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In data-based situation assessment applications, the proliferation of data acquired and recorded on current technological systems is a key issue in that data remain unlabeled because labeling would require too much time and implies prohibitive costs. The data should therefore speak for itself. The different situations, e.g., normal or faulty, must hence be learned only from the data. Clustering methods, also named unsupervised classification methods, can be used for that purpose. These methods are designed to cluster the samples according to some similarity criterion. The different clusters can be associated to different situations whose discrimination may be relevant to obtain a proper diagnosis. Numerous algorithms have been developed in recent years for clustering numeric data but these methods are not applicable to categorical data. This is the case of the algorithm DyClee, named DyClee-N in the paper. However, in many application domains, qualitative features are key to properly describe the different situations. DyClee-N was recast to produce a version, named DyClee-C that accepts categorical features, but only categorical features. This paper presents DyClee-N&C that subsumes both the numeric and categorical feature based algorithms DyClee-N and DyClee-C respectively. DyClee-N&C is applied to a data set of the literature for the evaluation of risk in the automobile domain and compared to state of the art clustering methods.

INTRODUCTION

In the digital age, the amount of data that are recorded by organizations and companies is enormous. If these data are to have added value, it must be possible to extract relevant information automatically. This is why data mining methods appear to be crucial. Among them, clustering methods have an essential role to play. Indeed, data often remain unlabelled because labelling would require too much time and imply prohibitive costs. In diagnosis applications for instance, the different situations, e.g. normal or faulty, must hence be learned from the data. Clustering methods, also qualified as unsupervised classification methods, can then be used to create groups of samples according to some similarity criterion. The different groups can supposedly be associated to different situations.

In the field of clustering, several methods have been developed to group together data composed solely of numerical or categorical features. However, few algorithms provide a way to partition similar samples described by mixed features. Some methods have been proposed such as the K-Prototype [START_REF] Huang | Extensions to the k-means algorithm for clustering large data sets with categorical values[END_REF], ClustMD (McParland and Gormley, 2016), CluMix [START_REF] Hummel | Clumix: Clustering and visualization of mixed-type data[END_REF], CEBMDC [START_REF] He | Clustering mixed numeric and categorical data: A cluster ensemble approach[END_REF] or even Fuzzy K-Prototype (Ji et al., ⋆ This work is part of the CIFRE PhD project in collaboration with the company ACTIA. It is also related to ANITI within the French "Investing for the Future -PIA3" program under the Grant agreement n°ANR-19-PI3A-0004.
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. All these algorithms use their own notion of similarity to create clusters. Indeed, classical numeric distance metrics such as the Euclidean distance or the Manhattan distance for high dimensional data sets are not applicable to categorical data. Conversely, metrics for assessing the similarity of samples described by categorical features are not applicable to numerical data. However, a mixture of numeric and qualitative features is often required to properly describe the different objects/situations in many application domains.

In this paper, we leverage two versions of the same algorithm, the original DyClee (Dynamic Clustering algorithm for tracking Evolving Environments)(Barbosa Roa et al., 2019) that only accepts numeric features and an extension to categorical features named DyClee-C [START_REF] Obry | Dyclee-c: a clustering algorithm for categorical data based diagnosis[END_REF]. DyClee features several properties like handling non convex, multi-density clustering with outlier rejection, and it achieves full dynamicity. All these properties are not generally found together in the same algorithm.

In this paper, Dyclee is renamed DyClee-N for better understanding. DyClee-N and DyClee-C are the building blocks of the mixed numeric/qualitative version presented in this paper named DyClee-N&C. DyClee-N&C hence represents a versatile and usable dynamic clustering algorithm for data described by all types of features. This gives it a definite advantage for some situation assessment and The paper is organized as follows. Section 2 presents the basic principles and the different steps of the DyClee-N&C algorithm. DyClee-N and the qualitative extension DyClee-C are introduced in sections 2.1 and 2.2. The integration of DyClee-N and DyClee-C is then presented in section 3. The tests on a public data set are presented in section 4. Finally, section 5 provides conclusions and perspectives of this work.

PRINCIPLE OF DYCLEE-N&C

DyClee-N&C is proposed as a dynamic clustering algorithm that integrates both the numeric and categorical versions DyClee-N and DyClee-C. The samples X = {X 1 , X 2 , ..., X i , ..., X n } as input to the algorithm are described by numeric and categorical features in the set A = {A 1 , A 2 , ..., A d , A 1 , A 2 , ..., A d }, where d is the number of numeric features and d the number of categorical features. The data set obtained by projecting X onto numeric features and categorical features are denoted X and X, respectively. The principle of DyClee-N&C follows two steps:

(1) cluster X, i.e. the samples with respect to the numeric features only, and X, i.e. the samples with respect to the categorical features only and obtain two partitions P and P, (2) Merge the two partitions to obtain the final clustering.

