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Abstract

Dynamic mode decomposition (DMD), based on Koopman analysis, is a
tool capable of spatiotemporal analysis for various spatial resolutions, from
one-dimensional signals to three-dimensional computational fluid dynamics
(CFD) and experimental data. Outputs of the DMD consist of amplitudes,
frequencies, decaying rates, and spatial modes. However, the e↵ects of spa-
tial resolution (time-series data in one-dimensional signal and spatial grid
in two-dimensional data) and quantitative analysis of DMD are limited to
one-dimensional signal data. In this study, the e↵ects of spatial resolution
with a fixed time scale of data and correction using scaling factors 2/

p
A on

DMD amplitudes and
p
A on DMD spatial mode strengths are investigated,

where A is the number of the time-series data in one-dimensional signal or the
number of the spatial grid in two-dimensional data. First, proofs of the scal-
ing factors for one-dimensional(line layout) and two-dimensional(grid layout)
data are presented. Second, the e↵ect of spatial resolution on the amplitudes
and spatial mode strengths and their scaled results are confirmed using one-
dimensional artificial signal data, two-dimensional artificial signal field data,
two-dimensional vortex shedding simulation data, and two-dimensional pul-
sating flow experimental data with various data resolutions. The results
show that the amplitude increases proportionally with the spatial resolution,
and the spatial mode strength is inversely proportional to the time series or
spatial resolution of the data in all cases. As a result of applying the scal-
ing factors to one-dimensional artificial signal and two-dimensional artificial
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signal field data, the amplitudes and spatial modes contain the same values
regardless of the change in spatial resolutions. The scaled amplitudes and
spatial mode strengths on vortex shedding simulation and two-dimensional
laminar pulsating jet show good agreements with slight di↵erences, regardless
of the spatial resolution change. The proposed scaling factor can be applied
to compare data quantitatively obtained with di↵erent spatial resolutions.

Keywords: Dynamic mode decomposition, Spatial resolution, Scaling
factor, DMD amplitudes, DMD spatial mode

1. Introduction

In fluid dynamics, many flow fields contain oscillations, instabilities, and
spatially or temporally unsteady behaviors. Such phenomena can be under-
stood through flow-field measurements. Various measurement methods such
as pressure [1, 2], velocity [3, 4, 5, 6, 7], temperature [8, 9, 10], and chemilu-
minescence in the case of reacting systems [11, 12, 13] have been employed as
e↵ective diagnostics. The data acquired from these measurements have vari-
ous sizes or grids, ranging from one-dimensional to three-dimensional shapes.
Of course, there are various methods for analyzing these data.

The most common analysis tool is the Fast Fourier Transform (FFT).
FFT is a standard processing approach for decomposing a signal into a series
of waves at fixed frequencies and variable amplitudes. This method extracts
the quantified amplitude regardless of the size of the initial data by multiply-
ing it by 2/

p
M , where M is the number of samples in the normalized unitary

DFT[14]. However, FFT has some drawbacks. The output frequency basis
of the FFT is fixed, meaning that the signal can only be decomposed into a
uniform frequency basis, regardless of the dynamics of the signal. This basis
is only linked to the number of samples and sampling frequency. Addition-
ally, the FFT sampling rates must be within the Nyquist-Shannon criterion,
implying that the sampling rates should be at least twice the targeted fre-
quency.

Dynamic Mode Decomposition (DMD), presented by Schmidt[15] and
Rowley[16], is a possible alternative for investigating dynamics in data of
various dimensions. DMD is a method based on Koopman analysis of an
infinite-dimensional linear operator[17]. Unlike FFT, DMD can extract dy-
namical characteristics such as frequencies, amplitudes, and decaying rates
based on the Koopman operator [18]. Moreover, the frequency basis of DMD
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is not fixed a priori but is computed for each data set. Unlike the overall
number of points in the frequency domain, which is the same as in FFT, the
spacing between those points is not regular, and the outputs are locked to
the frequency of the targeted phenomena.

Although DMD exhibits these advantages, quantitative analysis on DMD
amplitudes is limited. Most of the DMD results showed normalized ampli-
tudes based on the maximum values of the results[19, 20, 21, 22]. Apart from
this normalization approach, quantitative analysis was mainly conducted on
one-dimensional time-series data by Kutz et al.[23], who compared the FFT
power spectrum and DMD amplitude for 1-dimensional artificial signal data
with fixed frequencies of 7 Hz (amplitude: 14) and 13 Hz (amplitude: 5). By
applying a scaling factor of 2/

p
M (M: number of data points correspond-

ing to one-dimensional time series data) to the power spectral density of
the FFT and amplitudes of the DMD, quantitative analysis on DMD am-
plitudes was achieved in noise-free and noise-added one-dimensional time
series data(for example, 50 or 100 points with dt = 0.01 second containing
7 Hz data were sampled). They showed that the data length strongly af-
fects the DMD amplitudes and FFT power spectral density. However, only
the scaling on DMD amplitudes for one-dimensional data has been discussed
without any mathematical proof. A potential problem about the changes
of spatial mode strength provided by the DMD is not addressed. Because
data reconstruction in DMD is related to DMD amplitudes, spatial modes,
and eigenvalues, which include information on frequencies and decay rates,
spatial modes are also highly likely to be a↵ected by changes in DMD am-
plitudes with respect to spatial grids. Additionally, it must be addressed
whether these characteristics can be applied not only to projected DMD but
also to other DMD methods (e.g., sparsity-promoting DMD)[24]. Therefore,
it is necessary to clarify the effects of spatial resolution on DMD and the
possibility of quantitative analysis. In many experiments, acquiring one-di-
mensional- or two-dimensional- or three-dimensional data with a consistent
spatial resolution is very challenging. Furthermore, it may be difficult to per-
form simulations with the same number of meshes in computational fluid
dynamics simulations because of limited computational resources. If DMD
amplitudes and DMD spatial modes are normalized based on their respective
maximum values, incorrect interpretations of the target flow field may occur
due to excessive DMD amplitudes or DMD spatial mode strengths caused by
external variables such as data noise. Thus, mathematical approaches for the
quantitative analysis of DMD are required to understand the flow phenomena
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accurately.
This study investigates the e↵ects of spatial resolution (time-series data

