
HAL Id: hal-04268701
https://hal.science/hal-04268701v1

Submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MR to CT synthesis using GANs : a practical guide
applied to thoracic imaging

Arthur Longuefosse, Baudouin Denis de Senneville, Gaël Dournes, Ilyes
Benlala, François Laurent, Pascal Desbarats, Fabien Baldacci

To cite this version:
Arthur Longuefosse, Baudouin Denis de Senneville, Gaël Dournes, Ilyes Benlala, François Laurent, et
al.. MR to CT synthesis using GANs : a practical guide applied to thoracic imaging. VISIGRAPP 2023
- International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications, Feb 2023, Lisbon, Portugal. pp.268-274, �10.5220/0011895700003417�. �hal-04268701�

https://hal.science/hal-04268701v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MR to CT synthesis using GANs : a practical
guide applied to thoracic imaging

Arthur Longuefosse1, Baudouin Denis De Senneville2, Gaël Dournes3, Ilyes
Benlala3, François Laurent3, Pascal Desbarats1, and Fabien Baldacci1

1 LaBRI, Université de Bordeaux, Talence, France
2 Institut de Mathématiques de Bordeaux Université de Bordeaux, Talence, France
3 Service d’Imagerie Médicale Radiologie Diagnostique et Thérapeutique, CHU de

Bordeaux, France

Abstract. In medical imaging, MR-to-CT synthesis has been exten-
sively studied. The primary motivation is to benefit from the quality of
the CT signal, i.e. excellent spatial resolution, high contrast, and sharp-
ness, while avoiding patient exposure to CT ionizing radiation, by relying
on the safe and non-invasive nature of MRI. Recent studies have success-
fully used deep learning methods for cross-modality synthesis, notably
with the use of conditional Generative Adversarial Networks (cGAN),
due to their ability to create realistic images in a target domain from an
input in a source domain. In this study, we examine in detail the differ-
ent steps required for cross-modality translation using GANs applied to
MR-to-CT lung synthesis, from data representation and pre-processing
to the type of method and loss function selection. The different alter-
natives for each step were evaluated using a quantitative comparison of
intensities inside the lungs, as well as bronchial segmentations between
synthetic and ground truth CTs. Finally, a general guideline for cross-
modality medical synthesis is proposed, bringing together best practices
from generation to evaluation.

Keywords: GAN · CT Synthesis · Lung.

1 Introduction

In clinical practice, computed tomography (CT) is typically used to diagnose
lung conditions. However, this modality exposes patients to ionizing radiation,
which may have negative effects on their health. Recently, lung MRI with ul-
trashort or zero echo-time (UTE/ZTE) has shown promise for high-resolution
structural imaging of the lung [1, 2]. However, the appearance of images ob-
tained using this technique is substantially different from those obtained using
CT, notably imaging texture, blurring, and noise which has limited its adoption
in clinical practice (cf Figure 1). The generation of CT images from MRI may be
a good alternative and could improve patient diagnosis by providing high quality
images to radiologists based solely on the safe and non-invasive nature of MRI.
Over recent years, deep learning approaches, particularly generative adversarial
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networks (GANs) [3], have been extensively studied for image synthesis in med-
ical imaging. This type of network is made of a generator and a discriminator,
and is able to produce high quality synthetic data similar to a given dataset
by learning a complex non-linear relationship between MR and CT. Previous
research on cross-modality synthesis has used GANs to synthesize images in
several different regions of the body, such as the brain [4, 5], pelvic region [6],
and also in the lungs using Dixon MRI [7]. Many studies have been conducted
on the development of specific GAN models, including unpaired methods based
on cycleGAN [8] and paired methods based on pix2pix [9]. In addition, research
also focused on the development of various loss functions, such as cycle consis-
tency [8], feature-matching [12], perceptual [21], and contrastive loss [22]. How-
ever, most state-of-the-art studies are limited to these developments and do not
properly address the full range of steps involved in medical translation tasks,
such as preprocessing and robust evaluation.
In this paper, we present a general guideline for image-to-image translation ap-
plied to thoracic MR to CT synthesis, covering key topics such as pre-processing
steps, data normalization and quantization, and the importance of an adapted re-
sampling before registering the input. We review the different types of GANs and
losses and compare their performances in thoracic image-to-image translation. A
quantitative evaluation of the different models and parameters is presented, us-
ing traditional metrics as well as a comparison of the segmentations of airways in
synthesized CT images versus ground truth CT images, to help identify the fac-
tors that have the biggest impact on the performance of medical image-to-image
translation. Overall, our evaluation helps to provide a better understanding of
the different models and parameters used for medical image-to-image translation
and can serve as a useful reference for researchers and practitioners in this field.