The first step relies on DyClee-N and DyClee-C that are presented in sections 2.1 and 2.2, respectively. The merging step, which achieves DyClee-N&C is presented in section 3. Figure 1 gives the overview of mixed DyClee-N&C.

Note that the output of a clustering is a partition, as defined formally below, of the set of samples provided as input.

Definition 2.1. A partition is defined as a set of subsets P = {P 1 , P 2 , ..., P k } of a given set S with:

• ∅ ∈ S

• P 1 ∪ P 2 ∪ ... ∪ P k = S

• P i ∩ P j = ∅ with i,j = 1,..., k and i ̸ = j.

NUMERIC CLUSTERING WITH DyClee-N

DyClee-N integrates a distance and a density based algorithm.

The first step qualified as distance-based step operates at the rate of the data stream and creates micro-clusters (µclusters), putting together data samples that are close in the sense of the L1-norm. µ-clusters are stored in the form of summarized representations including statistical and temporal information gathered in a characteristic vector.

Centers of µ-clusters can be calculated by averaging, for each feature, all the samples present in the µ-cluster. The reachability of µ-cluster from a data sample is evaluated based on the Chebyshev distance and the sample is assigned to the closest µ-cluster according to the Manhattan distance.

The second step, qualified as density-based step, gathers the µ-clusters to create the final clusters. A cluster is defined as a set of "connected" µ-clusters, where every inside µ-cluster presents high density and every boundary µ-cluster exhibits either medium or high density. Figure 2 illustrates how the DyClee-N algorithm works.

Fig. 2. Overview of DyClee-N

In DyClee-N, clusters are created at the beginning of the density-based step from groups of µ-clusters found by the KD-Tree algorithm [START_REF] Maneewongvatana | On the efficiency on nearest neighbor searching with data clustered in lower dimensions[END_REF]. A KD-Tree is a space-partitioning data structure for organizing points in a k-dimensional space. In DyClee-N, the K-tree algorithm is used to efficiently find the nearest neighbors of µ-clusters and form µ-clusters groups.

Then, for each group, the densest µ-cluster subregions are identified. A cluster is created if a µ-cluster is dense and if its neighbors are dense or semi-dense inside a group. If a µ-cluster is outlier, all the samples in this µ-cluster are considered noise.

DyClee-N offers two approaches to qualify the density of a µ-cluster and then to find the clusters: the global approach and the local approach.

In the global approach, two global density thresholds are defined as the median and average densities of all µclusters. A µ-cluster µC z with density D z is said to be:

• dense if D z is greater than or equal to both thresholds, • semi-dense if D z is greater or equal to one of the two thresholds and lower than the other, • outlier if D z is strictly less than the two thresholds.

In the local approach, the two global density thresholds are replaced by two local density thresholds that are the median and average densities of the µ-clusters of the group to which µC z belongs. The local approach is very useful for multidensity data sets.

DyClee-N also implements a forgetting process in order to follow the data evolution at best. Data in µ-clusters are subject to a decay function at the beginning of the density-based step.

CATEGORICAL CLUSTERING WITH DyClee-C

DyClee-C follows the same principles as DyClee-N with the adaptations required to deal with qualitative data instead of numeric data. Like DyClee-N it is based on both a distance step and a density step.

The definition of µ-cluster is adapted by considering the frequency of the qualitative features modalities to determine its center. Let A = {A 1 , A 2 , ..., A d }, be the set of qualitative features characterizing the samples, with d the number of features. The set of modalities of the kth

feature is denoted M od(A k ) = {m k 1 , m k 2 , .
.., m k p k }, with p k the number of modalities. Consider a qualitative µ-cluster µC i , then the frequency of the most frequent modality in µC i relatively to the feature k is given by:

F k i = arg max m k j (f r i (m k j )), j ∈ {1, ..., p k } (1)
where f r i (m k j ) is the frequency of the j th modality of the k th feature in the samples of µC i . The vector F i = {F 1 i , . . . , F d i } gathers the most frequent modalities in µC i in all qualitative dimensions and it identifies the qualitative center of µC i . Dealing with qualitative data also enforces two main changes:

• In the distance-based step: the distance used to assign samples to µ-clusters and to assess reachability of µ-clusters from data samples is now taken as the Hamming distance. • In the density-based step, the Locality Sensitive Hashing (LSH) algorithm ((Indyk and Motwani, 1998) [START_REF] Leskovec | Mining of massive datasets[END_REF], [START_REF] Gionis | Similarity search in high dimensions via hashing[END_REF]) replaces the KD-Tree algorithm that does not accept qualitative data.