in one-dimensional signal and spatial grid in two-dimensional data) on the
amplitudes and spatial mode strengths. It further aims to provide a quanti-
tative analysis of DMD amplitudes and spatial mode strengths with properly
defined scaling factors for amplitudes and spatial modes. First, analysis of
two types of DMD analysis(projected DMD and sparsity-promoting DMD)
will be implemented for one-dimensional artificial signals with various sizes
of time-series data. The dominant amplitude and spatial mode with and
without corrections will be compared. Additionally, the sparsity-promoting
DMD(SPDMD) results are presented in this section. Then, time series two-
dimensional artificial signal fields will be considered. The e↵ects of grid sizes
on amplitude and spatial mode in two-dimensional data and quantification
methods will be investigated. Third, vortex-shedding calculated using Im-
mersed Boundary Projection Method (IBPM) with various spatial grids will
be considered. Unlike artificial signals, vortex shedding data contain a domi-
nant mode and its harmonics. The e↵ects of the scaling factors on amplitudes
and spatial modes will be discussed. Finally, projected DMD analysis will be
implemented on PIV experimental data with various interrogation windows.
The changes in amplitudes and strength of spatial modes with various spatial
grids will be depicted. Corrected amplitudes and strength of spatial modes
will be compared with those obtained without correction.

2. Dynamic mode decomposition and scaling factors

2.1. Algorithm of dynamic mode decomposition

Dynamic Mode Decomposition (DMD), which is linked to the Koopman
analysis as suggested by Rowley[16] and Schmid[25], is used to analyze the
dynamics of the flows from the data sets. A brief Koopman and DMD anal-
ysis theory, as well as the computational procedure, is explained below. In
a discrete-time dynamical system, the equation is written as:

xk+1 = f(xk), (1)

where xk = Rn is a vector showing the state of the dynamical system at time
step k. Koopman operator K, an infinite-dimensional linear operator acting
on the Hilbert space H of scalar observable functions g, maps g to a func-
tion Kg. Thus, the Koopman operator provides information on dynamical
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systems as follows:

Kg(xk) = g(f(xk)) = g(xk+1). (2)

From eigendecomposition, the Koopman operator is decomposed:

K'j(x) = �j'j(x) j = 1, 2, ..., (3)

where 'j(x) are the Koopman eigenfunctions, which form the basis of ex-
pansion for the observables g(xk), and �j are the Koopman eigenvalues. In
this analysis, the observables g are referred to in terms of the eigenfunctions:

g(x) =
1X

j=1

'j(x)vj, (4)

where vj is the Koopman modes that have the vector coe�cients. From the
definitions of Equation (3) and (4), the vector of observables g can be written
as

g(xk) =
1X

j=1

�k
j'j(x)vj, (5)

where the Koopman eigenvalues �j contain information on the time evolution
associated with the Koopman modes.

The DMD algorithm extracts the Koopman modes and Koopman eigen-
values directly. In the discrete observable matrices X(x1,x2, ...,xm) based
on the data matrix, two slightly di↵erent data sets X1(x1,x2, ...,xm�1) and
X2(x2,x3, ...,xm) are taken. Then, one seeks the best-fit linear operator A,
taken with the Koopman operator:

AX1 = X2. (6)

The best-fit linear operator A is then computed using the pseudo-inverse of
X1 and X2 as follows:

A = X2X1
†. (7)

Due to the large dimensions of the snapshot matrix X, a Singular Value
Decomposition (SVD) onX1 is applied to calculate the linear operator matrix
A:

A = X2V⌃�1U⇤, (8)

5



where U, V, and ⌃ are the left-singular vectors, right-singular vectors, and
singular values of matrix X1, respectively. There is a more e�cient method
for finding the linear operator Ã using a projection of the full matrix A onto
the POD modes:

Ã = U⇤AU = U⇤X2V⌃�1. (9)

By performing eigendecomposition on Ã, eigenvalues and eigenvectors can
be computed as follows:

ÃW = ⇤W, (10)

where the columns of W are the eigenvectors and ⇤ is a diagonal matrix
with �k. The projected DMD modes are then computed using the following
eigenvectors:

� =UW. (11)

Frequencies fj and growth or decaying rates �j are computed using �j:

fj = Im

✓
log�j

2⇡�t

◆
, �j = Re

✓
log�j

�t

◆
. (12)

Therefore, the initial amplitudes of each mode b are obtained by taking the
pseudo-inverse of the DMD modes � and the initial snapshot x1:

b = �†x1. (13)

Now, the observable data x(k) can be reconstructed using �, ⇤, and b:

x(k) = �⇤kb. (14)

2.2. Scaling factor for DMD on one-dimensional sinusoidal data

In this study, we suggest two scaling factors for quantitative comparisons.
One is for the amplitudes, and the other is for the spatial modes. Proof of
these scaling factors is provided in this section. First, one-dimensional sinu-
soidal signals are considered. The signals can be described using Equation
(15), as taken from several references[26, 27, 28] by setting the amplitude ak,
angular frequency wk, damping factor ↵k, and the initial phase �k with a kth

sinusoidal component, as follows:

x(t) =
KX

k=1

ak exp ((↵k + iwk)t+ i�k) =
KX

k=1

ckz
t
k, t = 1, 2, 3, 4, ...,M, (15)
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where ck = ak exp (i�k) is the complex-valued kth amplitude, and zk =
exp (↵k + iwk) is the kth signal. To simplify Equation (15), no-damped sig-
nals with an initial phase of zero are considered. Equation (15) can therefore
be rewritten as

x(t) =
KX

k=1

ak exp ((iwk)t) =
KX

k=1

akz
t
k, (16)

where zk = exp (iwk). Thus, the time-shifted matrix of these signals, with
X 2 RM⇥N(where N represents the number of time-shifted values), can be
expressed as shown in Equation (17):

X =

2

6664

x1 x2 xN

x2 x3 . . . xN+1
...

