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13

Abstract14

Background: Deformable image registration is increasingly used in radiotherapy to15

adapt the treatment plan and accumulate the delivered dose. Consequently, clinical16

workflows using deformable image registration require quick and reliable quality as-17

surance to accept registrations. Additionally, for online adaptive radiotherapy, quality18

assurance without the need for an operator to delineate contours while the patient is19

on the treatment table is needed. Established quality assurance criteria such as the20

Dice similarity coefficient or Hausdorff distance lack these qualities and also display a21

limited sensitivity to registration errors beyond soft tissue boundaries.22

Purpose: The purpose of this study is to investigate the existing intensity-based qual-23

ity assurance criteria structural similarity and normalized mutual information for their24

ability to quickly and reliably identify registration errors for (online) adaptive radio-25

therapy and compare them to contour-based quality assurance criteria.26

Methods: All criteria were tested using synthetic and simulated biomechanical de-27

formations of 3D MR images as well as manually annotated 4D CT data. The quality28

assurance criteria were scored for classification performance, for their ability to predict29

the registration error, and for their spatial correlation with the registration error.30

Results: We found that besides being fast and operator-independent, the intensity-31

based criteria have the highest area under the receiver operating characteristic curve32

and provide the best input for models to predict the registration error on all data sets.33

Structural similarity furthermore provides spatial information with a higher spatial34

correlation to the benchmark than the inverse consistency error, Jacobian determi-35

nant, and curl magnitude.36

Conclusions: Intensity-based quality assurance criteria can provide the required con-37

fidence in decisions about using mono-modal registrations in clinical workflows. They38
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thereby enable automated quality assurance for deformable image registration in adap-39

tive radiotherapy treatments.40

41

I. Introduction42

Radiotherapy is increasingly moving towards image-guided adaptive therapy workflows,43

which aim to compensate for the effect of motion both in between as well as during ther-44

apy sessions. To this end, the patients’ internal anatomy can be imaged using cone-beam45

CT1 or MRI2,3 before and during treatment, which enables deformable image registration46

algorithms to extract anatomical motion information from these images. This information47

can subsequently be used to mitigate the effect of motion. To use motion information in48

clinical workflows, the motion estimations need to be reliable, accurate, and precise. Incor-49

rect estimations can accumulate over time and decrease treatment quality and compromise50

patient safety. Additionally, the quality assurance needs to be fast, as the patients’ anatomy51

can continue to change during assessment. Better tools for quality assurance of registration52

results has been identified as the main factor that may allow centres to use DIR more in53

clinical practise4.54

Commonly used quality assurance criteria that are advised for deformable image reg-55

istration by the AAPM TG 132 Report5 like the Dice similarity coefficient and Hausdorff56

distance score registrations by indicating some form of contour correspondence with a single57

number. While for applications like contour propagation and MLC-tracking this has been58

found to be sufficient, there are severe disadvantages for scoring deformable image registra-59

tions for dose accumulation and/or plan adaptation in this way. First, these criteria lack60

speed as they need two (sets of) delineated contours. This is labor intensive and time con-61

suming, in particular for multi-slice or 3D data. Therefore, these criteria are not suited for62

online and/or real-time applications with the patient on the treatment table. Second, as63

these criteria only score the delineations, they lack reliability by being insensitive to regis-64

tration errors in the soft tissue beyond the contoured organ boundaries. Furthermore, as65

they output a single number, these criteria do not provide any spatial information on the66

registration errors. Also the advised target registration error of anatomical landmarks anno-67

tated by experts suffers from similar shortcomings. Selecting the appropriate landmarks is a68
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laborious and time-consuming process and a lot of landmarks covering the region of interest69

are required as they provide an inherently local description of the registration performance.70