The global and local density approaches defined in DyClee-N to evaluate the density of a µ-cluster are similar in DyClee-C but the density is replaced by D i , the number of samples in µC i .

Like DyClee-N DyClee-C also implements a forgetting process to follow the data dynamics. The µ-clusters characteristic vector are revised by considering the age of the included samples at the beginning of the density-based step.

DYCLEE-N&C

This section presents the algorithm DyClee-N&C that achieves an integration of DyClee-N and DyClee-C and therefore accepts numeric and qualitative features as input.

Merging numeric and categorical partitions

Clustering the samples with respect to the numeric features with DyClee-N and with respect to the qualitative features with DyClee-C, provides two partitions P and P, called the numeric and the categorical partition respectively. The second step of DyClee-N&C is to merge these two partitions. To do so, we propose to make the product of the numeric partition P and the qualitative partition P, which would result in a partition, i.e., a clustering, accounting for both numeric and qualitative features.

A partition product applies to two partitions of the same set. However, the µ-clusters formed from numerical and from categorical features are not the same since they do not necessarily group together the same samples. We must therefore place ourselves at the level of the samples. Note also that, in the default mode (other parameterizations are presented in Section 3.4), DyClee-N and DyClee-C reject outlier µ-clusters. These latter do not necessarily gather the same samples on both sides. Our proposal is therefore to discard the samples assigned to outlier µ-clusters on either side.

Figure 3 illustrates the outlier removal stage with six µclusters, three numeric µ-clusters µC 1 , µC 2 , and µC 3 , and three qualitative µ-clusters µC 1 , µC 2 , and µC 3 . Samples are numbered from 1 to 10 and they have been assigned to µ-clusters on each side. The µ-clusters considered as dense are represented in red color, the semi-dense µ-clusters are represented in orange color and the grey color is given to outlier µ-clusters. Sample 4 is the only sample assigned to an outlier µ-cluster which is in this case the qualitative µ-cluster µC 1 . Following our proposal, sample 4 is hence removed from each side, leaving µC 1 with samples 1, 2, and 3 on the numeric side and discarding µC 1 as a whole on the qualitative side. The set of samples is then the same on both sides.

We adopt the following assumption.

Assumption: Removing the samples that belong to outlier µ-clusters in one of the partitions, numerical or categorical, does not change the density status to outlier for the nonoutlier µ-clusters to which the samples belong in the other partition.

The above assumption means that new outlier µ-clusters are not created in the removal phase, which can hence be done in a single pass. It can be justified from the specific density thresholds that have been defined (cf. Section 2).

The set of samples being the same on both the numeric and the categorical side, we then proceed to the final density based clustering stage on both sides. We obtain the numeric and categorical partitions that, by the assumption above, partition the same set. The product of partitions as defined below can then be made.

Definition 3.1. The product of two partitions P A = {P A 1 , . . . , P A n A } and P B = {P B 1 , . . . , P B n B } of the same set S is a partition P = {P 1 , . . . , P n } defined by: ∀x ∀y ∈ S x ∈ P k , y ∈ P k , k ∈ {1, . . . , n} ⇔ ∃i ∈ {1, . . . , n A }, ∃j ∈ {1, . . . , n B }, x ∈ P A i , y ∈ P A i , x ∈ P B j , y ∈ P B j . Definition 3.1 states that the product of two set partitions P A and P B is defined as the set partition whose parts are the nonempty intersections between each part of P A and each part of P B . The DyClee-N&C algorithm also adapts to the situation where the input data set has only numeric or categorical features. In such cases, the appropriate version of DyClee (numeric or categorical) is run alone.

Illustrative example

The final step (5) of DyClee-N&C is illustrated with the example of Figure 4.

Consider that steps (1) to ( 4 Placing ourselves at the level of samples, the partitions P A and P B of Definition 3.1 correspond respectively to the partitions P s = {[1,2,3,4,5], [6,7,8,9], [10,11,12]} and ,2,3,4,5,6], [7,8,9,10,11,12]} derived from P and P. This is illustrated by Figure 5.