. . .
...

xM xM+1 . . . xM+N�1

3

7775
=

KX

k=1

ak

2

6664

zk z2k zNk
z2k z3k . . . zN+1

k
...

. . .
...

zMk zM+1
k . . . zM+N�1

k

3

7775
.

(17)

The time-shifted matrix X in Equation (17) is decomposed by SVD. The
left singular vector and right singular vector are calculated by the eigenvalue
decomposition of the covariance matrix and the Gram matrix of X, respec-
tively. In this section, only the calculation process of the left singular vector
using the covariance matrix R in Equation (18) is given due to the similar
process for calculating the right singular vector using the Gram matrix
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R = XX⇤ =
KX

k=1

ak

2

6664

zk z2k zNk
z2k z3k . . . zN+1

k
...

. . .
...

zMk zM+1
k . . . zM+N�1

k

3

7775

KX

k=1

ak

2

6664

zk z2k zNk
z2k z3k . . . zN+1

k
...

. . .
...

zMk zM+1
k . . . zM+N�1

k

3

7775

⇤

=
KX

k=1

ak

2

6664

zk z2k zNk
z2k z3k . . . zN+1

k
...

. . .
...

zMk zM+1
k . . . zM+N�1

k

3

7775

KX

k=1

ak

2

6664

z�1
k z�2

k z�M
k

z�2
k z�3

k . . . z�(M+1)
k

...
. . .

...

z�N
k z�(N+1)

k . . . z�(M+N�1)
k

3

7775

= N
KX

k=1

ak

KX

k=1

ak

2

6664

1 z�1
k z(1�M)

k

z1k 1 . . . z(2�M)
k

...
. . .

...

z(M�1)
k z(M�2)

k . . . 1

3

7775
. (18)

Taking the eigenvalue decomposition of the covariance matrix R leads to
the following:

R = Q⇤Q⇤ =
2

6664

1 1 1
z1 z2 . . . zK

...
. . .

...
zM�1
1 zM�1

2 . . . zM�1
K

3

7775
⇤

2

6664

1 z�1
1 z�(M�1)

1

1 z�1
2 . . . z�(M�1)

2
...

. . .
...

1 z�1
K . . . z�(M�1)

K

3

7775
= U⇤U⇤, (19)

where * denotes the conjugate transpose. The SVD of the time-shifted matrix
X can be expressed as Equation (20) by taking the eigenvalue decomposition
of the covariance matrix and the Gram matrix of X:

X = U⌃V⇤

=

2

6664

1 1 1
z1 z2 . . . zK

...
. . .

...
zM�1
1 zM�1

2 . . . zM�1
K

3

7775

2

6664

c1 0 0 0
0 c2 0 . . . 0

...
. . .

...
0 0 0 . . . cK

3

7775

2

6664

1 z�1
1 z�(N�1)

1

1 z�1
2 . . . z�(N�1)

2
...

. . .
...

1 z�1
K . . . z�(N�1)

K

3

7775
.

(20)
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The left singular vector U and the right singular vector V are Vander-
monde matrices. The shapes of these matrices are similar to those of a DFT
matrix[14]. From Kuian et al.[29], UU⇤ = KI and VV⇤ = KI are estab-
lished as well as U⇤U = MI and V⇤V = NI. To satisfy a unitary matrix in
each case, scaling factors 1p

M
for U⇤U = MI, 1p

N
for V⇤V = NI, and 1p

K

for UU⇤ = KI and VV⇤ = KI should be applied.
Regarding the DMD on the 1-Dimensional time-shifted matrix, the am-

plitudes b of each mode are calculated as in Equation (21):

b = ��1x1 = W�1U⇤x1. (21)

where U⇤ denotes the conjugate transpose of the left-singular vectors of X1.
Moreover, the amplitudes range from negative to positive frequencies, indi-
cating that the amplitudes should be considered twice. Thus, the scaling
factor 2p

M
should be applied for the quantification of DMD amplitudes[23].

Next, spatial modes are considered. The original data can be approxi-
mated as shown in Equation (14). As the amplitudes are enlarged by

p
M ,

the strength of spatial modes will decrease. Therefore,
p
M should be multi-

plied to extract spatial modes, excluding any changes caused by the number
of sampled data.

2.3. Scaling factor for DMD analysis to two-dimensional signal field data

In this section, discrete-time two-dimensional sinusoidal wave image data
are considered in the projected DMD analysis. The dimension of each image
is g 2 RM⇥N taken at a discrete-time t, ranging from 1 to T . Values of the
vertical axis of the image are assumed to follow the expression given below:

x(t) =
KX

k=1

ak exp ((iwk)t) =
KX

k=1

akz
t
k, t = 1, 2, 3, ..., T, (22)
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g1 =

2

6664

x1 x1 x1

x2 x2 . . . x2
...

. . .
...

xM xM . . . xM

3

7775
,g2 =

2

6664

x2 x2 x2

x3 x3 . . . x3
...

