
HAL Id: hal-04268835
https://hal.science/hal-04268835

Submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Based Fault Anticipation for 3D
Printing

Dorian Voydie, Louis Goupil, Elodie Chanthery, Louise Travé-Massuyès,
Sébastien Delautier

To cite this version:
Dorian Voydie, Louis Goupil, Elodie Chanthery, Louise Travé-Massuyès, Sébastien Delautier. Ma-
chine Learning Based Fault Anticipation for 3D Printing. 22nd World Congress of the International
Federation of Automatic Control (IFAC 2023), IFAC: International Federation of Automatic Control,
Jul 2023, Yokohama, Japan. �hal-04268835�

https://hal.science/hal-04268835
https://hal.archives-ouvertes.fr


Machine Learning Based Fault Anticipation
for 3D Printing ⋆

Dorian Voydie ∗ Louis Goupil ∗ Elodie Chanthery ∗∗

Louise Travé-Massuyès ∗∗ Sébastien Delautier ∗

∗ Atos, Toulouse, France (e-mail: dorian.voydie@atos.net,
lgoupil@laas.fr, sebastien.delautier@atos.net)

∗∗ LAAS-CNRS, ANITI, Université de Toulouse, CNRS, INSA,
Toulouse, France (e-mail: echanthe@laas.fr, louise@laas.fr)

Abstract: In recent years, 3D printing has seen a stellar rise despite its inability to deliver
constant quality goods. This article presents a machine learning experiment that results in a
model performing fault prediction, in the sense of forecasting the fault, on the printed parts so
that printer parameters can be corrected before the faults appear. This model is able to predict
faults in real-time during printing, even in the case of multiple faults. It relies on multiple sensors
gathering time-series data during printing, a pre-processing of these data to extract the most
relevant features and several machine learning algorithms, each suited and tuned to predict at
best each fault. A benchmark for testing and tuning the different algorithms is presented. The
resulting model has been implemented on a plastic delta 3D printer and tested for the prediction
of eight different faults. The best performing model is a random forest, but decision trees are
almost as good while explaining what causes the fault.

Keywords: Machine Learning, Time Series Modeling, Additive Manufacturing, Fault
Prediction, Fault Anticipation, Fault Detection

1. INTRODUCTION

Additive Manufacturing (AM) has many advantages over
machining, molding and other manufacturing methods
(Shahrubudin et al. (2019)). However, defects (called faults
in this article) often occur on the parts during the pro-
duction with no way to guarantee the final quality before
printing (Oropallo and Piegl (2016)), which has significant
overcost consequences due to material, time and energy
losses, particularly for metal AM (du Plessis et al. (2020)).

This article presents an experiment for fault prediction
based on machine learning to forecast defects specifically
on printed parts (i.e. not on the 3D printer). Predictions
are done using pre-processed data including printing pa-
rameters as well as data gathered by dedicated sensors.

Explainability of the algorithms is discussed since an algo-
rithm able to predict faults with some level of explainabil-
ity can give the reasons why the fault will occur and thus
indicate corrections to apply before the fault happens.

This research aims at being applied in an industrial
context and is backed by field feedback from 3D printing
engineers.

A state of the art of machine learning methods applied to
3D printing is assessed in Section 2 and our case study
is presented in Section 3. Section 4 presents the machine
learning method applied to 3D printing fault prediction.
Section 5 concludes the paper and gives some perspectives.
⋆ This research is funded by Atos. This project is related to ANITI
through the French “Investing for the Future – PIA3” program under
the Grant agreement n°ANR-19-PI3A-0004.