P s = {[1

Fig. 5. Example of numeric and categorical sample clusters

The product of partitions is applied to P s and P s .

Figure 6 shows the final mixed partition, standing for the final mixed clustering, given by P = {Cl 1 , Cl 2 , Cl 3 } with Cl 1 = {1, 2, 3, 4, 5}, Cl 2 = {7, 8, 9} and Cl 3 = {10, 11, 12}. Sample 6 does not appear in the mixed clusters because it appears alone in a cluster which is considered outlier.

DyClee-N&C parameters

DyClee-N&C supports several optional parameters that allow the user to improve clustering results by adding some knowledge to the data. These parameters are tuned according to the problem at hand and they may be evaluated with cluster validity methods [START_REF] Liu | Understanding of internal clustering validation measures[END_REF]. Some of these parameters are listed below.

Parameter forget_method -Different forgetting processes can be used to achieve correct tracking of the data evolution process. The default is f orget_method=NONE, for which no forgetting process is applied. The other options apply different forgetting strategies. Depending on the context, it may be interesting to assign all the data to some cluster and not reject outliers.

U nclassed_accepted=OFF means that all the samples must be assigned to a cluster, i.e. there is no outlier rejection. Default mode is U nclassed_accepted=ON.

Parameter minimum_mc -This parameter sets the minimum number of samples that a cluster must contain to be considered as a final cluster. Default mode is minimum_mc=FALSE. minimum_mc=TRUE should be used when the focus of the analysis is on populated cluster profiles.

Parameter multi-density -This parameter decides about using the global or the local density threshold. multi -density=TRUE means that local density analysis is required. Default mode is multi -density=FALSE.

Parameter n_clusters -This parameter allows to retain the k most important clusters as final clusters. Samples belonging to the remaining clusters are re-assigned to one of the k retained clusters. This requires n_clusters=ON. default mode is n_clusters=OFF.

EVALUATION

This section presents the evaluation of DyClee-N&C on the public data set Automobile [START_REF] Schlimmer | UCI machine learning repository[END_REF] with a comparison with two other mixed clustering approaches K-Prototype [START_REF] Huang | Extensions to the k-means algorithm for clustering large data sets with categorical values[END_REF] and CAH mixte [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF]. This data set has been selected due to its characteristics i.e 205 samples, with 26 attributes and 6 clusters.

A sample corresponds to one vehicle and the features correspond to automotive components (number of doors, number of cylinders, ...) and to information about the vehicle in a more general way (vehicle length, weight, ...). The classes in this data set correspond to the risk rating for the vehicle. More the value is high more the vehicle presents a risk. The percentage of numeric features is 60 percent, while the percentage of categorical ones is 40 percent. The categorical features are composed of nominal terms.

The evaluation of the formed clusters is based on the internal silhouette index ( [START_REF] Rousseeuw | Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[END_REF]). Applying an internal validation index allows to evaluate if the obtained cluster partitions are valid from an agnostic point of view i.e low internal cluster inertia within each cluster (cluster compactness) and high inter cluster inertia between all clusters (cluster separability). Generally, the euclidean distance is used to evaluate the different proximities needed to compute the silhouette but here to apprehend mixed attributes the Gower distance is used. [START_REF] Gower | A general coefficient of similarity and some of its properties[END_REF]), D g (x i , x k ), given by the equation ( 2) is used to measure the dissimilarity between two samples.

D g (x i , x k ) = 1 - 1 d d j=1 s j ik (2)
with d the number of features and s j ik the similarity between samples x i and x k for the j th feature. The similarity index s j ik is evaluated according to the feature type:

• categorical feature: s j ik = 1 if x j i = x j k , else 0.

• numeric feature: s j ik = 1 -

|x j i -x j k | Rj
with R j the maximal difference for the j th feature.

In mixed K-Prototype and CAH, the number of clusters must be specified in input. As this type of information is not supposed to be known a priori, we varied the value of the number of clusters k so that 2 ≤ k ≤ √ n with n the number of samples in the data set. The limiting value √ n is chosen in order to avoid the situation where the number of clusters tends to be equal to the number of samples. In this configuration, the number of samples assigned to the clusters is low and the similarity between the individuals composing them is high. The silhouette score associated with each sample then becomes abnormally high, which biases the interpretation of the evaluation of the obtained clusters. For the necessary parameters related to DyClee mixed, the value given to the size of the numerical µ- In this experiment, the size of the numerical µ-clusters is ϕ=0.3, the similarity threshold to be satisfied for a categorical sample to be assigned to a categorical µ-cluster is 0.5.

