Towards Real World Co-optimization of a Storage System ISGT 2023 Grenoble

Roman LE GOFF LATIMIER roman.legoff-latimier@ens-rennes.fr

SATIE - ENS Rennes

October 24, 2023

Intro • O	Test case 000	Optimal 000	Stochastic 0000	Ageing 00	Concl 000				
	Co-optimization approach								
Opt	timal managem	ent	Optimal siz	ing	1				

depends on sizing

• depends on management

Co-optimization problem for a storage

Obstacles : methodology and information

- Complexity : bilevel problem
- Anticipation of the future
- Modeling of components and time series

Motivation

Intro	Test case	Optimal	Stochastic	Ageing	Concl
●O	000	000	0000	00	000
	C	o-ontimizat	ion approact	n	

depends on sizing

Optimal sizing

• depends on management

Co-optimization problem for a storage

$$\max_{\text{design}} \sum_{\text{lifetime}} (\text{utility value}) - \text{building cost}$$

Obstacles : methodology and information

- Complexity : bilevel problem
- Anticipation of the future
- Modeling of components and time series

Motivation

Intro	Test case	Optimal	Stochastic	Ageing	Concl		
●O	000	000	0000	OO	000		
Co-optimization approach							

depends on sizing

Optimal sizing

• depends on management

Co-optimization problem for a storage

$$\max_{\text{design}} \sum_{\text{lifetime}} (\text{utility value}) - \text{building cost}$$

Obstacles : methodology and information

- Complexity : bilevel problem
- Anticipation of the future
- Modeling of components and time series

Motivation

depends on sizing

Optimal sizing

• depends on management

Co-optimization problem for a storage

$$\max_{\text{design}} \sum_{\text{lifetime}} (\text{utility value}) - \text{building cost}$$

Obstacles : methodology and information

- Complexity : bilevel problem
- Anticipation of the future
- Modeling of components and time series

Motivation

Intro	Test case	Optimal	Stochastic	Ageing	Concl				
O●	000	000	0000	OO	000				
	Outline								

Introduction

Test case

Optimal Control

Stochastic Control

Life Time and Ageing

Conclusion

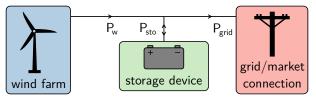
Intro	Test case	Optimal	Stochastic	Ageing	Concl				
00	●OO	000	0000	OO	000				
	Outline								

Introduction

Test case

Optimal Control

Stochastic Control


Life Time and Ageing

Conclusion

IntroTest caseOptimalStochasticAgeingConcl000000000000000000000

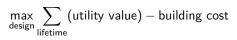
Illustrative Test Case

Representative and as simple as possible

- Virtual Power Plant : wind farm and storage
- Selling to market with fluctuating price

 $\mathsf{Utility}(P_{sto}(t)) = \mathsf{price}(t) \cdot (P_w(t) - P_{sto}(t))$

Test ca
000


Optimal		
000		

Concl

Illustrative Test Case

Co-optimization problem

se

- *E*_{sto}, *P*_{sto} : storage capacity and instantaneous power
- T_{life} : storage lifetime
- price : selling price to the market
- CAPEX : capital expenditure

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	00•	000	0000	00	000

Co-optimization problem

$$\max_{E_{sto}} \sum_{ ext{lifetime}} (ext{utility value}) - ext{building cost}$$

• *E*_{sto}, *P*_{sto} : storage capacity and instantaneous power

- T_{life} : storage lifetime
- price : selling price to the market
- CAPEX : capital expenditure

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Co-optimization problem

$$\max_{E_{sto}} \sum_{t=0}^{T_{life}} (ext{utility value}) - ext{building cost}$$

- *E*_{sto}, *P*_{sto} : storage capacity and instantaneous power
- *T_{life}* : storage lifetime
- price : selling price to the market
- CAPEX : capital expenditure