The need for reliable quality assurance is further reinforced by the recent success of deep71

neural networks (DNNs) in medical image processing. In the recent past, DNN solutions72

have been employed for deformable image registration6–8 as well as for quality assurance of73

image registration9–11. A limitation is that DNNs frequently lack several desirable proper-74

ties of probabilistic models, such as uncertainty quantification and priors as well as a lack75

of transparency and that generalization of the trained models can be difficult. To facilitate76

the clinical translation of DNNs, these disadvantages can be largely alleviated if an indepen-77

dent quality assurance based on deterministic methods as an additional safeguard layer is78

performed.79

In this paper, we evaluate therefore four deterministic contour-based criteria and two80

deterministic and fast operator-independent intensity-based quality assurance criteria on81

their ability to serve as the basis of a binary classifier to accept registrations for further82

clinical use, and to serve as the input for a model to predict the registration error. We also83

assess their potential to provide spatial information.84

II. Methods85

We compared four contour-based criteria and two intensity-based criteria. The contour-based86

criteria are: the Dice similarity coefficient12, the Jaccard similarity index13, the Hausdorff87

distance14, and the mean Hausdorff distance15. The operator-independent intensity-based88

criteria are normalized mutual information16 and structural similarity17. The contour-based89

criteria and normalized mutual information output a single scalar. Structural similarity90

provides a value for each voxel and can therefore also give the distribution of errors on a91

region of interest or a map of the registration error, indicating where a registration fails.92

As the benchmark for quality assurance we used the endpoint error18 or -if no benchmark93

deformation vector field was available- the target registration error. To compare the criteria,94

we average the endpoint error, target registration error, and structural similarity over a95

contour-area and for normalized mutual information only consider the voxel intensities in96

this area.97

II. METHODS



Intensity-based quality assurance: Printed July 7, 2022 page 3

All criteria are tested on three different data sets. First, on a set of synthetically de-98

formed 3D MR images of prostate anatomies for ten patients. This allows us to use the99

endpoint error as a benchmark and provides a high number of deformations. Acquisition100

details can be found in the supplementary material. The synthetic deformations are intro-101

duced by randomly displacing every 30th voxel in all three dimensions and using B-spline102

interpolation to determine the deformations of intermediate voxels. We generate 500 defor-103

mations for each of the 10 patients, drawing voxel displacements from a normal distribution104

with a standard deviation of 2 mm. To test the influence of the signal-to-noise ratio (SNR),105

we synthetically added increasing levels of Rician noise to the images, lowering their SNR106

from 12 to 9, 6, and 4, respectively.107

Secondly, the criteria are tested on 3D MR datasets subjected to simulated biomechani-108

cal deformations. These simulations take into account the tissue-specific physical properties109

and represent an approximation to typical physiological deformations. This provides an110

anatomically correct benchmark. For a prostate patient, we simulated four motion patterns111

that are typically observed during treatments of 6 to 10 minutes using the finite element112

modeling software FEBio19. The motion patterns represent a rectal filling (maximum aver-113

age displacement of the prostate of 4.3 mm), a bladder filling (3.2 mm), the average observed114

motion of a prostate during treatment (1.5 mm), and residual motion only (0.6 mm). These115

simulations were then used to create a 4D cine MR image series consisting of 11 images116

by deforming a 3D MR scan of a prostate cancer patient treated on the MR-Linac Unity117

system (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht. For more details118

of the motion patterns and finite element modeling, see20. Subsequently, the cine MR im-119

ages are registered using five different variational DIR algorithms previously proposed in the120

context of MR guided radiotherapy21–25. To increase the size of the dataset, registrations121

were also performed on these images after 2-, 3-, and 4-fold downsampling or after adding122

four levels of Rician noise. In total, 1600 registration results have been investigated for this123

biomechanical simulations experiment. For these first two datasets the clinically delineated124

and the deformed prostate contours are used to compute the contour-based criteria and to125

average the endpoint error and intensity-based criteria over.126

Finally, the quality assurance criteria are tested on ten thoracic 4D CT datasets from127

the DIR-lab database 1. This publicly available dataset provides a spatially sparse anatomi-128