(a) UTE MR (b) CT

Fig. 1: Visual comparison of thoracic UTE MR and CT modalities of the same
patient at a corresponding axial slice. The CT scan shows a higher signal quality,
greater contrast and sharpness, and fewer artifacts compared to the MRI.
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2 Methods

2.1 Data acquisition

The dataset used in this study consists of UTE MR and CT thoracic images of
110 patients. Both modalities were acquired on the same day, from 2018 to 2022.
CT images were obtained using a Siemens SOMATOM Force, in end-expiration,
with sharp filters. The parameters used were a DLP of 10 mGy.cm and a SAFIRE
iterative reconstruction. UTE MR images were acquired using the SpiralVibe se-
quence on a SIEMENS Aera scanner, with the following parameters: TR/TE/flip
angle=4.1ms/0.07ms/5°. Since the slice plane is encoded in Cartesian mode, the
native acquisition was performed in the coronal plane with field-of-view outside
the anterior and posterior chest edges to prevent aliasing. It should be noted
that resolutions, voxel spacings, and fields of view are not identical in CT and
MR images. In addition, modalities may have been taken at different points in
the respiratory cycle. To obtain a paired dataset, an adequate resampling and a
deformable registration will thus be required between CT and MR volumes.

2.2 Preprocessing

Resampling In multimodal registration, it is typically advised to use the image
with the highest resolution as the fixed image and the image with the lower
resolution as the moving image, since a higher level of detail and accuracy in
the fixed image can help improve the performance of the registration process. In
our case, we have to register the CT volume, with a voxel size of 0.6× 0.6× 0.6
mm3, on the MRI, with a voxel size of 1×1×1 mm3, which implies a resampling
of the CT to the MRI resolution, and thus a loss of information, as shown in
Figure 2. To avoid this issue, we propose to upsample the MRI voxel size to the
CT voxel size, allowing to keep the initial resolution of the CT, which implies a
better convergence of the registration algorithm as well as better performances
for the GAN. The two modalities are therefore resampled on a common grid of
0.6 × 0.6 × 0.6 mm3 using tricubic interpolation. For comparison purposes, CT
and MR volumes were also resampled on a 1× 1× 1 mm3 grid.

Multimodal registration Accurate alignment of images from different modal-
ities often requires non-rigid registration, especially in parts of the body subject
to severe periodic deformations, such as cardiac and respiratory motions. Edge-
alignment methods seems particularly well suited for multimodal medical regis-
tration since they don’t rely on input landmarks and can overcome differences
in intensity and contrast between modalities, by focusing on boundary informa-
tion. In our dataset, a rigid translation is estimated to ease convergence, before
the EVolution algorithm [14] is employed to estimate the elastic deformation, a
patch-based approach that includes a diffusion regularization term and a similar-
ity term that favors edge alignments. To prevent physically implausible folding
of the volumes during the registration process, a diffeomorphic transformation
is ensured by minimizing the inverse consistency error ( [15], [16]).
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(a) CT 0.6× 0.6× 0.6 mm3 (b) CT 1× 1× 1 mm3

Fig. 2: Visual comparison of identical CT slices at different voxel spacing, with
zoomed regions that highlight bronchi, circled in yellow. Pulmonary bronchi are
nearly indistinguishable in the 1 mm3 version due to the lower resolution of the
image.

