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Abstract. Background and purpose. Deformable image registration (DIR) is a core14

element of adaptive radiotherapy workflows, integrating daily contour propagation15

and/or dose accumulation in their design. Propagated contours are usually manually16

validated and may be edited, thereby locally invalidating the registration result. This17

means the registration cannot be used for dose accumulation. We present and validated18

a novel multi-modal DIR algorithm that incorporates contour information to guide the19

registration. This ensures that the estimated deformation vector field and warped dose20

are in accordance with operator-validated contours.21

Materials and methods. The proposed algorithm minimizes both a normalized22

gradient field-based data-fidelity term on the images and an optical flow data-fidelity23

term on the contours. The Helmholtz-Hodge decomposition was incorporated to ensure24

anatomically plausible deformations. The algorithm was validated for same- and25

cross-contrast Magnetic Resonance (MR) image registrations, Computed Tomography26

(CT) registrations, and CT-to-MR registrations for different anatomies, all based27

on challenging clinical situations. The contour-correspondence, anatomical fidelity,28

registration error, and dose warping error were evaluated.29

Results. The proposed contour-guided algorithm considerably and significantly30

increased contour overlap, decreasing the mean distance to agreement by a factor of31

1.3 to 13.7, compared to the best algorithm without contour-guidance. Importantly,32

the registration error and dose warping error decreased significantly, by a factor of 1.233

to 2.0.34

Conclusion. Our contour-guided algorithm ensures that the deformation vector35

field and warped quantitative information are consistent with the operator-validated36

warped contours. This presents a feasible semi-automatic strategy for spatially correct37

warping of quantitative information even in difficult and artefacted cases.38

Word count: abstract: 250 & manuscript: 289139
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1. Introduction42

Deformable image registration (DIR) plays an important role in image-guided adaptive43

radiotherapy. Currently, it is widely used for contour propagation, warping the planning44

contours to the anatomy of the day. The application of DIR for warping and/or45

accumulating quantitative information such as radiation dose or Hounsfield units is46

increasing [1–3]. In clinical workflows, the contours generated by DIR undergo visual47

inspection by an operator and may be adjusted. Thereby the underlying estimated48

deformation becomes locally invalid and in turn, the warping of quantitative information49

is inconsistent. A key challenge in incorporating automatic DIR into clinical workflows50

that involve warping quantitative information is to provide a suitable hands-on repair51

strategy for this scenario. Indeed, recent surveys of radiotherapy centers found that an52

important barrier to the clinical adoption and use of DIR was to determine what to do53

when a registration is unsatisfactory [4, 5]. On the other hand, due to this workflow,54

every daily image-guided adaptive radiotherapy treatment fraction has these operator-55

approved contours available.56

Contours have been previously used to guide image registration. Gu and colleagues57

proposed a contour-guided adaption of the image intensity-based demons algorithm[6].58

An additional term in the demons cost function matches the intensities of modified59

images constructed by incorporating one or multiple contour pair(s) onto the original60

images. This method has a high memory demand as it requires a new set of images61

for every contour used for guidance, and it is sensitive to the tuning of multiple free62

parameters. This algorithm is also focused on mono-modal image registrations. Multi-63

modal image registration is important for image-guided radiotherapy as it allows to64

combine modality-specific information from Computed Tomography (CT) and multi-65

contrast Magnetic Resonance (MR) images in the same reference frame. Multi-modal66

deformable image registration remains a particularly challenging task for state-of-the-art67

DIR algorithms. Recently, contours were used to segment part of the images to consider68

for registration, resulting in a transformation per organ that was validated for dose69

warping [7]. Alam and colleagues used an algorithm that optimizes both image similarity70

and structure guidance [8]. The algorithm is shown to improve contour overlap compared71

to rigid registration and subsequently applied to dose accumulation. In other work, a72

multi-modal contour-guided algorithm was shown to improve contour-propagation [9].73

The algorithm is slower, at about 15 minutes per registration. A commercial registration74

solution exists that can combine the matching of image similarities with a minimization75

of contour surface distances [10].76

The adoption of deep learning segmentation in the clinic is increasing [11–13].77