. . .
...

xM+1 xM+1 . . . xM+1

3

7775

, ...,gt =

2

6664

xt xt xt

xt+1 xt+1 . . . xt+1
...

. . .
...

xM+t xM+t . . . xM+t

3

7775
. (23)

By vectorization of each image, the data matrix G 2 R(M ·N)⇥T can be
rewritten as:

G =

(M⇥N)rows

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2

666666666666666666666664

x1 x2 . . . xT

x2 x3 . . . xT+1
...

...
. . .

...
xM xM+1 . . . xM+T

x1 x2 xT

x2 x3 . . . xT+1
...

...
. . .

...
xM xM+1 xM+T
...

...
. . .

...
x1 x2 xT

x2 x3 . . . xT+1
...

...
. . .

...
xM xM+1 . . . xM+T

3

777777777777777777777775

| {z }
T columns

=
KX

k=1

ak

2

666666666666666666666664

zk z2k zTk
z2k z3k . . . zT+1

k
...

...
. . .

...
zMk zM+1

k . . . zM+T
k

zk z2k zTk
z2k z3k . . . zT+1

k
...

...
. . .

...
zMk zM+1

k . . . zM+T
k

...
...

. . .
...

zk z2k zTk
z2k z3k . . . zT+1

k
...

...
. . .

...
zMk zM+1

k . . . zM+T
k

3

777777777777777777777775

.

(24)

Using the same procedures as for Equation (17) and (18), the left singular
vector and right singular vector are obtained as follows:
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U =

2

6666666666666666666666666666666664

1 1 1
z1 z2 zK
z21 z22 . . . z2K
...

...
...

zM�1
1 zM�1

2 . . . zM�1
K

1 1 1
z1 z2 zK
z21 z22 . . . z2K
...

...
...

zM�1
1 zM�1

2 . . . zM�1
K

...
...

...
1 1 1
z1 z2 zK
z21 z22 . . . z2K
...

...
...

zM�1
1 zM�1

2 . . . zM�1
K

3

7777777777777777777777777777777775

,V =

2

666666666666666666666666666664

1 1 1 1
z1 z2 z3 zK
z21 z22 z23 . . . z2K
...

...
...

...
zT�1
1 zT�1

2 zT�1
3 . . . zT�1

K

1 1 1 1
z1 z2 z3 zK
z21 z22 z23 . . . z2K
...

...
...

...
zT�1
1 zT�1

2 zT�1
3 . . . zT�1

K
...

...
...

...
1 1 1 1
z1 z2 z3 zK
z21 z22 z23 . . . z2K
...

...
...

...
zT�1
1 zT�1

2 zT�1
3 . . . zT�1

K

3

777777777777777777777777777775

.

(25)
The size of the row in the matrix is linked to the size of the initial image

(M ⇥ N) for two-dimensional signals. The shapes of the two matrices are
also the shape of the Vandermonde matrix, which means that scaling factor

1p
M⇥N

forU⇤U = (M⇥N)I should be considered. Regarding the amplitudes,

the factor 2p
M⇥N

should be taken into account. Regarding spatial modes, the

initial values should be multiplied by a factor
p
M ⇥N . The applicability

of the scaling factors to these cases will be presented in Section 3.

3. Applying scaling factors to Dynamic mode decomposition

3.1. E↵ects of the spatial data size on projected dynamic mode decompo-
sition and sparsity-promoting DMD with and without scaling in one-
dimensional artificial signal data

To investigate the e↵ects of spatial resolution(one-dimensional signal: the
number of sampled data points, two-dimensional data: the number of spatial
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grids) and the corrected DMD amplitudes and spatial mode strengths by scal-
ing factors, one-dimensional artificial signal, two-dimensional artificial signal
field, two-dimensional CFD, and two-dimensional PIV experimental data are
considered. In this section, the amplitude and spatial mode of the projected
DMD are presented. Additionally, sparsity-promoting DMD(SPDMD) sug-
gested by Jovanovic et al.[24] is also tested. The SPDMD provides the num-
ber of modes to be retained based on the data and automatically determines
the most appropriate model order for an accurate analysis. This adaptabil-
ity makes it suitable for applications where the underlying dynamics may
be complex or poorly understood. The SPDMD is designed to handle high-
dimensional data sets e�ciently. However, if one-dimensional artificial signals
do not contain any noise, amplitudes in one-dimensional artificial signals are
produced exactly regardless of the data length. Therefore, this section will
treat both projected DMD and SPDMD. For SPDMD analysis, an open-
source code provided on Jovanovic’s homepage is used. The parameters for
the alternating direction method of multipliers(ADMM) on SPDMD anal-
ysis are ⇢(positive quadratic penalty parameter) =1.0, ✏(prime) = 0.000001,
✏(dual)=0.0001, maximum iteration = 10000 which are the initial values in Jo-
vanovic’s code. The SPDMD amplitudes are selected from the absolute value
of the ’xpol’ data in the answer variable in Jovanovic’s code, representing the
optimal amplitude obtained through the sparsity-promoting process.

To begin with, a signal with a single frequency of 10 Hz as used in Equa-
tion (26) is investigated in this section. Time t ranges from 0 seconds to 1.00
seconds with a 0.01 seconds interval(�t = 0.01 seconds).

xt = Re(15⇥ exp(10⇥ 2⇥ ⇡t⇥ i)). (26)

Tu[30] and Tu et al.[31] mentioned that in order to perform DMD on a
1-dimensional signal, time-shifted matrix with at least three rows such as
X = [X(t) X(t+�t) X(t+ 2�t)] must be taken, where X(t) in ma-

trix X means [xt xt+�t ...]T . This study also takes a time-shifted matrix

so that X1 =
⇥
X(t) X(t+�t)

⇤
and X2 = [ X(t+�t) X(t+ 2�t) ] are

obtained. The length of data set X(t) varies from 2(0 s to 0.01 s) to 99(0 s
to 0.98 s). A typical sample of the signal of the data sets is presented in Fig.
1 and in Equation (27) and (28). The rank for the SVD used in the DMD
and the dimension of the data set in this analysis are two and X 2 R2 ⇠99⇥3,
respectively:
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Figure 1: Signal plot from Equation (26).