2. STATE OF THE ART

Many machine learning methods have been applied to
fault detection or anticipation for 3D printing. Unsuper-
vised methods such as k-means are applied to classify
machine states (Uhlmann et al. (2018)). A lot of super-
vised methods have also been implemented. For instance,
deep learning methods such as reservoir computing (Zhang
et al. (2021)) or convolutional neural networks trained on
images of the printing (Jin et al. (2019)), or even a very
simple neural network with only one hidden layer with a
detection rate of more than 93% (Yen and Chuang (2022)).
Also, non-linear support vector machines (SVM) using the
kernel-trick (Delli and Chang (2018)) or least-square loss
SVM (He et al. (2018)) have been tried. A mix of an
encoder with a generative adversarial network has been
successful in classifying printer states (Li et al. (2021)).
However, all those methods either cover detection and not
anticipation of the fault or do not work in real-time at all
(they diagnose the part a posteriori). Our contribution is
a predictive identification of faults during printing such as
Baumann, Felix and Roller, Dieter (2016) does with image
segmentation, but using machine learning and data from
sensors.

3. CASE STUDY: ADDITIVE MANUFACTURING
WITH A PLASTIC 3D PRINTER

3.1 Principles

Our experiment is led on a microdelta rework printer
developed by eMotion Tech. This printer uses plastic



additive manufacturing, meaning it successively deposes
thin layers of melted Poly Lactic Acid (PLA) at the right
coordinates to build the requested part. PLA is a kind of
bioplastic (plastic made from renewable, organic sources)
that is used in most printers, see Garlotta (2001).

In order to print a part, a 3D model of this part has to
be designed. Then, this model is converted into a Stan-
dard Triangle Language file (STL file for short, originally
STereoLithography, see Bártolo (2011)). This file describes
only the surface geometry without any representation of
color, texture, scale or units. This file is then fed to a slicer,
a software parameterized with specific printer characteris-
tics, that outputs a file understandable by the 3D printer.
In our case, this file is a gcode file written in the language
Marlin (Krüger et al. (2018)). This file is then given to the
printer that prints the part.

It is important to note that the process of slicing is crucial.
It is at this stage that most printing parameters are set,
and, based on 3D printing experts’ experience, it is at this
stage that most common printing faults are generated.

The physical model of the 3D printer is not fully known,
meaning that we cannot use system equations to model the
printer behavior. Hence the use of methods based on data
that do not require system knowledge, such as machine
learning. This also means that we do not know precisely
how the printing parameters influence the behavior of the
system. Therefore, when deciding those parameter values
for the experiment, we have to be careful not to bias the
experiment in a way we think is right despite not knowing
the parameters influence.

3.2 Fault Types

3D printing having poor performances overall, many peo-
ple got interested in identifying and classifying its possible
faults. For this experiment, it is important to identify the
faults we want to be able to predict.

Based on the feedback of experts, eight different types of
faults have been selected, divided in 2 categories:

• Critical faults
• Severe faults

When a critical fault occurs, the printed part is expected to
be non-functional and so distorted that it becomes useless
to continue the printing (see Figure 1). However, when
a severe fault occurs, the part remains functional but its
aspect integrity is questioned (see Figure 2). Obviously,
depending on the aim of the part and the requirements of
the part manufacturer, these categories may variate.

Fig. 1. Critical Faults

Fig. 2. Severe Faults

4. MACHINE LEARNING FOR 3D PRINTING FAULT
PREDICTION

The experiment aims to know whether it is possible to
predict faults in real-time during printing with enough ac-
curacy so that the removal of those faults would drastically
improve the average quality of 3D printed parts. More
specifically, it is to know if this anticipation is possible
using machine learning based algorithms trained on data
from sensors (that record during printing) and knowledge
about the part to be printed in the form of the gcode file.
For the purpose of clarity, in this article, the result of the
experiment will be called the software. This experiment
and the resulting software are the main contribution of
this article, along with the pre-processing method used.

In order to answer the experiment question and design the
software, we equipped the printer with different sensors
(see Section 4.1) and gathered data (see Section 4.2). As
indicated by Subasi (2020), a lot of pre-processing was re-
quired so that the data suitably inputs each algorithm and
the performances become acceptable for real-time fault
anticipation during printing (see Section 4.3). Then, the
data are used to train several machine learning algorithms
to detect each previously identified fault (see Section 4.4).
Figure 3 provides an overview of the whole process with,
in dotted lines, the correction that is not yet implemented
but is the end-goal of the project. The results are discussed
in Section 4.5.