Intensity normalization CT and MR modalities have fundamental differences
that must be taken into account when normalizing intensity values. CT inten-
sity values are defined in Hounsfield units (HU) and have a physical meaning,
whereas MR intensity values strongly depend on acquisition parameters. There-
fore, methods used for intensity normalization must be tailored to the specific
characteristics of each modality.
In our study, CT intensities are cropped to [-1000; 2000] HU window to remove
irrelevant values from the table or background and rescaled to [-1; 1] using the
same window limits. MR intensity inhomogeneities, also known as bias field, are
first corrected using the popular N4 bias field correction algorithm [11]. MR val-
ues are then normalized using z-score, i.e. zero mean and unit variance, cropped
to [−3σ ; 3σ] to remove outliers, σ being the standard deviation, and rescaled
to [-1; 1] based on minimum and maximum intensities. Nyul histogram match-
ing [17] was also considered, but the findings of Reinhold et al. [18] indicated
that the synthesis process was robust to the choice of MR normalization method
used. As a result, we opted for a traditional Z-score normalization approach.

Field of view standardization As shown in Figure 1, modalities may have
different fields of view (FOV). Due to the use of a narrow beams of X-rays to
produce images, CT field of view is typically limited to a small area of the body,
whereas MRI allows capturing a wider field of view. In our dataset, patients
may also be in a different position depending on the modality. This is reflected
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by the visibility of the arms on the MRI, as opposed to the CT image. To
uniformize FOV, which can be useful to speed up calculations and guide training,
one common approach is to identify a region of interest (ROI) using segmentation
methods. Few methods for lung segmentation in MRI have been developed due to
the lower signal and contrast, as well as the lack of data. On the other hand, many
effective methods are available for CT, such as the U-Net R-231 convolutional
network [19]. The CT volume being registered on the MRI, it is then possible
to apply the segmentation of the lungs from the CT on the MRI, allowing to
obtain the same FOV on both modalities. All axial slices are then either cropped
or zero-padded to 512 × 512, depending on the CT lung mask size.

Impact of intensity quantization In this study, we also investigate the im-
pact of the bit depth of input medical images on the performance of a GAN in
lung MR to CT translation. We create two datasets, one in line with most of the
current state-of-the-art papers in the field with 8-bit images, and another dataset
with 16-bit images, and evaluate the GAN’s performance on each dataset. This
allows us to determine whether using higher bit-depth images can improve the
performance of the GAN for thoracic CT synthesis.

2.3 Image-to-image translation

Conditional generative adversarial networks (cGANs), are a variant of GANs
trained with additional constraints on a specific input image and have demon-
strated significant potential for image-to-image translation tasks. CGANs are
typically divided into two main categories: unpaired methods, often based on
the CycleGAN model [8], designed for image-to-image translation without the
need for corresponding pairs of images, and paired methods, based on the pix2pix
model, using corresponding pairs of images.
Since the introduction of the cycle consistency loss in CycleGAN, many unpaired
methods have been developed, including NICE-GAN [20], a decoupled network
training method that uses the discriminator to encode the image of the target
domain. As for the paired methods, pix2pix improvements are described in the
method pix2pixHD [12], which is no longer dependent on the pixel-wise loss, but
on a new feature matching loss, as well as a multi-scale discriminator and a per-
ceptual loss. SPADE [13] also enhanced the performance of paired methods by
injecting class-specific information into the generator network. This model intro-
duces a spatially adaptive normalization based on the inputs, that improves the
performance and reliability of the generator, allowing synthesized images that
are conditioned on the input class. The SPADE architecture can be integrated in
other models, such as pix2pixHD, to apply additional constraints on the inputs
and guide training.
Finally, recent works on paired image-to-image translation developed a new type
of bidirectional contrastive loss, called PatchNCE loss [22], that assesses the
similarity between two images based on the mutual information from embedded
patches, unlike GANs discriminator that only evaluates the realism of a syn-
thesized image. This contrastive loss produces a smooth and interpretable loss
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trajectory, which makes it easier to evaluate the convergence of the training pro-
cess and determine the number of epochs needed. This is a common challenge
with GANs since their traditional loss functions tend to be noisy and provide no
clear indication of training progress.