These automatically generated contours can also be used as input for registration78

methods (after manual validation). In that way, this information can be used for the79
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contour-propagation of structures that are not segmented and for warping quantitative80

information in accordance with these structures.81

We present a solution for integrating operator-validated or corrected contours into82

the registration for consistent dose warping and/or accumulation. Our proposed method83

is fast (Graphical Processing Unit (GPU) accelerated) and multi-modal. We validate84

our algorithm for multiple anatomies, deformation patterns and image modalities using85

multiple benchmarks relevant to adaptive image-guided radiotherapy. We explicitly86

tested its application to the warping of quantitative information such as dose or87

Hounsfield units.88

2. Materials and methods89

2.1. Proposed registration algorithm90

To incorporate contour information in the deformable image registration process, we

combined the image data fidelity term D and regularization term R of EVolution [14]

with an optical flow data fidelity term on the binary masks of the contours [15]:

ECG =

∫
Ω

Dimages(Ir, Im, u⃗) + β · Dcontours(Cr, Cm, u⃗) + α · Rsmoothness(u⃗)

=

∫
Ω

exp (f(u⃗, Ir, Im)) + β(∇Cm · u⃗+ Cm − Cr)
2 + α

(
||∇⃗u1||22 + ||∇⃗u2||22 + ||∇⃗u3||22

)
,

(1)

with

f(u⃗(r⃗), Ir, Im)) = −

∑
s⃗∈Γ(r⃗)

∣∣∣∇⃗Ir(s⃗) · ∇⃗Im(s⃗+ u⃗(s⃗))
∣∣∣∑

s⃗∈Γ(r⃗) ∥∇⃗Ir(s⃗)∥2∥∇⃗Im(s⃗+ u⃗(s⃗))∥2
, (2)

where u is the deformation vector field with components u1,2,3, Ir,m are the reference91

and moving images, Cr,m the reference and moving contours, and Γ(r⃗) is a neighborhood92

around r⃗. There are two free parameters weighting the contour guidance (β) and93

regularization (α). The performance of the algorithm was investigated for α ∈94

[0.4, 1.2], β ∈ [0.5, 2.5] and α = 1.0 and β = 2.0 were used for all experiments in95

this manuscript.96

We used an iterative fixed-point scheme on the Euler-Lagrange equations derived97

from equation 1. Their derivations are given in Supplementary Material A. The98

registration was performed using a course-to-fine scheme, starting the iterations on99

the 16-fold downsampled images and contours, and upsampling with factors of two. We100

used iterative refinement, restarting the registration process 50 times at each resolution101

level. Each iteration was stopped when the average variation of the motion magnitude102

from one update to the next was smaller than 10−3 voxels. The deformations from the103

previous refinement iteration were then used as a starting point [16].104

The algorithm was implemented using the Compute Unified Device Architecture105

(CUDA) and executed on a Nvidia Quadro RTX 5000 graphics card.106
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Table 1: Overview of the test data used, with the experiment name indicating

its relevance, the organ contour(s) used for guidance and evaluation of contour

correspondence, the modalities and image types involved, and the evaluation criteria

used. Evaluation criteria are the Hausdorff distance (HDD), Jacobian determinant (JD,

evaluated on the indicated contour), target registration error (TRE), endpoint error

(EE), and dose warping error (DE).

Experiment name Contours Modalities Evaluation

Large complex deformations Prostate 3D T2w MRI HDD, JD

Large complex deformations Lungs 3D CT HDD, JD, TRE

Signal dropout Prostate 3D cine MRI HDD, JD

Signal dropout simulation Prostate 3D cine MRI HDD, JD, EE, DE

Multi-modal Liver, spleen, kidneys 3D CT & 3D T1w MRI HDD, JD

Cross-contrast simulation Prostate 3D DIXON MRI HDD, JD, EE

2.2. Helmholtz-Hodge decomposition107

Using contour-guidance may introduce the risk of over-constraining, leading to108

anatomically implausible deformations. Therefore, we introduced the Helmholtz-Hodge109

decomposition as an optional post-processing step [17–19]. This decomposes any vector110

field into three components: a curl-free component, a divergence-free component, and111

a harmonic remainder that is both curl-free and divergence-free. The details of its112

derivation and computation are presented in Supplementary Material B. The Helmholtz-113