Fig. 3. The Experiment



4.1 Instrumentation

Since we suspect the three factors affecting printing to be
initial, environmental and printing parameters, the inputs
of the machine learning models are as follows:

• 3D model of the part to be printed in the shape
of gcode, a code interpretable by the printer that
is specific to a printed part and that contains all
parameter value instructions for the printing of said
part,

• sensor values of printer parameters recorded during
printing,

• sensor values of environmental parameters recorded
during printing.

We equipped the printer with sensors according to the
above items. The printer also has integrated sensors. All
the signals retrieved are:

• Nozzle Temperature (actual and target),
• Bed temperature (actual and target)
• Layer information (number, time, mesh, etc.),
• General printing settings of maximum speeds, max-
imum accelerations, dimension boundaries, printing
time, nozzle travel lengths, etc.,

• Nozzle acceleration, gyration and exterior tempera-
ture,

• Board acceleration,
• Wire spool weight, equivalent to the wire tension in
our case.

4.2 Building a Dataset

Input Data In all machine learning approaches, building
a relevant dataset is key. The quality of data is often more
important than any kind of tuning done on the hyper-
parameters. This is because the key information (the signal
signatures that precede a fault) that the algorithm has to
predict rightfully needs to be present in the data. However,
in our case, as mentioned previously, we do not fully know
how the system reacts to some parameters or combinations
of parameters, and so we do not know in which signals the
fault signatures lie. Thus, we want to get as many signals as
input as possible and with the maximum level of accuracy
possible. Still, reducing computation time is paramount in
real-time problems, hence the absence of camera data that
would require heavy image processing.

Labeling Since a goal of the experiment is to know which
fault is about to occur, if any, at all times, this means
going for a supervised approach. Indeed, an unsupervised
approach such as anomaly detection would only predict
the occurrence of a fault, but not which fault occurs. This
leads to having a labeling process. In order to know which
fault occurs during each time frame, we recorded it during
printing using a synchronized chronometer. This makes 8
time-series (one for each type of fault) of zeros (nominal)
and ones (faulty) that last as long as the printing lasts.

An experiment plan was carried out in order to know which
parts to print with which parameters for the dataset. It
makes sure faults appear with a high enough frequency to
get interesting training data without biasing the dataset.
Following the experiment plan, the dataset was printed. A

total of 54 parts were printed using 6 different shapes and
various printing parameters.

In machine learning, once data are obtained it is rarely
exploitable right away. Pre-processing is crucial to improve
the exploitability of data and the performances of classifi-
cation, as stated in Subasi (2020).

4.3 Pre-processing data

Retrieving printing data First of all, the signals are syn-
chronised on the highest frequency signal (the board ac-
celerometer frequency). Its period is 3e−3s. Empty values
are filled using linear interpolation (Lepot et al. (2017)).

Once the signals and labels are gathered in the same
table, we extract sliding windows of a fixed amount of
seconds from the time-series. For this experiment, we chose
windows of 10 seconds which corresponds to 3330 time-
steps, with a stride half the size of the window, meaning
two successive windows share half of their data.

We end up with a 3-dimensional table with dimensions:

(nwindows, 3330time−steps, Xvariables + Ylabels)

where nwindows =
PrintingTime(s)

10 for a printing.

The same process with windows of 1 second and windows
of 50 seconds was implemented. Multiple sizes are tested
because, again, the behavior of the fault signatures is
not accurately known. With a stride of half the window
size, a 1 second window allows the algorithm to compute
for 0.5 second. Less than that would be too much of a
constraint for a machine learning algorithm. Meanwhile, a
50 seconds window should identify most signatures (once
again, according to 3D printing experts). The 10 seconds
window is a good trade-off.