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

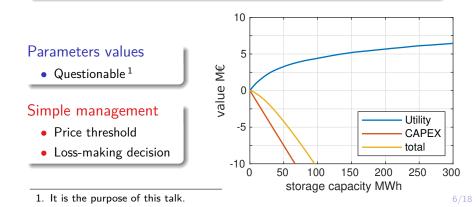
Co-optimization problem

 $\max_{\textit{E}_{sto}} \sum_{t=0}^{T_{life}} \mathsf{price}(t) \cdot \left(\textit{P}_{w}(t) - \textit{P}_{sto}(t) \right) - \mathsf{building \ cost}$

- *E*_{sto}, *P*_{sto} : storage capacity and instantaneous power
- *T_{life}* : storage lifetime
- price : selling price to the market
- CAPEX : capital expenditure

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Co-optimization problem


$$\max_{E_{sto}} \sum_{t=0}^{T_{life}} \mathsf{price}(t) \cdot \left(\mathsf{P}_{\mathsf{w}}(t) - \mathsf{P}_{sto}(t) \right) - \mathsf{CAPEX} \cdot \mathsf{E}_{sto}$$

- *E*_{sto}, *P*_{sto} : storage capacity and instantaneous power
- *T_{life}* : storage lifetime
- price : selling price to the market
- CAPEX : capital expenditure

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Co-optimization problem

$$\max_{E_{sto}} \sum_{t=0}^{T_{life}} \mathsf{price}(t) \cdot \left(P_w(t) - P_{sto}(t) \right) - CAPEX \cdot E_{sto}$$

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	OO	0000	OO	000
		Out	tline		

Introduction

Test case

Optimal Control

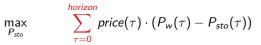
Stochastic Control


Life Time and Ageing

Conclusion

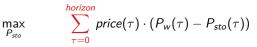
Intro Test case Optimal Stochastic Ageing Concl 00 000 000 000 000 000 000

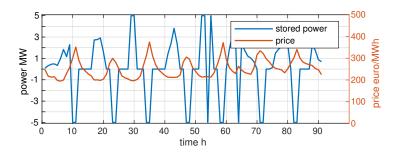
Optimal Management


For each time step of the lifetime simulation

• Optimisation of the control

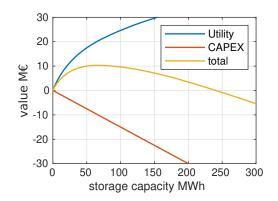
• Anticipation of future events \rightarrow *Model Predictive Control*


ntro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000


- Optimisation of the control
- Anticipation of future events \rightarrow *Model Predictive Control*

Test case Optimal Stochastic Ageing Concl 000 0●0 0000 000 000 000

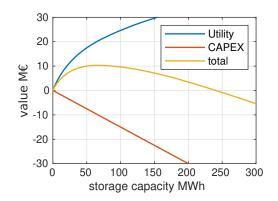
Optimal Management


- Optimisation of the control
- Anticipation of future events \rightarrow *Model Predictive Control*

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	00•	0000	00	000

Impact on sizing

- Anticipation of price and production
- Earnings from storage operation
- Co-optimization design-management
- 2022 prices
- 2019 prices

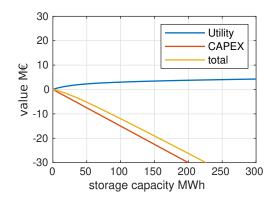


- Depends on the time series
- Requires a representative sample of temporal data.

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	00•	0000	00	000

Impact on sizing

- Anticipation of price and production
- Earnings from storage operation
- Co-optimization design-management
- 2022 prices
- 2019 prices

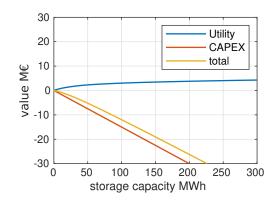


- Depends on the time series
- Requires a representative sample of temporal data.

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	00•	0000	00	000

Impact on sizing

- Anticipation of price and production
- Earnings from storage operation
- Co-optimization design-management
- 2022 prices
- 2019 prices



- Depends on the time series
- Requires a representative sample of temporal data.

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	00•	0000	00	000

Impact on sizing

- Anticipation of price and production
- Earnings from storage operation
- Co-optimization design-management
- 2022 prices
- 2019 prices

- Depends on the time series
- Requires a representative sample of temporal data.