Hodge decomposition thus provides local control over the registration result, allowing114

to demand incompressible (i.e. divergence-free) deformations in incompressible regions,115

to potentially resolve the risk of over-fitting.116

2.3. Test data and evaluation methods117

We tested our algorithm on experiments representing misregistrations of different118

origins: large and complex deformations; a signal dropout; and cross-contrast or multi-119

modal registrations. These experiments are discussed in detail below. An overview120

of the anatomies, modalities, and evaluation criteria used for the experiments can be121

found in Table 1. For all datasets, we evaluated the contour correspondence using122

the mean distance to agreement and the Hausdorff distance [20] and the anatomical123

plausibility using the range of the Jacobian determinant on incompressible organs. For124

the simulated datasets, we evaluated the voxelwise endpoint error [21], i.e. the Euclidean125

distance between the benchmark and estimated vector for each voxel, and dose warping126

error. Additional details of the evaluation criteria and acquisition parameters used are127

provided in Supplementary Material C and D.128

Our proposed contour-guidance algorithm was compared to the original EVolution129



Integration of operator-validated contours in dose accumulation 5

implementation ‡ and to the mutual-information B-spline algorithm from the openly130

available Elastix toolbox [22, 23]. Details on the parameters used are given in Supple-131

mentary Material E. We compared the results both with and without the Helmholtz-132

Hodge decomposition. We performed statistical testing using the paired t-test.133

134

Large and complex deformations datasets. Using cone-beam CT linac systems [24] or135

the MR-linac [25–27], treatment plans can be updated to the anatomy of the day. Im-136

age registration can be used to propagate the contours to the new anatomy, and to137

perform dose accumulation. This can be challenging when large day-to-day anatomical138

variations occur. We used pretreatment (T2w) MR and daily MR scans for 20 prostate139

cancer patients (5x7.25Gy) with delineations of the bladder, prostate and rectum on140

both image sets made by experienced radiation oncologists. Ethical approval for use of141

all internally acquired patient data was provided by the Ethics Board of the University142

Medical Center Utrecht.143

Registration of thoracic inhale to exhale images represents a challenge for image144

registration due to the large magnitude of the deformations as well as their complex145

nature at the lung-liver interface and the sliding motion between the lungs and the ribs.146

We tested our algorithm on twenty thoracic 4DCT image pairs from the DIR-lab and147

COPD-gene datasets§ [28, 29]. For images of full inhale and full exhale, 300 manually148

annotated anatomical landmarks are available to quantify the target registration error.149

An experienced staff member delineated the lung contours on both image sets.150

151

Signal dropout datasets. With the MR-linac, the patient’s anatomy can be imaged152

during treatment. This can be used to track the tumor and to reconstruct the deliv-153

ered dose. Typically, this is done with bSSFP-sequences that offer sufficient anatomical154

detail for organ tracking combined with low acquisition and reconstruction times. The155

problem is that these sequences are prone to susceptibility artefacts, caused e.g. by gas156

pockets in the rectum. These artefacts may impact the registration accuracy, demanding157

manual corrections.158

We tested the algorithm on a 4D cine-MR series acquired during treatment of a159

prostate cancer patient on the 1.5T MR-Linac Unity system (Elekta AB, Stockholm,160

Sweden) installed at the UMC Utrecht, The Netherlands. During imaging, a signal161

dropout appears due to a gas bubble passing through the rectum, see Figure S1 in the162

Supplementary Material.163

To quantify the accuracy of the resulting deformation vector field, we also simulated164

a cine-MR with a synthetic signal dropout for a prostate cancer patient. First, we simu-165

lated a clinically observed and anatomically plausible rectal filling organ movement [30]166

using the biomechanical modeling software FEBio [31]. Thereafter an artificial signal167

dropout was created on the moving image. The resulting image is shown in Figure S1168

‡ http://bsenneville.free.fr/RealTITracker/
§ https://med.emory.edu/departments/radiation-oncology/research-laboratories/deformable-image-

registration/index.html
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in the Supplementary Material. The mean planned dose on the prostate for this patient169

was 62.6 Gy.170

171

Multi-modal and cross-contrast datasets. CT-to-MR registration is needed in radio-172

therapy to combine information from both of these modalities. Especially for adaptive173

radiotherapy on the MR-linac, it is essential to warp the electron density or planned174

dose distribution from the planning CT to the MR of the anatomy of the day. In the175

lower abdomen, a lot of anatomical changes can happen that make for a challenging176

registration task that in turn may lead to corrections in the propagated contours. We177

used abdominal CT and MR scans for 8 patients from the Learn2Reg challenge∥ [32].178

The data is modified from The Cancer Imaging Archive project [33–36] and manual seg-179

mentations of the liver, spleen, right kidney and left kidney are added by the organizers.180