2

64
| | |

X(t) X(t+�t) X(t+ 2�t )

| | |

3

75 =


x0 x0.01 x0.02

x0.01 x0.02 x0.03

�
atXlength = 2,

(27)

2

64
| | |

X(t) X(t+�t) X(t+ 2�t )

| | |

3

75 =

2

6664

x0 x0.01 x0.02

x0.01 x0.02 x0.03
...

...
...

x0.98 x0.99 x1.00

3

7775
atXlength = 99.

(28)
Fig. 2 shows the projected DMD and SPDMD amplitudes at the dom-

inant mode with and without applying the scaling factor for various data
lengths. The frequency of these amplitudes is precisely 10 Hz in all cases.
It should be noted that the dominant mode is extracted successfully even
though the data length is less than 10, even though this does not correspond
to a complete cycle. Without applying the scaling factor, the amplitude
shows an increasing tendency in both DMD algorithms. Interestingly, the
amplitude is smaller than the original amplitude for cases corresponding to
the length of the data set X below 4. At the data length of 4, the ampli-
tude is 15 as the imposed amplitude since the value of the scaling factor is
1 (2/

p
(4) = 1) for this length. When the data lengths are greater than 4,
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Figure 2: Dominant amplitude extracted by projected DMD and SPDMD with and with-

out applying the scaling factor at various data lengths.

(a) (b)

Figure 3: Non-scaled(left) and scaled(right) dominant spatial mode of projected DMD at

various data lengths.
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the amplitude is higher than the imposed amplitude. These results imply
that the DMD amplitudes are a↵ected by the use of U⇤, which is a Vander-
morde matrix with a shape similar to the DFT matrix. On the other hand,
when the scaling factor is applied, amplitudes remain consistent in both the
projected DMD and SPDMD, regardless of the length of the data set.

As presented in Section 2.2, the projected DMD modes are also influenced
by the size of the time-series data. Fig. 3 presents the results of a scaled
spatial mode and a non-scaled spatial mode for the projected DMD. The
spatial mode of the SPDMD is not considered in this section because the
target of the SPDMD is only the amplitudes. Fig. 3 (a) demonstrates that
smaller time-series data lead to higher spatial mode strength without scaling.
By applying the scaling factor, the spatial mode strength aligns perfectly,
regardless of the data length, as depicted in Fig. 3 (b). These results indicate
that scaling factors enable the quantitative interpretation of one-dimensional
signal data.

3.2. Applying the scaling factors to projected DMD amplitude and spatial
mode in a two-dimensional artificial signal field

The scaling factors successfully corrected the amplitude and spatial mode
strength for one-dimensional signal data. However, most targets of DMD
analysis are two-dimensional data. In this section, the focus is made on two-
dimensional data to investigate the e↵ects of spatial data size and the poten-
tial applications of the scaling factors. Unlike Section 3.1, only the projected
DMD results are discussed from this section onwards. Two-dimensional sig-
nal data with various spatial resolutions used in this section are shown in Fig.
4. Four di↵erent spatial resolutions are used: 25⇥25(625 pixels), 50⇥50(2500
pixels), 75⇥75(5625 pixels), and 100⇥100(10000 pixels). The imposed signal
is given in Equation (26). The time interval between the images is set to 0.01
s. A total of 101 images, representing a time series from 0 to 1 s, is used in
all samples. The rank of SVD used in the DMD is set to two.

Fig. 5 shows the DMD mode amplitude at a dominant frequency of 10 Hz
with and without applying the scaling factor. The dominant frequency for
all spatial resolutions is 10 Hz. The uncorrected amplitude at the dominant
frequency is 187.5 at 625 data points, 375 at 2500 data points, 562.5 at 5625
data points, and 750 at 10000 data points, far from the imposed amplitude.
Meanwhile, after applying the scaling factor to the amplitude, the results
show a constant value of 15. These results are the same as those obtained in
Section 3.1.
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Figure 4: Images of two-dimensional data used in this section at various spatial resolu-

tions(25x25, 50x50, 75x75, 100x100).

Figure 5: Mode amplitude at the dominant frequency of 10 Hz with(right axis) and with-

out(left axis) applying the scaling factor.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Spatial mode at the dominant frequency with (a-d) and without (e-h) scaling

factor at di↵erent spatial resolutions.
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(a) (b) (c)

Figure 7: Sample vorticity images of vortex shedding simulated by IBPM at various spatial

resolutions((a): 449x199, (b): 899x399, (c): 1349x599).

The spatial mode at the dominant frequency with and without applying
the scaling factor at various spatial resolutions is depicted in Fig. 6. Without
the scaling factor, the maximum and the minimum values of the dominant
mode are ±0.04 at 25⇥25 spatial resolution, ±0.02 at 50⇥50 spatial reso-
lution, ±0.0133 at 75⇥75 spatial resolution, and ±0.01 at 100⇥100 spatial
resolutions, respectively. The strength of the mode decreases with increasing
spatial resolution, indicating the data points also a↵ect the strength of the
mode. With the scaling factor, the maximum and minimum strength in the
spatial mode remained at ±1.

