

Aix*Marseille universi

Socialement engagée

Development of a physiologically-based pharmacokinetic (PBPK) model to understand and predict the disposition of gallium-68 radiolabeled dendrimers in vivo

(1) Inria-Inserm COMPO team, Centre Inria Sophia Antipolis - Méditerranée, Inserm U1068-CNRS UMR7258, Aix-Marseille University UM105 (2) CRCM, CNRS UMR7258- INSERM U1068- Institut Paoli-Calmettes UMR7258, Aix-Marseille University UM105, Marseille, France

(3) CERIMED, CNRS, Aix-Marseille University, Marseille, France (4) C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, Marseille, France (5) CINaM, Aix-Marseille University UMR7325 / UPR3118, Centre National de la Recherche Scientifique UMR7325 / UPR3118

CONTEXT & OBJECTIVES

- Many nanoparticles (NPs) developed
- No tools to rationalize NPs development
- \Rightarrow Need of tools for rational nanodrugs optimization
- Current work on gallium-68 radiolabeled dendrimers^[1]
- \Rightarrow In vivo data used in a

previous population pharmacokinetic (popPK) analysis^[2]

METHODS

- Data: two-hour long mPET/CT imaging and gamma counting biodistribution from healthy mice (n=6) after IV administration for each dendrimer
- Software: R version 4.2.2
- Structure of the PBPK model based on published work from Cheng et al^[3] and Kumar et $al^{[4]}$
- Endocytosis parameters:

Farameter	Obtention	
Partition coefficients (Kp)	$Kp = \frac{AUC_{mean organ}}{AUC_{mean blood}}$	
	In vivo data ^[2]	
Physiology	Brown et al. ^[5]	
Permeability (P) (mL/h)	Fitted	
Renal clearance (CLr, mL/h)	<i>In vivo</i> data (popPK model) ^[2]	
Hepatic clearance (CLh. mL/h)	<i>In vivo</i> data (popPK model) ^[2]	

PBPK modeling: quantitative PK estimations and predictions Development of a computational model describing the distribution of dendrimers in the organism depending on their characteristics

3 dendrimers for 1 RGD (3:1)

Total: 7 dendrimers

 K_{max} : Maximum uptake rate constant of cells (h⁻¹) K_{50} : Time reaching half maximum uptake rate (h) n : Hill coefficient (unitless)

RESULTS

2. Correlation between partition coefficients (Kp) and dendrimer type

 $(CF_3)_3$ -C15 C₄F₉-C14 (CF3)₃-C12 C₄F₉-FC11 C₄F₉-FC11 C₄F₉-FC11

RGD (1:3) RGD (3:1)

No error bars because blood and organ data were not collected in the same mice

Fissue model: permeability-limited tissue distribution

$\frac{dA_{vascular}}{dt} = Q^{*}(CA - CV_{tissue}) - P_{tissue}^{*} CV_{tissue} + \frac{P_{tissue}^{*} C_{tissue}}{Kp}$ $\frac{dA_{interstitial}}{dt} = P_{tissue} * CV_{tissue} - \frac{P_{tissue} * C_{tissue}}{Kp} - KUP_{tissue} * A_{intersitial} + Krelease_{tissue} * A_{cellular}$ Vascular space $\frac{dA_{cellular}}{dt} = KUP_{tissue} * A_{intersitial} - Krelease_{tissue} * A_{cellular}$ Interstitial space KUP | ♠ $\frac{dA_{MPS}}{dt} = KUP_{tissue} * A_{intersitial or vascular} - Krelease_{tissue} * A_{MPS}$ ✓ Krelease Cellular space

n plasma (%ID/mL) 0 0 <u>ם</u>. P | ♠ ▼ P/Kp 10 01

KUP: Uptake rate constant of tissue cells or phagocytes (h⁻¹) Krelease: Release rate constant of tissue cells or phagocytes (h⁻¹)

3. Influence of permeability coefficient (P)

Permeability coefficient mainly influenced the shape of the simulation curve for all organs and dendrimers

Example of bladder for C₄F₉-C11 dendrimer

Bladder ++

Strongly dependent on dendrimer type

4. Predictions of dendrimers disposition in vivo

C18

C18	37.68	42.64	1.13
(CF ₃) ₃ -C15	33.66	33.63	1.00
C ₄ F ₉ -C14	47.23	47.98	1.02
(CF ₃) ₃ -C12	37.33	36.04	0.97
C ₄ F ₉ -C11	21.01	21.76	1.04
C ₄ F ₉ -C11 RGD 1:3	26.35	30.58	1.16
C ₄ F ₉ -C11 RGD 3:1	30.05	35.61	1.19

Fold error < 2

CONCLUSION

- Permeability-limited model accurately simulated the distribution of dendrimers
- Permeability parameter was found to be the most influential parameters on dendrimer exposure
- Correlation between Kp and dendrimer physicochemical characteristics
- Results consistent with our previous PK study^[5]

[1] Garrigue P. et al., Proc. Natl. Acad. Sci. 115, 11454–11459 (2018) [2] Ou J. et al., hal-03930671 (2022) [3] Cheng YH. et al., ACS Nano. 14(3):3075-3095 (2020) [4] Kumar M. et al., Adv Drug Deliv Rev. 194:114708 (2023) [5] Brown RP *et al.*, Toxicol Ind Health. 13: 407 (1997) [6] Yuan D. et al., J. Pharm. Sci. 10 (7), 1267 (2019) [7] Kutumova E et al., Int. J. Mol. Sci. 23 (20), 12560 (2022)

Abbreviations AUC: Area under the curve C: carbon ID: injected dose MPS: Mononuclear Phagocyte System RGD: Arginyl-glycyl-aspartic acid

PERSPECTIVES

- Get rid of arbitrary or adjusted parameters
- Collection of *in vitro* parameters
- Development of *in silico* models

- Expand the PBPK model to other types of NPs
- Apply this approach to design new optimal NPs

Acknowledgments

J. Ou's PhD is financed by a grant from Ecole Doctorale 62 -Sciences de la vie, Aix-Marseille University. The authors thank PACA Canceropôle, Conseil Régional PACA and Institut National du Cancer for financial support.

