local value of N. All smaller val-
ues fail to reproduce the amplitude of the deviations observed
in g-mode period spacings. However, even with the appropriate
glitch amplitude, Fig. A.1 clearly shows that the best-fit solu-
tion cannot correctly reproduce the shape of the modulation.
Indeed, it is well known (e.g., Miglio et al. 2008; Cunha et al.
2019) that large-amplitude glitches yield modulations in the
g-mode period spacings that involve sharp localized features
(as opposed to small glitches, which produce sinusoidal mod-
ulations), which seem incompatible with the smoothly vary-
ing period spacings that are observed. On the contrary, a
magnetic perturbation to the oscillation modes provides a very
good agreement with the observations (red and black lines in
Fig. A.1).

L16, page 6 of 9



S. Deheuvels et al.: Strong magnetic fields detected in red giant cores

Appendix B: Fit of asymptotic frequencies
including magnetic perturbation

Fig. B.1 shows the stretched échelle diagrams of the detected
dipole mixed modes for 11 red giants in our sample (blue cir-
cles). They were folded using the apparent (perturbed) period

spacing ∆Π
(meas)
1 . In Sect. 4, we fit an asymptotic expression of

the mode frequencies including a magnetic perturbation to the
observed modes. The optimal solutions are shown in Fig. B.1 as
red crosses. The agreement is very good. We give in Table B.1
the parameters of the best-fit solutions, along with general stellar
properties, for each star.
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Fig. B.1. Same as Fig. 1, but for the remaining stars of the sample.
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Table B.1. Red giant branch stars showing strong variations in ∆Π1 among the catalog of Yu et al. (2018).

KIC Id ∆ν νmax M(a) N ∆Π
(meas)
1 ∆Π1 δω0/(2π) 〈B2

r 〉min
(µHz) (µHz) (M�) (s) (s) (µHz) kG

6182668 16.48 ± 0.12 213.31 ± 2.69 1.24 ± 0.09 4.18 80.4 86.72 ± 0.15 4.49 ± 0.09 609
9474201 14.99 ± 0.02 197.58 ± 1.41 1.53 ± 0.09 4.54 76.8 84.65 ± 0.07 3.71 ± 0.02 488
6842204 14.14 ± 0.04 179.79 ± 0.63 1.26 ± 0.06 5.14 81.9 85.01 ± 0.05 0.87 ± 0.02 264
8560280 13.43 ± 0.07 165.82 ± 0.75 1.11 ± 0.06 5.73 73.8 85.23 ± 0.05 3.85 ± 0.01 369
8689270 13.21 ± 0.03 164.91 ± 0.55 1.14 ± 0.05 5.77 79.3 84.21 ± 0.05 1.83 ± 0.01 283
3216736 12.44 ± 0.02 150.38 ± 0.71 1.23 ± 0.08 6.61 74.5 83.29 ± 0.03 3.03 ± 0.01 278
5180345 11.81 ± 0.03 140.52 ± 0.50 1.17 ± 0.07 7.11 74.5 84.11 ± 0.04 3.07 ± 0.01 248
6975038 10.52 ± 0.02 127.98 ± 0.80 1.29 ± 0.08 7.81 63.5 82.22 ± 0.08 7.18 ± 0.03 286
3109742 9.09 ± 0.01 101.67 ± 0.55 1.32 ± 0.09 11.55 71.5 76.14 ± 0.05 1.07 ± 0.01 73
6614684 8.14 ± 0.01 92.04 ± 0.45 1.56 ± 0.10 13.31 71.5 72.19 ± 0.01 0.29 ± 0.00 38
7728945 8.27 ± 0.02 91.33 ± 0.44 1.51 ± 0.09 13.64 71.4 72.71 ± 0.03 0.35 ± 0.01 35

(a): Masses from Yu et al. (2018).

Appendix C: Minimal field strength required to
detect magnetic distortion in a g-mode pattern

We searched for the minimal field strength that produces a
detectable deviation in the regular period spacing of pure gravity
modes. For this purpose, we considered typical oscillation prop-
erties for red giants. More refined estimates could be obtained
on a star-to-star basis, but for the purposes of this work we
were interested in deriving broad estimates of magnetic inten-
sity thresholds in order to investigate observational biases.