3.3. E↵ects of the spatial resolution and quantitative analysis of DMD using
two-dimensional vortex shedding

The DMD results on one and two-dimensional artificial signal data with
the proposed scaling factors give the possibilities for quantitative analysis.
However, actual phenomena are not represented by such simple dynamical
systems. Many phenomena, such as vortex shedding, pulsating flow, and jet-
in-crossflow, are accompanied by dominant phenomena and their harmonics.
In this section, numerical simulations of vortex shedding are performed with
various spatial resolutions using an Immersed Boundary Projection Method
(IBPM) as suggested by Colonius et al.[32]. DMD analysis is conducted
on the simulated data to compare amplitudes and spatial modes with and
without the scaling factors. Unlike in Sections 3.1 and 3.2, both dominant
phenomena and harmonics will be considered.
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Figure 8: Non-scaled DMD power spectra on vortex shedding at various spatial resolutions.

Two-dimensional vortex shedding is simulated with various spatial reso-
lutions. The grid of the flow field is set with spatial resolutions of 449⇥199,
899⇥399, and 1349⇥599, respectively. The length of the domain and di-
ameter of the cylinder is 9⇥4 and 1, respectively. The lengths have been
non-dimensionalized with respect to the cylinder diameter. We set 50, 100,
and 150 points per cylinder diameter with multi-domain levels 4, 5, and 6
at a mesh of 449⇥199, 899⇥399, and 1349⇥599 so that the finest grid cov-
ers a domain of 9⇥4. The Reynolds number is set to 100 to remain in the
laminar vortex shedding regime [33]. The time step �t is 0.01, satisfying the
CFL condition in all simulation grids[34]. In this study, the vorticity distri-
bution is the target of DMD analysis as it most likely represents the main
characteristics of vortex-shedding structures. Examples of the vorticity data
calculated under these conditions are presented in Fig. 7. DMD analysis
is conducted with three conditions. One thousand snapshots with regular
intervals of 10�t are taken. The rank is considered to be 20, capturing
the information of harmonic oscillations. It should be noted that there may
be slight di↵erences in frequencies and amplitudes between each simulation
result due to slightly di↵erent analysis conditions.

Fig. 8 and 9 show the DMD power spectra with and without applying
the scaling factor. The amplitudes of the dominant mode and harmonics
appear clearly. The detailed values are listed in Table 1. The non-scaled
amplitudes are more than 2 times (at 899⇥399 spatial resolution) and 3 times
(at 1349⇥599 spatial resolution) greater than the amplitudes at the 449⇥199
spatial resolution. The amplitude around 0.33Hz, the first harmonics of the
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Figure 9: Scaled DMD power spectra on vortex shedding at various spatial resolutions.

Table 1: Amplitudes and frequencies of dominant mode and harmonics with and without

scaling at various spatial resolutions.

spatial Resolution Frequency(Hz)
Amplitude(a.u.)

Non-Scaled Scaled

449⇥199

0.165(Dominant mode) 102.90 0.690

0.330(First Harmonics) 35.45 0.237

0.495(Second Harmonics) 25.49 0.172

899⇥399

0.165(Dominant mode) 203.37 0.681

0.329(First Harmonics) 71.44 0.239

0.494(Second Harmonics) 52.16 0.175

1349⇥599

0.164(Dominant mode) 302.70 0.674

0.328(First Harmonics) 107.26 0.239

0.492(Second Harmonics) 78.30 0.175
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Figure 10: Spatial mode with and without scaling (left: dominant mode, center: first

harmonics, right: second harmonics).
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dominant mode, shows the same trend as in the case of 0.165 Hz. This
trend can be explained by considering the square root of the number of
data points 89 351 (449⇥199), 358 701 (899⇥399), and 805 655 (1349⇥599).
The square roots of these values are 298.916, 598.917, and 897.583, showing
di↵erences of about 2 and 3 times bigger than 298.916. In contrast, the
scaled amplitudes take similar values as shown in Fig. 9 and Table 1. The
scaled amplitudes at the dominant frequency of 0.165 Hz are almost identical.
The other amplitudes of the harmonics oscillations also have similar values,
regardless of the spatial resolution.

Fig. 10 presents the dominant and secondary modes with and without
scaling. There are two color bars in the figure, the left side shows the re-
sult without scaling, and the right side shows the result with scaling. The
shapes of these modes are similar to those presented by Kutz et al. [23],
Hemati et al.[35], and Noack et al.[36]. The strongest fluctuations appear at
0.165 Hz (corresponding to the dominant mode). For the secondary modes,
the fluctuations are weakened compared to the dominant mode. As the
spatial resolution increases, the strength of the dominant mode and its har-
monics becomes smaller. This change is the same as that in the results
shown in sections 3.1 and 3.2. On the other hand, the strengths in the dom-
inant and secondary modes with the scaling factor are consistent regardless
of the spatial resolutions. One should be noted that only the strength of the
449⇥199 case tends to have slightly smaller maximum and minimum values.
The di↵erences between these results may be due to the di↵erent simulation
conditions.

3.4. DMD analysis on PIV experimental data

The results in Subsection 3.3 presented the e↵ects of the various spa-
tial data sizes on DMD amplitudes and spatial modes. In two-dimensional
vortex shedding data, not only the amplitudes and spatial mode strengths
on dominant modes but also the amplitudes and spatial mode strengths on
harmonics of the DMD are strongly a↵ected by spatial data sizes. Based on
these results, this section investigates the e↵ects of spatial resolutions in PIV
data with di↵erent interrogation windows.