Once the windows are extracted, they must be labeled. It
was decided to label every window as faulty (1) or (normal
(0) according to each type of fault. Each algorithm gets fed
the whole window and is trained to output 0 or 1 for its
corresponding faults. For critical faults, the presence of a
faulty time-step in the window (even only one) results in
the window being labeled as faulty. Meanwhile, for severe
faults, if the majority of the time-steps are faulty the
window is labeled as faulty for this fault, otherwise it is
nominal.

Let us note that this labeling allows detection of faults
but not anticipation. To be able to train the algorithms to
predict faults, the label is shifted one window backwards.
It means that a window is labeled with a fault that will
occur during the next window.

In order to make data intelligible to algorithms, feature
engineering is performed on these data. The list of features
extracted from every window is shown in Table 1. To en-
hance algorithm performances and inference time, feature
selection is also performed before training each algorithm
using scikit-learn1.

The windows, now characterized by the features, are split
80%/20% between a train-set and a test-set. Because
algorithm performances can greatly vary according to the
data put in each set, two means of splitting the dataset
are used:



Table 1. Features

Name Signification

mean Mean value

std Standard deviation

mad Median absolute deviation

max Largest value in array

min Smallest value in array

iqr Interquartile range

maxPeak Largest frequency value

meanFreq Frequency signal weighted average

• Statistical split: separate the windows between
training and testing randomly and regardless of which
printing they belong to.

• Objective split: separate the printings between
training and testing and then extract the windows.
Two windows from the same printing can not be in
different sets.

Once the splits are done, within each set and for each fault
type separately, the classes are balanced so the algorithms
do not get biased. More often than not, there are more
nominal than faulty windows so this means removing some
nominal windows. We used a One-versus-Rest (See Tax
and Duin (2002)) method to create our balanced datasets.
This means that for each fault we have a dataset with half
the windows containing said fault, and the other half a
random set of windows with any combination of nominal
or the other faults.

4.4 Training and results

In order to obtain relevant results, a 10-Folds Cross
Validation (Refaeilzadeh et al. (2009)) is applied on the
training sets to assess how the results of the training
generalize to a new set of printings.

For each of the eight fault types, six algorithms were
trained (See Singh et al. (2016) and Izenman (2013)).
These algorithms and their main hyper-parameters are
presented in Table 2.

Table 2. Algorithms and Hyper-parameters

Algorithms Acronyms
Hyper

Values
Parameters

LR

C ∈]0, 5]
Logistic solver ”liblinear”

Regression multiclass ”auto”
penalty ”l1”

Linear
LDA ncomponents 100Discriminant

Analysis

K-Nearest
KNN nneighbors 3

Neighbors

Random Forest RF nestimators 400

Decision Tree DT max depth None

Multi-layer
MLP

hdn layer sizes (64,32,16,)
Perceptron activation ”tanh”

The algorithms presented in Table 2 are all implemented
using the scikit-learn library for Python. The hyper-
parameters descriptions can be found in the scikit-learn
documentation 1 . The tuning of these hyper-parameters is

1 https://scikit-learn.org/stable/modules/classes.html

mostly done by performing a grid search in commonly used
intervals.

The performances of these algorithms on windows of 1 sec-
ond are shown in Table 3 and Table 4 with Mean being the
average accuracy on each validation of the cross-validation
on the testing set and STD the standard deviation. In the
statistical split, the RF algorithm is outperforming other
models by a large margin, and as expected, models trained
on the statistical split are more often than not better than
the ones trained on the objective split.

Decision Trees On Figure 4, a DT trained to predict
the fault ”No Adhesion” is presented. The first criterion
to discriminate between faulty and nominal is whether the
bed temperature is above or below 31°C. Indeed, with
a bed (or board) temperature too low, the printed part
does not stick to the bed. DTs are not only one of the
best performing algorithms but also present a level of
explainability that no other algorithm tested here do.

Fig. 4. Decision Tree Trained to Predict the No Adhesion
Fault (Blue=Faulty, Orange=Nominal)

Random Forest RF is an aggregate of DTs. Multiple DTs
are built during the training phase and the final prediction
is obtained by mixing the results together. RF is the only
algorithm that performs better than DTs and hence it
outperforms all the tested algorithms. However, it looses
the explainability power of DTs.