We have cropped the images for a matching field of view.181

To quantify the accuracy of the resulting deformation vector field, we also simulated182

a cross-contrast experiment using a set of DIXON images of a prostate cancer patient.183

These images are acquired in the same anatomical state, allowing the simulation of the184

deformation of one of the images with a known benchmark. A typically observed prostate185

deformation was simulated using biomechanical modeling software FEBio, resulting in186

the prostate moving in the anterior and caudal direction. The in-phase image was187

deformed to create the moving image and the water-only image was used as the reference188

image.189

3. Results190

A visual comparison of a thorax CT-to-CT registration with and without contour-191

guidance shows that in particular the caudal boundary of the lungs matched better when192

using contour-guidance, see Figure 1. Also for MR-to-MR and MR-to-CT registrations,193

an improved contour and image overlap is visible, see Figures S2 and S3 in the194

Supplementary Material. For all three experiments, the case with results closest to195

the mean of the dataset is shown.196

The proposed algorithm was relatively stable with respect to the free parameters197

α and β, see Figures S6, S7, and S8 in the Supplementary Material. The difference in198

error between the used configuration and the optimal one was low at 6 to 8%.199

The GPU-accelerated EVolution and GPU-accelerated contour-guided EVolution200

were considerable faster than Elastix, see Table S3 in the Supplementary Material.201

Using contour-guidance decreased the registration time for the prostate and abdomen202

anatomies, but increased the time for the thorax anatomies.203

3.1. Contour correspondence and anatomical plausibility204

∥ https://learn2reg.grand-challenge.org/Learn2Reg2021/
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Table 2: Mean distance to agreement in mm for the different experiments when using

no registration, Elastix, EVolution without contour-guidance, the proposed algorithm

with contour-guidance, and the proposed algorithm with contour-guidance and the

Helmholtz-Hodge decomposition (HHD). For the experiments with multiple registrations

the mean (standard deviation) is shown. Contour-guidance reduces the distance by

a factor of 7.0 on average (range 1.3-13.7), compared to the best algorithm without

guidance. This was statistically significant for all experiments (p < 0.01). The contour

overlap after the HHD is still significantly (p < 0.03) improved. The mean distance

to agreement split per organ for the abdomen experiment is shown in Table S2 in the

Supplementary Material.

Experiment No DIR Elastix EVolution Contour-guidedWith HHD

Large complex deformations prostate 9.8 (12.1) 1.1 (1.1) 0.83 (0.96) 0.13 (0.21) 0.15 (0.20)

Large complex deformations thorax 2.0 (2.2) 0.05 (0.03) 0.12 (0.13) 0.01 (0.01) 0.08 (0.02)

Signal dropout prostate 0.98 0.70 0.41 0.03 0.10

Signal dropout simulation prostate 0.60 0.08 0.10 0.06 0.05

Multi-modal abdomen 13.3 (12.0) 6.0 (12.5) 4.6 (9.3) 0.7 (2.4) 1.8 (2.9)

Dixon cross-contrast simulation prostate 7.9 0.61 0.44 0.05 0.11

The mean distance to agreement decreased by a factor of 1.9 on average by using contour-205

guidance, see Table 2. After the Helmholtz-Hodge decomposition the contour overlap206

was still considerably improved. For the Hausdorff distance, qualitatively similar results207

were found, see Table S1 in the Supplementary Material.208

The Helmholtz-Hodge decomposition decreased the non-outlier range of the209

Jacobian determinant by a factor of 2.0 on average, see Table S3 in the Supplementary210

Material. It also brought the values closer to the benchmark ranges for the biomechanical211

simulations. The decomposition furthermore resolved any undesired negative (outlier)212

values that indicate the estimation of tissue folding.213

3.2. Registration errors and dose warping errors214

For the manually annotated 4DCT, the mean target registration error over the 20 cases215

was 15.9 mm before registration, see Figure 2. Using Elastix and EVolution this became216

4.3 and 5.6 mm. Including contour-guidance decreased the error by a factor of 1.3 and217

1.8, to 3.2 mm. Applying the Helmholtz-Hodge decomposition kept the mean error at218

3.2 mm.219

For the simulated cross-contrast prostate experiment, the mean endpoint error on220

the prostate plus its vicinity of 2 mm before registration was 25.7 mm, see Figure 3.221