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	●000	OO	000
		Out	tline		

Introduction

Test case

Optimal Control

Stochastic Control

Life Time and Ageing

Conclusion

Т	est case	Optimal	Stochastic	Ageing	Concl
C	000	000	0000	00	000

$$\max_{P_{sto}} \mathbb{E}_{price, P_{w}} \sum_{\tau=0}^{horizon} price(\tau) \cdot (P_{w}(\tau) - P_{sto}(\tau))$$

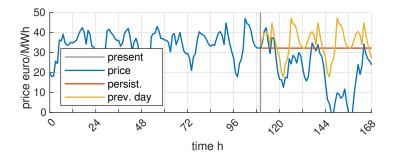
- Optimisation of the control
- Anticipation of future events \rightarrow future is unknown.
- Requires forecast

Te	est case (Optimal	Stochastic	Ageing	Concl
0	00	000	0000	00	000

$$\max_{P_{sto}} \sum_{price, P_{w}}^{horizon} \sum_{\tau=0}^{horizon} price(\tau) \cdot (P_{w}(\tau) - P_{sto}(\tau))$$

- Optimisation of the control
- Anticipation of future events \rightarrow future is unknown.
- Requires forecast

Test case	Optimal	Stochastic	Ageing	Concl
000	000	0000	00	000

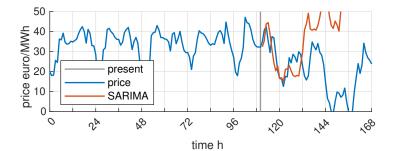

$$\max_{P_{sto}} \mathbb{E} \sum_{price, P_{w}}^{horizon} price(\tau) \cdot (P_{w}(\tau) - P_{sto}(\tau))$$

- Optimisation of the control
- Anticipation of future events \rightarrow future is unknown.
- Requires forecast

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Many possible forecasts

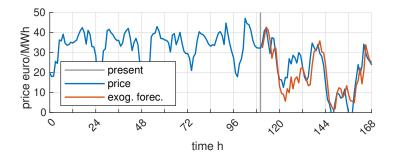
- Simple solutions : persistence, rule of thumb
- Time series modeling : SARIMA, Neural Networks
- Exogeneous forecast : meteorologist
 - Modeling of forecast errors



Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Many possible forecasts

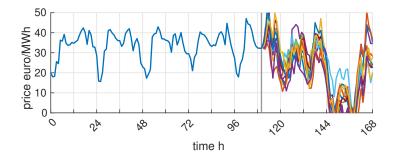
- Simple solutions : persistence, rule of thumb
- Time series modeling : SARIMA, Neural Networks
- Exogeneous forecast : meteorologist


Modeling of forecast errors

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Many possible forecasts

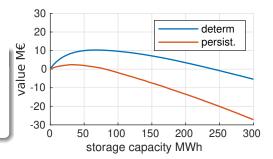
- Simple solutions : persistence, rule of thumb
- Time series modeling : SARIMA, Neural Networks
- Exogeneous forecast : meteorologist
 - Modeling of forecast errors



Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Many possible forecasts

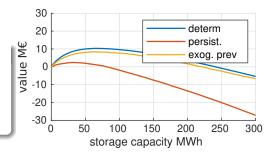
Risk policy


- Stochastic forecast
- Choice : neutral, risk averse, ...

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	000•	00	000

Impact on sizing

- Optimal design : slightly affected
- Anticipated profitability : highly sensitive

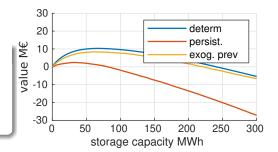

Reliant on the forecast data

- requires a representative sample
- requires a forecast error modeling

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	000●	00	000

Impact on sizing

- Optimal design : slightly affected
- Anticipated profitability : highly sensitive


Reliant on the forecast data

- requires a representative sample
- requires a forecast error modeling

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	000•	00	000

Impact on sizing

- Optimal design : slightly affected
- Anticipated profitability : highly sensitive

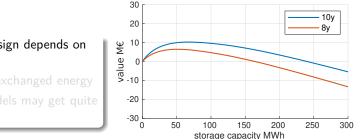
Reliant on the forecast data

- requires a representative sample
- requires a forecast error modeling

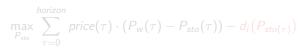
Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	●O	000
		Out	tline		