The consequence of the obtained results is that the present
version of the software used to predict faults in real-time
on the printer at Atos is based on DTs used to detect each
type of fault. These indeed achieve a good tradeoff between
performance and explainablility.

4.5 Discussion and perspectives

In this section we analyze the results and what should be
done to improve the method.

Split and Increase the Dataset In Section 4.3 we men-
tioned the 2 manners to split the dataset. The objective
split is relevant to our application. Indeed, we want the
algorithms to be able to predict faults on new printings
that do not already belong to the dataset. However, the
performances in the objective split are lackluster because
some faults are not represented in the training dataset.



Table 3. Statistical Split

LR LDA RF DT MLP KNN
Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Warping 88.47 1.01 93.3 0.61 99.85 0.12 98.91 0.36 67.65 11.85 88.4 0.82
Layer Shifting 69.85 8.22 67.43 6.54 90.99 4.67 84.46 4.99 69.44 6.36 72.99 7

Blobs 72.67 0.66 93.14 0.28 99.79 0.08 99.19 0.19 53.75 5.75 80.49 0.54
No Adhesion 85.40 2.30 96.41 1.35 99.46 0.42 98.15 0.50 73.76 8.91 81.21 2.08
Stringing 73.6 0.31 95.29 0.26 99.94 0.04 99.84 0.04 52.81 1.92 84.13 0.33

Gaps 77.67 0.46 96.53 0.22 99.71 0.09 99.67 0.14 53.56 3.11 78.83 0.81
Overheating 60.6 0.69 91.94 0.28 99.94 0.03 99.73 0.06 53.47 1.23 81.28 0.31

Not Extruding 70.09 2.16 92.31 0.7 99.22 0.35 97.59 0.44 65.51 8.74 84.93 0.83

Table 4. Objective Split

LR LDA RF DT MLP KNN
Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Warping 67.24 13.83 51.43 17.67 59.10 13.20 57.84 15.70 56.78 11.95 53.35 11.31
Layer Shifting 50.4 25.57 53.67 24.11 48.03 11.22 54.72 20.80 49.41 19.97 47.11 18.36

Blobs 61.49 8.96 40.82 9.59 49.25 3.48 47.15 6.43 52.74 4.21 48.39 7.71
No Adhesion 55.77 16.98 46.49 5.73 50.49 2.48 52.51 6.9 56.92 15.58 53.41 13.36
Stringing 66.42 16.93 59.60 15.35 65.64 16.59 63.38 16.11 42.66 10.36 53.61 9.41

Gaps 61.10 17.23 59.24 21.14 54.23 5.11 56.69 9.83 42.57 9.43 47.75 9.4
Overheating 47.85 16.59 57.24 15.85 58.7 14.32 59.69 14.85 45.45 11.35 46.64 7.79

Not Extruding 59.29 14.2 65.75 15.78 73.58 22.97 68.02 18.70 53.40 15.56 56.38 12.01

Indeed, some faults appear in only a few printings, mean-
ing that if those printings are all in the testing set, the
algorithms are not trained on them and thus not able
to predict them. And vice versa. As a result, despite
the objective split being more suitable for the goal, its
performances are nerfed by the way the dataset is built.
Hence the statistical split.

After these promising results of the presented experiment,
the dataset extension is still ongoing, hence the low num-
ber of fault occurrences. The aim is, for a big enough
dataset, to make both splitting approaches equivalent. In-
deed, if more parts are printed and included in the dataset,
the case where a fault type is not present in either the
training set or the testing set is less likely to happen. Also,
the main consequence of choosing one splitting method
over the other is the different degree of similarity between
the training and testing sets. With a large enough dataset,
this difference disappears and the performances should
also become equivalent. This is why using the statistical
split makes sense. Still, for now we can not prove this point
so the results from the objective approach should be taken
with a grain of salt. In a more generic sense, improving
the dataset should definitely improve the performances. In
particular, the focus has to be on increasing the presence
of rare faults and increase the number of printings they
appear in.