3.4.1. Experimental setup
The experimental setup used in this section is shown in Fig. 11. It is

based on an atmospheric injection system with a co-flow configuration. The
inner diameter is 20 mm, with a lip of 1 mm, and the outer diameter is 39
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Figure 11: Schematic representation of the experimental setup(Black arrows meaning the

direction of flow).

mm. The flow rate of the inner flow is 19.82 L/min, controlled by a Mass
flow Controller (F-201-AV-50K-AAD-33-V Bronkhorst, and a maximum ca-
pacity of about 460 l/min at 1 bar,± 0.5% of reading states error). This
main flow is modulated by a Direct Drive Valve (DDV) system (Moog) and
leads to a mean convection velocity of 1.2 m/s, producing a laminar flow
with a Reynolds number of about 1710. The flow rate of the outer part is
49.15 L/min controlled by a Mass flow Controller ( F-201-AV-50K-AAD-33-
V Bronkhorst and a maximum capacity of about 25 m3/h at 1 bar ± 0.5% of
reading states error). The signal imposed on the DDV system in this study
is an 80 Hz sinusoidal function with an amplitude of 5 V and an o↵set of
2.5 V. The valve is closed at a voltage of 0 V or below, leading to strong
oscillations in the current case. This frequency and signal generation have
been chosen to generate large vortices. The modulation imposed on the main
flow is controlled and acquired using a Labview program. The captured im-
ages are processed using Dantec Dynamic Studio with various interrogation
windows. An adaptive correlation is performed in all cases with an initial
window of 128⇥128. Tiny oil droplets (vacuum pump Edwards oil n�15) are
added to the air through a nebulizer system to measure the velocity of the
flow. Those droplets, with typical diameters of 1 or 2 µm [37], have a Stokes
number small enough to represent the airflow faithfully.

3.4.2. DMD results on PIV data with various interrogation windows
A sample image of the droplets is presented in Fig. 12. These seeding

droplets are continuously injected through the primary airflow system and
the outer flow with a similar density. No seeding droplets are introduced in
the air at rest around the outer flow, as the main interest of this research
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Figure 12: Sample image of Mie scattering image

is the description of the inner shear layer and the quantitative analysis of
the vortices. The illumination of the droplets is achieved with a pulsed Nd:
YAG laser (Edgewave, Innoslab) working at 5 kHz, with a pulse duration
of 7 ns and a typical pulse intensity of 10 mJ at a wavelength of 532 nm.
The laser beam is shaped into a planar sheet with a height of 50 mm and
thickness of 1 mm at the measurement position. To record the images, a
high-speed camera (Photron-FastCam with a spatial resolution of 1024 ⇥

1024 pixels and working at 5 kHz) is used together with an objective of
105 mm (aperture of f#5.6) and an extension ring of 20 mm for magnify-
ing the field of the interest. This imaging system is placed at 90� from the
laser sheet to encompass a physical field of view of 68.2 mm⇥68.2 mm. The
exposure time is set to 5 µs. The total number of seeding particles in one
image is about 19 000 particles/image, using simple software to count the
particles per image. This result leads to approximately 9 particles/16⇥16
pixels, except for the dark region in the image, corresponding to the ambient
airflow. As seeding particles are introduced inside the two jets, velocity data
at the shear layer between the pulsed stream and the outer stream are well
captured.

An example of the instantaneous vector field and Y-axis velocity profile
using 5 000 images in the 16⇥16 interrogation window is presented in Fig.
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(a) (b)

Figure 13: Measured velocity with a 16⇥16 interrogation window. ((a) Vector field, (b)

Averaged Y-axis velocity at the height of 10.7mm based on 5000 samples.)

13. Although four interrogation window conditions (16⇥16, 32⇥32, 48⇥48,
64⇥64) are used in this study, only the 16⇥16 case is presented as sample
data due to the finest spatial resolution to observe the velocity profile. Fig.
13 (a) shows a typical velocity field used in this study. The analyzed vector
field clearly shows the vortices at the left and right sides of the jet. The 80 Hz
pulsating flow induces these vortices. The vertical velocity profile shown in
Fig. 13 (b) is obtained at the height of 10.7 mm from the exit of the jet.
The velocity profile is averaged over 5 000 consecutive velocity fields. The
maximum velocity is about 1.2 m/s at the center of the jet. Slight velocity
changes are observed on average between the two flows. The lower velocity
at a radius of 10 mm corresponds to the influence of the inner lip, separating
the two jets. The main region of interest in the current study is the inner
shear layer between the inner and outer jet, and therefore, vortices located
at around 10 mm (corresponding to half of the diameter) will be of interest.

To reduce the weight of the matrices in DMD analysis, horizontal velocity
is used in the following section. This choice is motivated by the significant
changes near the vortices. The unresolved velocity corresponding to the dark
regions (left and right sides of the outer jet) is removed in the DMD compu-
tations. Twenty-seven data sets, each with 250 images per case, are used for
extracting the dominant phenomena and the harmonics. The DMD power
spectra for the four interrogation windows are presented in Fig. 14. The dis-
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Figure 14: Non-scaled DMD power spectra on pulsating flow on one case with various

spatial resolutions

played power spectra correspond to only one data set out of the twenty-seven
computed. The spectra show that the 80 Hz dominant mode and its har-
monics at 160 Hz appear clearly with the four interrogation windows. Unlike
the results in Section 3.3, other harmonics are not observed in the current
analysis. This may be due to noises or lower spatial resolutions of the PIV
data compared to numerical data.

The DMD amplitudes at the dominant mode and its first harmonics on
various interrogation windows are given in Fig. 15. The amplitudes and
frequencies in this figure are averaged over the twenty-seven data sets. The
results show that the 16⇥16 case leads to the highest DMD amplitude. With
a reduction in spatial resolution, amplitudes become smaller. These results
are consistent with those in section 3.3. Significant di↵erences in standard
deviations of amplitudes and frequencies between spatial resolutions are not
seen. Fig. 16 represents the scaled power spectral diagram based on the
PIV data with various spatial resolutions. The results show that amplitudes
are around 0.4 at the dominant mode and 0.1 at the first harmonics. With
an increased spatial resolution, the amplitude at the dominant frequency
takes higher values. This result implies that data resolution may a↵ect the
accurate analysis of the flow field. A finer spatial resolution provides a better
description of the vortices without being a↵ected by noise. The detailed
values on the dominant mode and harmonics are given in Table 2.