Using Elastix this became 10.6 mm, and using EVolution this became 5.9 mm. Including222

contour-guidance, the mean error is reduced by an additional factor of 2.2, to 2.8 mm.223

After the Helmholtz-Hodge decomposition, the mean error slightly increased to 3.0 mm.224

When considering a larger area of the prostate and the surrounding 10 mm of tissue,225
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contour-guidance reduced the mean error by a factor of 1.7 to 2.9 mm, indicating that226

it does not lead to unrealistic deformations outside the guiding contour.227

For the simulated signal dropout, the mean endpoint error on the prostate plus its228

vicinity of 2 mm before registration was 4.8 mm, see Figure S4 in the Supplementary229

Material. This became 1.3 mm after using Elastix or EVolution. Using contour-230

guidance, the mean endpoint error decreased with an additional factor of 1.5 to 0.88231

mm. After performing the Helmholtz-Hodge decomposition, this was further lowered232

to 0.76 mm. The voxel-by-voxel dose error on the prostate plus vicinity decreased233

from 2.36 Gy (3.8% of the planned dose) to 0.47 Gy and 0.40 Gy, when using Elastix234

and EVolution, see Figure 4. Including contour-guidance decreased the mean dose235

error with an additional factor of 1.2, to 0.32 Gy. When applying the Helmholtz-236

Hodge decomposition, the mean dose error slightly decreased further and the maximum237

error decreased with a factor of 1.2. Also for the dose error on the rectal wall, using238

contour-guidance on the prostate decreased both the mean and maximum dose errors239

on this nearby organ-at-risk by a factor of 1.2, compared to the best algorithm without240

guidance, see Figure S5 in the Supplementary Material. Including the Helmholtz-Hodge241

decomposition decreased the error with a factor of 1.3.242

4. Discussion243

Using contour-guidance significantly increased contour overlap. Importantly, it244

significantly decreased the registration error and the dose warping error, compared to245

the algorithms without contour-guidance. These errors were evaluated on the contour246

used for guidance and its vicinity, ensuring no errors arise due to over-fitting or boundary247

inconsistencies.248

Our results confirm that the proposed algorithm can integrate operator-validated249

contours into the dose warping and accumulation process by matching deformation250

vector fields to these contours. Future work should focus on validating the algorithm251

for additional anatomies such as the abdomen. Including contour-guidance corrects252

the functional and the numerical scheme, aiding the convergence of the variational253

algorithm, resulting in a decrease in computation times for most data sets.254

The main difference between this work and previous studies is that we specifically255

design and validate the algorithm for its application to dose accumulation (as well as256

warping e.g. Hounsfield units). To our knowledge, this is the first study testing a257

contour-guided registration method on a voxel-by-voxel basis for its registration and258

dose warping performance. Additionally, our method is designed for and validated for259

multi-modal registrations (like [9]) while also GPU-accelerated and converging within260

a few seconds (like [10]. Furthermore/Compared to [7], we explicitly incorporate and261

integrate the contour information and generate a single transformation which makes our262

method well-suited for dose accumulation. Finally/Compared to [6], the algorithm is263

very stable with respect to the (additional) free parameter on a wide range of modalities264

and anatomies. We use the same configuration for all experiments, in contrast to the265
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algorithms without contour-guidance.266

The Helmholtz-Hodge decomposition post-processing step [17–19] decreased the267

(non-outlier) range of the Jacobian determinant by about a factor of two and resolved268

unwanted negative values. For incompressible tissues, like the prostrate on intra-fraction269

timescales, this brought the Jacobian determinants closer to the simulated benchmark270

and improved the registration, decreasing the mean and maximum errors.271

In many clinical radiotherapy situations where DIR is employed, operator-validated272

contours are available. Examples include daily plan adaption where contours are273

propagated to or re-segmented on the anatomy of the day. All adapt-to-shape plan274

adaption workflows on the MR-linac have validated contours available. With our275

proposed algorithm, it becomes possible to accumulate the dose for these workflows.276

An additional application is some inter-fraction registration problems where tissues are277

not conserved, and a voxel reclassification is needed for registration [37]. We expect that278

contour-guidance might prove useful in these cases as well, paving the way for additional279

instances where the warping of quantitative information can be applied. Finally, deep280

learning may be used for the automatic segmentation of contours to use for guidance.281