Table 1 gives the silhouette scores (noted S-score) for the clusters formed by DyClee-N&C, K-Prototype, and mixed CAH methods along with the associated number of clusters. DyClee-N&C obtains a much better silhouette score than the other two methods.

The number of clusters retained to obtain this silhouette score is 2 for DyClee-N&C and 14 for the other methods. DyClee-N&C finds a number of clusters that is closest to the number of classes present in the Automobile data set.

Complexity-

The complexity of DyClee-N&C can be determined as the maximum of the complexities of DyClee-N, DyClee-C, and of the product of partitions. After determining these complexities, it has been shown that the complexity of DyClee-N&C is polynomial.

CONCLUSIONS AND PERSPECTIVES

This paper presents DyClee-N&C, the mixed version of the original DyClee, named DyClee-N in this paper, algorithm of which a purely categorical version, named DyClee-C had already been proposed. DyClee-N&C subsumes both the numeric and categorical feature based algorithms DyClee-N and DyClee-C. DyClee-N&C hence represents a versatile and usable dynamic clustering algorithm for data described by all types of features. This gives it a definite advantage for some situation assessment and diagnosis applications in which situations are characterized by numeric and categorical features. This is exemplified with a data set used to assess risk in the automobile domain.

Let us notice that hierarchical clustering versions of DyClee-N and DyClee-C have been implemented. Although these only work for "static" clustering, they may be interesting to decide at which aggregation level the clustering must be considered to match business knowl-edge. Future work will consider to produce a hierarchical clustering version of DyClee-N&C.

Fig. 1 .

 1 Fig. 1. Principles of DyClee-N&C diagnosis applications in which the goal is to discriminate normal and the different faulty states.

Fig. 3 .

 3 Fig. 3. The outlier problem 3.2 DyClee-N&C algorithm The different steps of DyClee-N&C are listed below: (1) Run in parallel the distance-based step of DyClee-N and DyClee-C to forms numeric and categorical µ-clusters considering the samples X and X respectively. (2) Label numeric and categorical µ-clusters by dense, semi-dense, or outlier according to the global or local density thresholds. (3) Remove the samples from outlier µ-clusters on each side. (4) Run in parallel the density-based step of DyClee-N and DyClee-C to obtain the numeric and the categorical partitions P and P. (5) Make the product of the numeric and categorical partitions P and P to obtain a partition that stands for the final clustering counting for numeric and categorical features.

  Fig. 4. Example of partitions of numeric and categorical µ-clusters and µC 5 = {10, 11, 12}. On the other hand, categorical µ-clusters contain the following samples: µC 1 = {1, 2, 3}, µC 2 = {4, 5, 6} and µC 3 = {7, 8, 9, 10, 11, 12}.

Fig. 6 .

 6 Fig. 6. Final partition P obtained with DyClee-N&C Parameter Unclassed_accepted -Final clusters are composed of dense (body of the cluster) and semi-dense (edge of the cluster) µ-clusters. Outliers are considered unrepresentative or noise and their samples are rejected.Depending on the context, it may be interesting to assign all the data to some cluster and not reject outliers. U nclassed_accepted=OFF means that all the samples must be assigned to a cluster, i.e. there is no outlier rejection. Default mode is U nclassed_accepted=ON.

  The clustering algorithms mixed K-Prototype and CAH consider all samples as representative (i.e no outlier). Therefore, the unclassed_accepted parameter of DyClee-N&C is set to OFF in order to keep all µ-clusters formed by DyClee-N&C for this part of the experiments. The values of the parameters minimum_mc and n_clusters are tested in order to refine the final clusters. These parameters are first deactivated to evaluate the clusters formed by DyClee-N and DyClee-C which correspond respectively to the clusters found from KD-Tree and LSH.

	Methods	DyClee-N&C	K-Prototype	CAH mixed
	S-score	0.23	0.17	0.22
	N°of clusters	2	14	14
		Table 1. Silhouette scores	
	clusters noted ϕ varies between 0.05 and 0.5 with a
	step of 0.05. Concerning the threshold of similarity of
	Hamming noted Seuil_Ham, used at the time of the phase
	of assignment of a categorical sample to the categorical µ-
	cluster, its value varies between 0 and 1 with a step of
	0.1.