2.4 Assesment of the MR to CT synthesis

In order to evaluate the performance of generative models, past research has pro-
posed several extrinsic evaluation measures, most notably Inception Distances
(FID [23], KID [24]), which compare the generated images to a set of real images
and assess their quality and similarity. Such measures have been proven to be
insensitive to global structural problems [25], and may not be sufficient for the
evaluation of medical image translation.
Traditional image processing metrics, such as MSE, PSNR, SSIM, are the state-
of-the-art reference metrics for evaluating synthetic images. They can provide
information on how well the model preserves spatial structure and content of the
original images, but are still highly sensitive to noise and distortion, and may
not accurately reflect the visual quality of an image with low-level artifacts [26].
Our assumption is that task-specific metrics are required to accurately quantify
synthesized images and evaluate the performance of a model, by taking into ac-
count the structure and semantics of the images. In our dataset, we defined them
as Dice score, precision, and sensitivity between synthesized and ground truth
bronchial tree segmentations, by using NaviAirway [27], a bronchiole-sensitive
airway segmentation pipeline designed for CT data. This allows us to accu-
rately quantify false positives and false negatives at the bronchial level for each
synthetic CT image. A qualitative evaluation conducted by radiologists or other
medical experts can also be valuable, to ensure that the translation has preserved
overall fidelity with the ground truth, as well as key diagnostic information.

3 Experiments and results

The initial dataset of 110 MR-CT thoracic images is split in a training set of
82 patients, and testing set of 28 patients. Although 3D GANs allow perception
of volumetric and neighborhood spatial information, they involve an excessive
computational cost and a reduction of the number of samples, which can be
challenging to implement for some datasets. Therefore, we choose to train the
models on the 2D axial slices of the CT and MR volumes, and define datasets
that will allow us to assess the impact of each preprocessing step :

– unpaired dataset with unregistered 0.6× 0.6× 0.6 mm3 CT, 8-bit
– unpaired dataset with registered 0.6× 0.6× 0.6 mm3 CT, 8-bit
– paired dataset with registered 0.6× 0.6× 0.6 mm3 CT, 8-bit
– paired dataset with registered 0.6× 0.6× 0.6 mm3 CT, 16-bit
– paired dataset with registered 1× 1× 1 mm3 CT, 16-bit
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The NICE-GAN model was trained using unpaired datasets, while the pix2pixHD
and SPADE models were trained using paired datasets. We also evaluated the
performance gain of the contrastive loss when applied to these paired methods.

Table 1: Mean squared error (MSE), cross-correlation (CC) and structural sim-
ilariy index (SSIM) between synthesized CT and real CT inside the lungs.

Model MSE CC SSIM
NICE-GAN 88,45 ± 9,91 0,9283 ± 0,023 0,9725 ± 0,024

NICE-GAN registered 82,41 ± 9,74 0,9406 ± 0,015 0,9776 ± 0,022
pix2pixHD 78,46 ± 13,03 0,9499 ± 0,011 0,9834 ± 0,032

pix2pixHD w/ contrast 75,51 ± 12,05 0,9557 ± 0,010 0,9900 ± 0,030
SPADE 67,82 ± 8,18 0,9635 ± 0,083 0,9915 ± 0,016

SPADE w/ contrast 67,53 ± 7,31 0,9646 ± 0,088 0,9927 ± 0,017
SPADE 8-bit w/ contrast 67,76 ± 7,70 0,9630 ± 0,096 0,9932 ± 0,018
SPADE 1mm3 w/ contrast 76,36 ± 8,79 0,9505 ± 0,016 0,9830 ± 0,026

(a) UTE-MR input (b) Ground truth CT

(c) SPADE 1 mm3 (d) SPADE 0.6× 0.6× 0.6 mm3

Fig. 3: Comparison between MR, synthetic CT from SPADE 1× 1× 1 mm3 and
SPADE 0.6× 0.6× 0.6 mm3 and ground truth CT axial slices.

All models are trained using the same procedure and architecture defined in the
respective papers, apart from pi2pixHD/SPADE dataloader and inference parts,
which have been adapted to support 16-bit input and output arrays. Table 1
lists the quantitative evaluation using mean squared error, cross-correlation and
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structural similarity index between synthesized CT images and ground truth CT.
Calculations are constrained within the intersection between CT and synthesized
CT lung masks, to avoid comparing the backgrounds and narrow the results
inside the lungs. Figure 3 shows an example axial slice between input MR, ground
truth CT and synthetic CT from SPADE model with different samplings. SPADE
results based on CT with a voxel size of 0.6 × 0.6 × 0.6 mm3 present enhanced
contrast and sharpness, and therefore allow a more accurate distinction of vessels
and bronchi inside the lungs. To validate these assumptions, we performed the
airways segmentation of synthesized and ground truth CT using NaviAirway
[27], a bronchiole-sensitive airway segmentation pipeline designed for CT data,
and computed dice score, precision, and sensitivity. To enable comparison, the
SPADE 1×1×1 mm3 was resampled to the same resolution as the ground truth
CT before calculating the airways segmentation.