1See https://med.emory.edu/departments/radiation-oncology/research-laboratories/deformable-image-
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cally plausible benchmark. For images of full inhale and full exhale, 300 manually annotated129

anatomical landmarks are available to quantify the displacement26,27. As for the biome-130

chanical dataset, we increase the size of this dataset eightfold by downsampling and adding131

noise. In addition, we use the five registration algorithms twice with different parameters.132

In total, 800 registrations have been investigated for this data set. Expert delineated lungs133

in full inhale and full exhale state are used to compute the contour-based criteria and to134

average the endpoint error and intensity-based criteria over.135

We first evaluated the quality assurance criteria as the basis of a binary classifier for ac-136

cepting deformable image registrations for clinical use. To this end, the mean endpoint error137

is used to divide the data into acceptable and unacceptable cases. We then trained a logistic138

regression model on the different quality assurance criteria. For the synthetic prostate data139

10-fold cross-validation is used with one unseen patient in each test set. For the biomechan-140

ically simulated data 10-fold cross-validation with a random proportion of the data in the141

test set is used. And for the manually annotated data, 5-fold cross-validation is used with142

two previously unseen patients in each test, averaging over all possible combinations. The143

models are then tested and the area under the receiver operating characteristic (AUROC)144

curve is determined. The AUROC is the probability that for a randomly chosen acceptable145

and unacceptable case the classifier identifies them correctly.146

Secondly, we compare the prediction performance for the investigated criteria. For this,147

we train a linear regression model to predict a registration error in mm based on the output148

of the different criteria. Then we evaluate the Pearson correlation between the predicted149

registration error and true registration error, and the absolute difference between the two150

(which we call prediction error). The same training and test sets as listed above are used151

for the synthetic and simulated data. For the manually annotated data we used 10-fold152

cross-validation with one unseen patient in the test set.153

Finally, we compared the spatial information in the applicable quality assurance criteria.154

To this end, we train linear regression models using the voxel-by-voxel output from structural155

similarity, inverse consistency, the absolute deviation of the Jacobian determinant from unity156

|1 − J(u + 1)|, and the curl magnitude ∥∇ × u∥2. The benchmark is the voxel-by-voxel157

endpoint error. Using 10-fold cross-validation, we evaluate the models by computing the158

registration/index.html
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gamma criterion28. We test the criteria on the biomechanical simulation of the prostate159

anatomy as it has known and realistic deformations and the prostate is modeled to have160

a Jacobian close to unity and close to vanishing curl magnitude. We use all voxels from161

a cube of 75x75x75 mm surrounding the prostate (1.6·105 voxels) for all datapoints where162

the average endpoint error is in the top 10%, for memory purposes. For a set of gamma163

tolerances, we score the average gamma criterion over the cube as well as the percentage of164

voxels passing the gamma criterion (γ ≤ 1).165

III. Results166

Table 1 shows the results for the synthetic deformations. The intensity-based criteria have167

the highest areas under the receiver operating characteristic curve (AUROC), and their168

prediction models show the highest correlation with the endpoint error and the lowest pre-169

diction error. This deviation from the true endpoint error is at least 1.5 times lower for both170

intensity-based criteria than for any contour-based criterion. For all criteria, the mean slope171

of their linear regression is lower than 1. For NMI (0.75) and SSIM (0.76) the slope is much172

closer to one than for any contour-based criterion (0.32 at most). This indicates a better173

sensitivity and smaller underestimation of the registration error. The full receiver operat-174

ing characteristic curve can be found in Figure S1 in the supplementary material. Figure175

1 shows a linear regression analysis for the prediction performance on a single unseen test176

patient. The patient with results closest to the mean of all ten patients as reported in Table177