For a given red giant with a large separation ∆ν and a fre-
quency of maximum power of the oscillations νmax, we consider
that the modes can be detected in a frequency interval ranging
from fmin = νmax − 2∆ν and fmax = νmax + 2∆ν. The asymp-
totic expression of unperturbed pure gravity modes is given by
Pn = ∆Π1(n+1/2+εg), so that we expect to detect g modes with
radial orders ranging from nmin = 1/(∆Π1 fmax) − εg − 1/2 and
nmax = 1/(∆Π1 fmin)− εg − 1/2. We then consider the asymptotic
periods P′n of perturbed g modes in the presence of a field that
produces a frequency shift δν0 at νmax. Assuming that the pertur-
bation remains small compared to the mode periods themselves
(this assumption holds at the detection limit for all stars of the
sample), we have

P′n ≈ Pn(1 − δν0P4
nν

3
max). (C.1)

When analyzing the seismic data in red giants, high-radial-
order gravity modes are assumed to be regularly spaced in a
period and they are thus fit by an expression of the type P′n =

∆Π
(meas)
1 (n+1/2+ε(meas)

g ). Magnetic perturbations to the g-mode
periods can be detected if the deviations compared to a regular
spacing in a period, expressed as δPn = P′n − P′n, are sufficiently

large. Since the unperturbed periods Pn vary linearly with n, the
deviations δPn can be written as

δPn =
(
αn + β + P5

nν
3
max

)
δν0, (C.2)

where α and β are the parameters of a linear regression of the
term P5

nν
3
max as a function of n. Eq. C.2 shows that the intensity

of the deviation from a regular period spacing is proportional
to δν0. This can also be seen in the measured period spacing
∆Π

(meas)
1 , which corresponds to ∆Π1 + αδν0 here.
The period differences can be translated into frequency dif-

ferences as δν = −δPn/P2
n. Fig. C.1 shows the variations in δνn

as a function of n for an illustration case with ∆ν = 10.6 µHz,
∆Π1 = 79.9 s, εg = 0.3, and δν0 = 0.4 µHz. The maximal val-
ues of |δνn| are reached at the boundaries of the interval, more
particularly for n = nmin.

To determine whether these differences are detectable, we
need to compare them with the frequency resolution of the mea-
surements of oscillation mode frequencies. At the edge of the
frequency interval where oscillations are detected, typical uncer-
tainties reach several tens of nHz. We thus consider that a devi-
ation from a regular period spacing can be detected if δνnmin

exceeds a threshold δνth = 100 nHz. We subsequently obtained
the following expression for the minimal detectable magnetic
perturbation:

δν0,min = δνth

(
αnmin + β

P2
nmin

+ P3
nmin
ν3

max

)−1

. (C.3)

We then used Eq. 5 to translate the minimal magnetic frequency
shifts into minimal detectable field intensities Bth, which are
shown in Fig. 3.
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Fig. C.1. Departures from a regular period spacing of gravity modes in
the presence of a magnetic field, shown as frequency differences δνn as
a function of the radial order n of gravity modes.

Appendix D: Dynamo-generated fields in
main-sequence convective cores

The stars in which we detected strong core magnetic fields in
this study have masses ranging from 1.11 to 1.56 M� (see Table
B.1). The lowest-mass stars of the sample have a radiative core
during the largest part of their main-sequence evolution, but even
these stars possess a small convective core at the beginning of the
main sequence because of the burning of 3He and 12C outside of
equilibrium. We tried to determine to what extent the detected
fields are compatible with dynamo-generated fields in the main-
sequence convective core.

For this purpose, we assumed that a uniform field Br,MS
was produced during the main sequence, over a distance cor-
responding to the maximal extent of the convective core. After

Table D.1. Minimal main-sequence field intensities required to account
for current measured fields in the cores of our sample of red giants,
assuming conservation of the magnetic flux along the evolution.

KIC Id Br,MS (kG)

6182668 18.1
9474201 16.2
6842204 18.7
8560280 25.8
8689270 19.6
3216736 18.9
5180345 17.8
6975038 17.7
3109742 5.3
6614684 0.8
7728945 0.8

the withdrawal of the convective core, we assumed a conser-
vation of the magnetic flux in each layer, so that the field
intensity varies as 1/r(m)2 for a layer at Lagrangian coor-
dinate m. We could then calculate the average field strength

〈B2
r 〉

0.5 =
(∫ ro

ri
K(r)B2

r dr
)0.5

at each step of the evolution. For
each star of the sample, we calculated the intensity of the
main-sequence radial field Br,MS that is required to produce
the minimal average fields 〈B2

r 〉
0.5
min that we measured in Sect.

4. We thus found main-sequence field strengths ranging from
about 1 to 26 kG (see Table D.1). These values correspond
to lower limits on Br,MS, with the actual value depending on
the geometry of the current radial magnetic field. For instance,
if B2

r has an axisymmetric dipolar configuration (asymmetry
parameter a = 2/5), the recovered values of Br,MS range from
1 to 40 kG.
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