Improve the performances For now, the good prediction
rate of the software is not high enough to drastically
improve the quality of a new printed part. It cannot be
used in an industrial environment in its current state
because of the accuracy reached in the objective split (that
is equivalent to testing the software on a new, unknown
printed part). Indeed, using the objective split and taking
the best algorithm for each fault type, several faults are
still predicted correctly in only 55% of the cases, which is
just slightly better than a coin flip.

As a last resort, if extending the dataset fails to provide
valuable results, we can assume that the information we
want the algorithm to learn from is not present in the data.

Geometrical Analysis The 3D printing experts all agree
on the fact that the geometrical shape of the part to
be printed is a very important factor for faults. In this
experiment, the dataset was built using 6 different shapes
for its parts. A geometrical shape is a combination of many
basic shapes (such as pyramids, cylinders and whatnot).
Perhaps, a geometrical study could help prove that all
3D parts are made of a finite set of elementary shapes
and this elementary shapes could be used to train the
fault prediction algorithm, thus increasing its robustness
to new, unknown shapes.

Computer Vision In order to identify anomalies the
printer has been equipped with two cameras. There is a
possibility that these cameras can detect precursors to
specific types of fault. The reason we think it is possible
is because it actually happens on the printer we use at
Atos. At the beginning of each printing, when the nozzle
heats up before the printing, a small blob of PLA forms
at the tip of the nozzle. When the printing starts it can
remain embedded in the part and cause a blob on it. Some
works such as Delli and Chang (2018) are able to detect
faults when they occur, in this case using Support Vector
Machines. However, once the fault happens, it is too late.
Henceforth, we have to detect precursors. Since we do not
know what form those precursors could take, it would
require either to compare the current printed part with
its 3D model (may be with a geometrical analysis similar
to what the authors in Petsiuk and Pearce (2020) did) or
to train a computer vision algorithm to predict the fault
using labels from our already built dataset.

Hybrid Methods It may be that, even if the amount
of data, its precision, and its quality are increased, the
algorithms are not able to predict the faults. A possible
reason for that would be because the algorithm structures



are not able to represent the real system behavior. This
goes back all the way to the fact that the mathematical
equations that govern the behavior of the system are
not fully known. This prevents the use of a model-based
method. However, nowadays, many hybrid methods for
diagnosis such as Yang (2004) have been developed to
compensate for the lack of knowledge about the system
with data. A starting point could be to estimate the
system equations using machine learning (for instance
with symbolic regression, see Quade et al. (2016)). An
advantage of most hybrid methods over pure data-based
methods is explainability of the outcome. In order to
eventually correct the faults in real-time, explainability is
a must-have.

5. CONCLUSION

In this paper, we describe the experiment we led on
predicting faults on 3D printed parts. The experiment
aims at designing a software that anticipates eight different
faults in real-time using data from sensors monitoring the
printer and six different machine learning algorithms each
trained for each fault type. The results show that the
Random Forest algorithm has the best results to predict
all types of faults. However, the performances for new,
unknown, printed parts leave a lot to be desired. Multiple
suggestions are made to improve the algorithm accuracies.
Expanding the dataset, performing a geometrical analysis
of the part, adding data from cameras enhanced with
computer vision algorithms, or combining a model-based
method with the machine learning approach.

If a very high precision on the software prediction is
reached, the next step is to explain its prediction. This
means finding out the root cause of the failure in order to
perform a real time correction of the fault. As mentioned
previously, this is something to keep in mind when choos-
ing which algorithms to use, or how to design the method.

Then, the final goal is to be able to translate everything
that works on the printer on which the method is tested,
to other, different, types of printers.

REFERENCES

Bártolo, P.J. (2011). Stereolithography: materials, pro-
cesses and applications. Springer Science & Business
Media.

Baumann, Felix and Roller, Dieter (2016). Vision based
error detection for 3d printing processes. MATEC Web
of Conferences, 59, 06003.