1 is shown. We can observe the higher correlations, smaller errors, and better slope align-178

ments for the intensity-based criteria. The inter-patient performances for Dice and Jaccard179

shown here are considerably worse than their intra-patient performances (not shown). For180

the intensity-based criteria this difference is relatively small. For all criteria, the AUROC181

decreases with decreasing signal-to-noise-ratio (SNR), see Table S3 in the supplementary182

material. However, even on images with an SNR of 4, the intensity-based criteria perform183

better than all contour-based criteria do on the original images with an SNR of 12. The184

results are qualitatively the same for different choices of the cutoff to separate acceptable185

and unacceptable registrations, see Table S4 in the supplementary material.186

For the biomechanically simulated deformations of the prostate (Table A1 in the supple-187

mentary material), we find qualitatively similar results. The intensity-based criteria outper-188
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Table 1: Classification and prediction results
for the quality assurance criteria evaluated on
the prostate for synthetic deformations. The
results are averaged over the ten test patients
(and all data points). Shown are the area un-
der the receiver operating characteristic curve
(AUROC), the Pearson correlation between the
predicted and true endpoint errors, and their
absolute difference as the prediction error.

QA criterion AUROC Correlation Prediction error (mm)
Dice similarity coefficient 0.84 0.75 0.37
Jaccard index 0.84 0.75 0.37
Hausdorff distance 0.71 0.49 0.38
Mean Hausdorff distance 0.78 0.62 0.36
Mutual information 0.92 0.91 0.24
Structural similarity 0.92 0.91 0.22

form all contour-based criteria on all evaluations. The mean prediction errors for the NMI189

(0.04 mm) and the SSIM (0.07 mm) are at least halve as low as those for the contour-based190

criteria.191

The gamma criterion evaluation results for the spatial correspondence are shown in192

Table 2 and Table S5 in the supplementary material. For any choice of tolerances, structural193

similarity has a mean gamma value at least a factor 1.4 lower than any other criterion.194

On average, the percentage of voxels passing the criterion is at least a factor of 1.2 higher195

than for any other criterion. For a 10%/2mm tolerance, (where 10% represents an error of196

0.23 mm on average), the gamma pass rate for structural similarity is 95%. In Figure 2, a197

typical example of a transversal slice of the true and predicted endpoint errors from structural198

similarity, the inverse consistency error, Jacobian determinant, and curl magnitude is shown.199

We can observe the ability of the model based on structural similarity to localize the largest200

registration error, resulting in a higher gamma pass rate.201

For the manually annotated 4D CT thoracic data sets (Table A2 in the supplementary202

material) the results are qualitatively similar to those above. The intensity-based criteria203

score best and at least as good as the contour-based on all evaluations. The mean prediction204

error for normalized mutual information is at least 1.3 times lower than those for the contour-205

based criteria.206

III. RESULTS
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Figure 1: Prediction performance for a sin-
gle test patient of the synthetic deformations
for the Dice similarity coefficient (DSC), mean
Hausdorff distance (MHD), normalized mutual
information (NMI), and structural similarity in-
dex (SSIM). Plotted are the predicted endpoint
errors and the true endpoint errors. A linear re-
gression analysis is shown, and the Pearson cor-
relation coefficient r is indicated. We can see
the higher correlation that is also more aligned
with the line with slope 1 for the intensity-
based criteria. They also show a smaller spread
around this line.

Table 2: Gamma criterion pass rate percentage evaluated on a box surrounding the prostate for different
tolerances for the criteria holding spatial information.

QA criterion 5%/1mm 5%/2mm 10%/1mm 10%/2mm 10%/3mm 20%/2mm
Structural similarity 75 81 92 95 97 98
Inverse consistency 50 56 79 82 85 96
Jacobian determinant 56 62 83 86 89 97
Curl magnitude 57 63 83 85 88 96
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Figure 2: Transversal slice of the cube used
for evaluation of the spatial correspondence.
Shown are the reference image, the true end-
point error and the predicted endpoint errors
using structural similarity, inverse consistency
error, Jacobian determinant, and curl mag-
nitude. The prostate contour is shown in
white. The gamma pass rate percentage for
10%/2mm over the cube is indicated in the ti-
tle. The datapoint with the results closest to
the mean over the cross-validation is shown.