Introduction

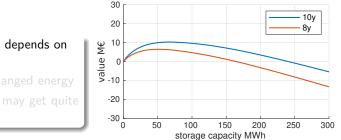
Test case


Optimal Control

Stochastic Control


Life Time and Ageing

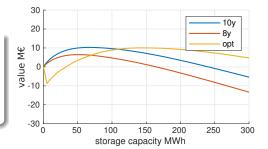
Conclusion


h	ntro	Test case	Optimal	Stochastic	Ageing	Concl
(00	000	000	0000	0•	000

Optimal design depends on lifetime

h	ntro	Test case	Optimal	Stochastic	Ageing	Concl
(00	000	000	0000	0•	000

- Optimal design depends on lifetime
- Simplest : exchanged energy
- Ageing models may get quite complex

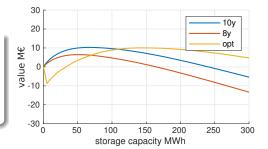

Lifetime depends on control

$$\max_{P_{sto}} \sum_{\tau=0}^{horizon} price(\tau) \cdot (P_w(\tau) - P_{sto}(\tau)) - d_i(P_{sto(\tau)})$$

Mandatory modeling choices during design phase

In	tro	Test case	Optimal	Stochastic .	Ageing	Concl
0	0	000	000	0000	0•	000

- Optimal design depends on lifetime
- Simplest : exchanged energy
- Ageing models may get quite complex


Lifetime depends on control

$$\max_{P_{sto}} \sum_{\tau=0}^{horizon} price(\tau) \cdot (P_w(\tau) - P_{sto}(\tau)) - d_i (P_{sto(\tau)})$$

Mandatory modeling choices during design phase

In	tro	Test case	Optimal	Stochastic .	Ageing	Concl
0	0	000	000	0000	0•	000

- Optimal design depends on lifetime
- Simplest : exchanged energy
- Ageing models may get quite complex

Lifetime depends on control

$$\max_{P_{sto}} \sum_{\tau=0}^{horizon} price(\tau) \cdot (P_w(\tau) - P_{sto}(\tau)) - d_i(P_{sto(\tau)})$$

Mandatory modeling choices during design phase

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	OO	●OO
		Out	tline		

Introduction

Test case

Optimal Control

Stochastic Control

Life Time and Ageing

Conclusion

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Conclusion and Take Home Messages

Co-optimization

- Powerfull and mature methodology
- Assess best design over the lifetime

Highly dependent on input data

- Optimal management \longrightarrow time series
- Stochastic management \longrightarrow forecast quality
- Lifetime \longrightarrow ageing models

Requires expert knowledge and communication

- What is known : take it into account
- What is not measured : robust approach and sensitivity analysis
- What is unknown : measures transfer, explainable assumptions

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Conclusion and Take Home Messages

Co-optimization

- Powerfull and mature methodology
- Assess best design over the lifetime

Highly dependent on input data

- Optimal management \longrightarrow time series
- Stochastic management \longrightarrow forecast quality
- Lifetime \longrightarrow ageing models

Requires expert knowledge and communication

- What is known : take it into account
- What is not measured : robust approach and sensitivity analysis
- What is unknown : measures transfer, explainable assumptions

Intro	Test case	Optimal	Stochastic	Ageing	Concl
00	000	000	0000	00	000

Conclusion and Take Home Messages

Co-optimization

- Powerfull and mature methodology
- Assess best design over the lifetime

Highly dependent on input data

- Optimal management \longrightarrow time series
- Stochastic management \longrightarrow forecast quality
- Lifetime \longrightarrow ageing models

Requires expert knowledge and communication

- What is known : take it into account
- What is not measured : robust approach and sensitivity analysis
- What is unknown : measures transfer, explainable assumptions

Concl 000

Towards Real World Co-optimization of a Storage System ISGT 2023 Grenoble

Roman LE GOFF LATIMIER roman.legoff-latimier@ens-rennes.fr

SATIE - ENS Rennes

October 24, 2023