The e↵ects of spatial resolution are also evident in the spatial mode
strengths. Fig. 17 presents the scaled and non-scaled spatial modes for

26



Figure 15: Amplitudes at the dominant mode and its first harmonics analyzed by DMD

without scaling factor.

Figure 16: Amplitudes at the dominant mode and its first harmonics analyzed by DMD

with the scaling factor.
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(a)

(b)

Figure 17: Average of spatial modes at the dominant frequency on various processing

technique conditions (a) 80 Hz dominant mode for windows of 16, 32, 48, and 64 from left

to right and top to bottom, (b) 160 Hz first harmonics for windows of 16, 32, 48 and 64

from left to right and top to bottom.
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Table 2: Amplitudes and frequencies at dominant mode and its first harmonics with and

without scaling for various interrogation windows.

Interrogation Frequency(Hz)
Spatial strength(a.u.)

Non-scaled Scaled

16⇥16
79.86(Dominant mode) 18.41 0.412

159.57(First Harmonics) 4.548 0.102

32⇥32
79.85(Dominant mode) 8.940 0.400

159.24(First Harmonics) 1.982 0.0886

48⇥48
79.89(Dominant mode) 6.117 0.395

159.75(First Harmonics) 1.451 0.0936

64⇥64
79.66(Dominant mode) 4.048 0.362

159.18(First Harmonics) 0.6137 0.0549

the dominant mode and its first harmonics across various resolutions. The
left and right color bars in the figure represent the non-scaled strength and
scaled strength, respectively.

The absolute values of maximum and minimum values of the spatial mode
without scaling are proportional to the spatial resolution. This tendency is
already observed in Section 3.3. Meanwhile, regardless of the spatial resolu-
tion, the scaled results have a similar value.

It is possible to compute the convection velocity of the structure by look-
ing at the spatial mode. Taking the spacing between two consecutive max-
imums in a vertical line and a time corresponding to the inverse of the fre-
quency associated with the peak of the DMD spectra (1/80 = 12.5ms), one
retrieves a typical velocity of 1.2±0.05 m/s for all cases, regardless of the
spatial resolution.

4. Conclusions

This study investigates the e↵ect of spatial data resolution(time-series
data in one-dimensional signal and spatial grid in two-dimensional data)
on the amplitudes and spatial mode strengths of DMD and its calibration
method. From the mathematical proofs of the one-dimensional and two-di-

mensional data, the proposed scaling factors are 2/
p
A for the amplitudes

29



and
p
A for the spatial mode strengths, where A corresponds to the number

of points of time-series data in one-dimensional signal and spatial grid in
two-dimensional data. Proofs of scaling factors for amplitudes and spatial
modes are provided for one- and two-dimensional data using the projected
DMD and sparsity-promoting DMD.

First, projected DMD and SPDMD analysis are performed on various
lengths of one-dimensional artificial signal data. The results show that the
amplitude at the dominant frequency increases with the factor of

p
A/2 in

both DMD algorithms. This finding implies that the amplitudes of the DMD
are a↵ected by the use of U⇤, which takes a Vandermonde matrix containing
shapes similar to the DFT matrix. In contrast, the strength of the spatial
mode at the dominant frequency decreases with a factor of 1/

p
A times

as well as to the length of the time-series data. The results, corrected by
scaling factors, show a consistent amplitude and spatial mode strength at
the dominant frequency regardless of the data lengths. The same results are
obtained for two-dimensional artificial signal field data.

Second, the e↵ects of spatial resolution on the DMD amplitudes and
spatial mode strengths are investigated using two-dimensional IBPM vortex
shedding simulation data. The results show that the spatial data size a↵ects
both the amplitudes and the strengths of the spatial modes. With increasing
spatial resolutions, the overall amplitude increases proportionally. Regarding
spatial modes, a decreasing tendency is observed in all spatial modes as the
spatial resolution increases. The results corrected by the scaling factors show
good agreements again, regardless of changing spatial resolutions. Only slight
errors are observed at the lowest spatial resolution.

Finally, the e↵ects of spatial resolution and the correction of both DMD
amplitudes and spatial mode strengths using PIV data of a laminar pulsating
jet are investigated. Four interrogation window conditions are used. As a
result of the DMD analysis, only the dominant mode and the first harmonics
are confirmed. The DMD amplitude and spatial mode strength, which are
also a↵ected by the spatial resolution of the spatial data size, show the same
trend as those obtained with numerical results. Using the proposed scaling
factor, an interpretation excluding the e↵ect of the spatial resolution of the
data is possible.

Therefore, it can be concluded that a quantitative flow field analysis of
the DMD based on a mathematical approach is proposed. Quantitative anal-
ysis of fluid flow using DMD allows for consistent results across various types
of flow analysis and enables comparisons among different analysis methods

30



for fluid flow.
Building upon these findings, further analysis beyond the scope of this ar-

ticle will include a quantitative analysis of velocity measurement techniques
for fluid flow and how external factors, such as the effects of noises, analysis
methods, and interrogation windows, affect the amplitude and spatial modes
of DMD. Additionally, this will encompass quantitative analysis and error
assessment based on analysis techniques in 1D and 2D velocity analysis tools
like Optical Flow, not limited to PIV, and include noise analysis.
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