With our method, these contours can be used for warping the dose and CT, for plan282

comparison, and for treatment response assessment. Additionally, this can improve283

contour propagation for contours that are not automatically segmented. This may be284

useful as automatic segmentation can be slow and including additional structures for285

deep learning segmentation may require retraining. We are currently implementing the286

algorithm presented here in our clinical workflow to allow these operations.287

We introduce a solution for integrating (manually edited) contours in dose warping,288

matching the deformation vector field with operator-validated contours, and improving289

the registration performance. The multi-modal algorithm is fast and robust and290

ensures substantial contour overlap while improving the registration result as well as291

the warped dose. Importantly, no over-constraining errors are created by the contour-292

guidance. The algorithm can thus be used to warp doses and other quantitative293

information in accordance with operator-validated contours, providing a solution for294

adaptive radiotherapy workflows.295

Acknowledgments296

The collaboration project is co-funded by the PPP Allowance made available by297

Health∼Holland, Top Sector Life Sciences & Health, to stimulate public-private298

partnerships.299

References300

1. Chetty IJ and Rosu-Bubulac M. Deformable registration for dose accumulation.301

Seminars in radiation oncology. Vol. 29. 3. Elsevier. 2019 :198–208302



REFERENCES 10

2. Lowther NJ, Marsh SH, and Louwe RJ. Dose accumulation to assess the validity303

of treatment plans with reduced margins in radiotherapy of head and neck cancer.304

Physics and imaging in radiation oncology 2020; 14:53–60305

3. Murr M, Brock KK, Fusella M, Hardcastle N, Hussein M, Jameson MG, et306

al. Applicability and usage of dose mapping/accumulation in radiotherapy.307

Radiotherapy and Oncology 2023; 182:109527308

4. Hussein M, Akintonde A, McClelland J, Speight R, and Clark CH. Clinical use,309

challenges, and barriers to implementation of deformable image registration in310

radiotherapy–the need for guidance and QA tools. The British Journal of Radiology311

2021; 94:20210001312

5. Yuen J, Barber J, Ralston A, Gray A, Walker A, Hardcastle N, et al. An313

international survey on the clinical use of rigid and deformable image registration314

in radiotherapy. Journal of Applied Clinical Medical Physics 2020; 21:10–24315

6. Gu X, Dong B, Wang J, Yordy J, Mell L, Jia X, et al. A contour-guided deformable316

image registration algorithm for adaptive radiotherapy. Physics in Medicine &317

Biology 2013; 58:1889318

7. Bohoudi O, Lagerwaard FJ, Bruynzeel AM, Niebuhr NI, Johnen W, Senan S, et319

al. End-to-end empirical validation of dose accumulation in MRI-guided adaptive320

radiotherapy for prostate cancer using an anthropomorphic deformable pelvis321

phantom. Radiotherapy and Oncology 2019; 141:200–7322

8. Alam S, Veeraraghavan H, Tringale K, Amoateng E, Subashi E, Wu AJ, et al.323

Inter-and intrafraction motion assessment and accumulated dose quantification of324

upper gastrointestinal organs during magnetic resonance-guided ablative radiation325

therapy of pancreas patients. Physics and Imaging in Radiation Oncology 2022;326

21:54–61327

9. Rivest-Hénault D, Greer P, Fripp J, and Dowling J. Structure-guided nonrigid328

registration of CT–MR pelvis scans with large deformations in MR-based329

image guided radiation therapy. Clinical Image-Based Procedures. Translational330

Research in Medical Imaging: Second International Workshop, CLIP 2013, Held331

in Conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013, Revised332

Selected Papers 2. Springer. 2014 :65–73333

10. Weistrand O and Svensson S. The ANACONDA algorithm for deformable image334

registration in radiotherapy. Medical physics 2015; 42:40–53335

11. Wang R, Lei T, Cui R, Zhang B, Meng H, and Nandi AK. Medical image336

segmentation using deep learning: A survey. IET Image Processing 2022; 16:1243–337

67338

12. Savenije MH, Maspero M, Sikkes GG, Voort van Zyp JR van der, TJ Kotte AN, Bol339

GH, et al. Clinical implementation of MRI-based organs-at-risk auto-segmentation340

with convolutional networks for prostate radiotherapy. Radiation oncology 2020;341