III. RESULTS
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IV. Discussion207

In this work, we evaluated multiple existing criteria on their capabilities for quality assur-208

ance of mono-modal image registration for MRI and CT. We have compared the operator-209

independent intensity-based normalized mutual information and structural similarity to the210

more established contour-based Dice similarity coefficient, Jaccard index, Hausdorff distance,211

and mean Hausdorff distance, and to the DVF-based spatial criteria inverse consistency er-212

ror, Jacobian determinant, and curl magnitude. Both intensity-based criteria outperform213

all contour-based criteria on almost all datasets and evaluations. Across the three datasets,214

the prediction error is at least a factor of 1.6, 2.7 and 1.1 lower for the intensity-based crite-215

ria compared to the best performing contour-based criterion. This confirms the hypothesis216

that using the additional information in image intensities has benefits for quality assurance.217

Importantly, this comparatively high performance is maintained even for low SNR.218

Additionally, structural similarity provides a spatial map of registration errors. This219

allows to observe distributions of the SSIM over a volume or identify local failures of im-220

age registration. We found its spatial correspondence to the benchmark to be considerably221

higher than conventional DVF-based spatial criteria. The second-best is the Jacobian deter-222

minant, but it misses registration errors not arising from the estimation of physiologically223

implausible deformations. Structural similarity does require image contrast to identify local224

misregistrations. This spatial map gives rise to possibilities such as to: only flag registration225

errors in regions where the planned dose (gradient) is above a particular threshold, find a226

map of the registration error multiplied by the planned dose (gradient), or spatially vary227

the cutoff value for the SSIM when using it to classify registrations. Additionally, when a228

registration is correct in the majority of the evaluated volume but fails locally, an aggre-229

gated single number lacks sensitivity. An error map or distribution might be able to reveal230

local misregistrations in this case. The spatial distribution thereby enables semi-automatic231

quality assurance by indicating problematic regions for an operator to investigate.232

The advantage of using synthetic and simulated deformations is that the endpoint error233

can be used as the benchmark quality assurance criterion. The disadvantage is that for these234

deformed images the noise in the original image is deformed in the same way as the signal and235

(transient) image artifacts will appear in both images. Therefore these images are expected236

to be more similar than separately acquired independent images. For this reason, and to test237
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against a lower soft-tissue contrast, we also included 4D CT images with manually annotated238

landmarks. Their disadvantage is that the target registration error is only locally defined239

and prone to inter-observer differences. The intensity-based criteria showed consistently high240

performances also for this different contrast with separately acquired images. We should241

note that the results for the intensity similarity measures may depend on the presence of242

artefacts and other inconsistencies. All experiments in this paper were done on mono-modal243

images. Mono-modal image registration is an important aspect of real-time/online adaptive244

radiotherapy where fast and (semi-)automated quality assurance is required. Intensity-based245

quality assurance criteria are not suitable to validate cross-contrast image registrations. In246

these cases, criteria based on the expertise of the operator or potentially DNN solutions247

provide better options.248

V. Conclusion249

The presented study analyzed different contour-based and intensity-based quality assurance250

criteria for deformable image registration on a range of mono-modal data sets. Intensity-251

based criteria outperform contour-based criteria on almost all evaluations in terms of clas-252

sification of unacceptable registrations and prediction of registration errors on both MRI253

and CT data. Both normalized mutual information and structural similarity are operator-254

independent, fast, robust, and show the highest specificity and sensitivity to detect misreg-255

istrations.256

Between the two, structural similarity has the advantage of providing spatial information257

or a distribution of registration errors. Overall, structural similarity presents itself as a258

sound choice for fast (semi-)automated quality assurance to decide on accepting mono-modal259

registrations in clinical workflows. It is especially suitable for workflows under time-pressure260

or aiming to reduce operator burden.261
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