Delli, U. and Chang, S. (2018). Automated process
monitoring in 3d printing using supervised machine
learning. Procedia Manufacturing, 26, 865–870.

du Plessis, A., Yadroitsava, I., and Yadroitsev, I. (2020).
Effects of defects on mechanical properties in metal
additive manufacturing: A review focusing on x-ray
tomography insights. Materials & Design, 187, 108385.

Garlotta, D. (2001). A literature review of poly(lactic
acid). Journal of Polymers and the Environment, 9(2),
63–84.

He, K., Yang, Z., Bai, Y., Long, J., and Li, C. (2018).
Intelligent fault diagnosis of delta 3d printers using
attitude sensors based on support vector machines.
Sensors, 18(4).

Izenman, A.J. (2013). Linear discriminant analysis.
In Modern multivariate statistical techniques, 237–280.
Springer.

Jin, Z., Zhang, Z., and Gu, G.X. (2019). Autonomous
in-situ correction of fused deposition modeling printers
using computer vision and deep learning. Manufacturing
Letters, 22, 11–15.

Krüger, J., Gu, W., Shen, H., Mukelabai, M., Hebig, R.,
and Berger, T. (2018). Towards a better understanding
of software features and their characteristics: A case
study of marlin. In Proceedings of the 12th Interna-
tional Workshop on Variability Modelling of Software-
Intensive Systems, 105–112. Association for Computing
Machinery.

Lepot, M., Aubin, J.B., and Clemens, F.H. (2017). In-
terpolation in time series: An introductive overview of
existing methods, their performance criteria and uncer-
tainty assessment. Water, 9(10).

Li, C., Cabrera, D., Sancho, F., Sánchez, R.V., Cerrada,
M., and de Oliveira, J.V. (2021). One-shot fault di-
agnosis of three-dimensional printers through improved
feature space learning. IEEE Transactions on Industrial
Electronics, 68(9), 8768–8776.

Oropallo, W. and Piegl, L.A. (2016). Ten challenges in 3d
printing. Engineering with Computers, 32(1), 135–148.

Petsiuk, A.L. and Pearce, J.M. (2020). Open source
computer vision-based layer-wise 3d printing analysis.
Additive Manufacturing, 36, 101473.

Quade, M., Abel, M., Shafi, K., Niven, R.K., and Noack,
B.R. (2016). Prediction of dynamical systems by sym-
bolic regression. Physical Review E, 94(1).

Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-
Validation, 532–538. Springer US.

Shahrubudin, N., Lee, T., and Ramlan, R. (2019). An
overview on 3d printing technology: Technological, ma-
terials, and applications. Procedia Manufacturing, 35,
1286–1296.

Singh, A., Thakur, N., and Sharma, A. (2016). A review
of supervised machine learning algorithms. In 2016 3rd
International Conference on Computing for Sustainable
Global Development (INDIACom), 1310–1315.

Subasi, A. (2020). Chapter 2 - data preprocessing. In
A. Subasi (ed.), Practical Machine Learning for Data
Analysis Using Python, 27–89. Academic Press.

Tax, D. and Duin, R. (2002). Using two-class classifiers for
multiclass classification. In 2002 International Confer-
ence on Pattern Recognition, volume 2, 124–127 vol.2.

Uhlmann, E., Pontes, R.P., Geisert, C., and Hohwieler, E.
(2018). Cluster identification of sensor data for predic-
tive maintenance in a selective laser melting machine
tool. Procedia Manufacturing, 24, 60–65.

Yang, Q. (2004). Model-based and data driven fault diag-
nosis methods with applications to process monitoring.
Case Western Reserve University.

Yen, C.T. and Chuang, P.C. (2022). Application of a
neural network integrated with the internet of things
sensing technology for 3d printer fault diagnosis. Mi-
crosystem Technologies, 28(1), 13–23.

Zhang, S., Duan, X., Li, C., and Liang, M. (2021). Pre-
classified reservoir computing for the fault diagnosis of
3d printers. Mechanical Systems and Signal Processing,
146, 106961.