15:1–12342



REFERENCES 11

13. Eppenhof KA, Maspero M, Savenije M, Boer J de, Voort van Zyp J van343

der, Raaymakers BW, et al. Fast contour propagation for MR-guided prostate344

radiotherapy using convolutional neural networks. Medical physics 2020; 47:1238–345

48346

14. Denis de Senneville B, Zachiu C, Ries M, and Moonen C. EVolution: an edge-347

based variational method for non-rigid multi-modal image registration. Physics in348

Medicine and Biology 2016; 61:7377–96. doi: 10.1088/0031-9155/61/20/7377.349

Available from: https://doi.org/10.1088%5C%2F0031-9155%5C%2F61%5C%350

2F20%5C%2F7377351

15. Horn BK and Schunck BG. Determining optical flow. Techniques and Applications352

of Image Understanding. Vol. 281. International Society for Optics and Photonics.353

1981 :319–31354

16. Brox T, Bruhn A, Papenberg N, and Weickert J. High accuracy optical flow355

estimation based on a theory for warping. European conference on computer vision.356

Springer. 2004 :25–36357

17. Polthier K and Preuß E. Variational approach to vector field decomposition. Data358

Visualization 2000. Springer, 2000 :147–55359

18. Fu T, Fan J, Liu D, Song H, Zhang C, Ai D, et al. Divergence-Free Fitting-Based360

Incompressible Deformation Quantification of Liver. IEEE Journal of Biomedical361

and Health Informatics 2020; 25:720–36362

19. Reich W, Hlawitschka M, and Scheuermann G. Decomposition of vector fields363

beyond problems of first order and their applications. Topological Methods in Data364

Analysis and Visualization. Springer. 2015 :205–19365
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5. Figures419

Full inhale (reference) Full exhale Elastix

EVolution Contour-guided With HHD

Figure 1: An example case for the experiment on large complex deformations of the

thorax with CT-to-CT registrations. A coronal slice of the full inhale and full exhale

images is shown (TRE before registration 10.9 mm), as well as the exhale image

registered to the inhale using Elastix (TRE 2.9 mm), the original EVolution (3.9), our

proposed contour-guided algorithm (1.7), and this contour-guided algorithm with the

Helmholtz-Hodge decomposition (HHD) on the body excluding the lungs (1.8). The

lung contours used for guidance are shown in white and the registered contours are

shown in red. In particular, the caudal side of the lungs is better aligned when using

contour-guidance.
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Target registration error for thoracic 4DCT

Figure 2: Box plot of the mean target registration error (TRE) for the large complex

deformations of the thorax CT-to-CT when using no registration, Elastix, EVolution

without contour-guidance, the proposed algorithm with contour-guidance, and the

proposed algorithm with contour-guidance and the Helmholtz-Hodge decomposition

(HHD). The 75th percentile and maximum for no registration are at 24 and 30 mm.

Contour-guidance on the lungs significantly (p < 10−4) decreases the mean error

compared to registration without guidance for all cases, on average by a factor of 1.3

and 1.8. The error after performing a Helmholtz-Hodge decomposition (HHD) is very

similar.
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Endpoint error on the prostate and its vicinity

Figure 3: Box plot of the endpoint error on the prostate and its vicinity of 2 mm for

the cross-contrast biomechanical simulation of a prostate MRI. Shown are the results

without registration, using Elastix, using EVolution without contour-guidance, our

algorithm with contour guidance, and the algorithm with contour-guidance combined

with the Helmholtz-Hodge decomposition (HHD). The maximum for no registration is

at 35 mm. Using contour-guidance significantly (p < 10−5) decreases the error, reducing

the mean error by a factor of 2.2, compared to EVolution. Including the HHD decreases

the non-outlier maximum error by a factor of 1.1.
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Dose error on the prostate and its vicinity

Figure 4: Box plot of the dose error on the prostate and its vicinity of 2 mm for

the simulated signal dropout experiment. Shown are the results without registration,

using Elastix, using EVolution without contour-guidance, our algorithm with contour

guidance, and the algorithm with contour-guidance combined with the Helmholtz-Hodge

decomposition (HHD). The 75th percentile of the error for no registration is 2.5 Gy. The

(outlier) maxima are 33, 11, 5.0, 6.0, and 4.2 Gy, respectively. Using contour-guidance

significantly (p < 10−5) decreases the error, decreasing the mean with a factor of 1.2.

The Helmholtz-Hodge decomposition (HHD) decreases the non-outlier maximum error

with a factor of 1.1.
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