Table 2: Dice, precision and sensitivity between synthesized and ground truth
airways segmentations

Model Dice Precision Sensitivity
NICE-GAN 0,590 ± 0,088 0,636 ± 0,0752 0,583 ± 0,1298

NICE-GAN-registered 0,640 ± 0,071 0,665 ± 0,069 0,642 ± 0,104
pix2pixHD 0,707 ± 0,054 0,796 ± 0,060 0,660 ± 0,102

pix2pixHD w/ contrast 0,741 ± 0,031 0,787 ± 0,052 0,715 ± 0,088
SPADE 0,733 ± 0,068 0,829 ± 0,060 0,681 ± 0,108

SPADE w/ contrast 0,743 ± 0,060 0,819 ± 0,054 0,706 ± 0,104
SPADE 8-bit w/ contrast 0,742 ± 0,055 0,802 ± 0,057 0,719 ± 0,098

SPADE 1mm w/ contrast 0,687 ± 0,078 0,766 ± 0,068 0,652 ± 0,120

Fig. 4: Airways segmentation example based on SPADE with contrastive loss
(yellow) and real CT (red) using the NaviAirway pipeline [27].
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4 Discussion

Results from Table 1 based on image processing metrics and Table 2 based on the
evaluation of airways segmentation are strongly correlated, with identical trends.
Unpaired methods seem to benefit from the elastic registration but produce less
satisfactory results than paired methods, which is in agreement with statements
in state-of-the-art [10]. Paired pix2pixHD method combined with the conditional
normalization layer SPADE provides better performances than the pix2pixHD
method alone since it can overcome false positives and false negatives by adding
constraints on the inputs. The introduction of the PatchNCE [22] contrastive loss
has improved the performance of paired methods, particularly for the pix2pixHD
model that tends to diverge. This addition had only a minor impact on the
SPADE model, but still provided better control over convergence during training
and a more accurate way to differentiate epochs. The performance of the SPADE
model with a voxel size of 0.6 × 0.6 × 0.6 mm3 is significantly superior to that
of the model with a voxel size of 1× 1× 1 mm3, both in terms of signal quality
and bronchi reconstruction. These results confirm our initial hypothesis that
input data should be registered based on the voxel size of the modality with
the highest resolution, since downsampling the ground truth reference leads to
a loss of information, especially in fine structures such as vessels and bronchi.
Surprisingly, the intensity quantization in the input dataset images does not
appear to have a significant impact on GAN performances; both SPADE 16-
bit and SPADE 8-bit models performed similarly. The reason for this could be
that our dataset is composed of highly contrasted information, such as vessels
and bronchi in the lungs, and the representation in 8-bit instead of the initial
12-bit would barely impact the reconstruction using GANs. Future works will
aim to confirm this hypothesis by conducting similar experiments using different
medical datasets in other parts of the body.

5 Conclusion

In this paper, we present a comprehensive guide for medical image translation
using GANs. We focus on the importance of data preprocessing, and its im-
pact on performance; the benefits of using a resampling based on the modal-
ity with the highest resolution, as opposed to state-of-the-art statements, have
been demonstrated. We advocate the use of contrastive loss methods, such as
PatchNCE, to address one of the most significant challenges of GANs, which is
assessing convergence and stability during training. In addition, we argue that
traditional GAN metrics commonly used in the field, such as FID and KID,
as well as standard image processing metrics, do not provide sufficient infor-
mation to adequately evaluate GAN performances in medical image-to-image
translation tasks. We recommend defining task-specific quantitative evaluation
methods, ideally in conjunction with a qualitative evaluation by experts, in order
to robustly assess the performance of a model in this context. In future work,
we plan to investigate the validity of our assumptions on different datasets for



10 A. Longuefosse et al.

other parts of the body and provide guidance on incorporating 3D information
into the training process for medical image-to-image translation.
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