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LOW REGULARITY SOLUTIONS TO THE LOGARITHMIC

SCHRÖDINGER EQUATION

RÉMI CARLES, MASAYUKI HAYASHI, AND TOHRU OZAWA

Abstract. We consider the logarithmic Schrödinger equation, in various geo-
metric settings. We show that the flow map can be uniquely extended from H1

to L2, and that this extension is Lipschitz continuous. Moreover, we prove the
regularity of the flow map in intermediate Sobolev spaces.

1. Introduction

We consider the Cauchy problem associated to the logarithmic Schrödinger equa-
tion

i∂tu+∆u+ λu ln
(

|u|2
)

= 0, u|t=0 = ϕ , (1.1)

with x ∈ Ω, λ ∈ R. The standard occurrence for Ω is Rd. In view of the framework
considered in numerical simulations (see e.g. [3]), the domain Ω that we consider
may be:

• The whole space Ω = Rd,
• A half space Ω = Rd

+, with zero Dirichlet boundary condition, u|∂Ω = 0,
• A smooth domain Ω ⊂ Rd with bounded boundary; (1.1) is then considered
with zero Dirichlet boundary condition, and the Laplacian ∆ is understood
to be the self-adjoint realization inH−1(Ω) with the domainD(∆) = H1

0 (Ω)
(see e.g. [13, Chapter 2]),

• The torus Ω = Td = Rd/Zd.

In all cases, there is no restriction on the space dimension d > 1. Formally, the
mass and energy are independent of time:

M(u(t)) = ‖u(t)‖2L2(Ω),

E(u(t)) = ‖∇u(t)‖2L2(Ω) − λ

∫

Ω

|u(t, x)|2
(

ln(|u(t, x)|2)− 1
)

dx.

The equation (1.1) was introduced in [5] for quantum mechanics, and has attracted
the interest of physicists from various fields ever since (see e.g. [7, 32, 20, 26, 25,
31, 33, 34]). From the mathematical point of view, the first study goes back to
[12], where the Cauchy problem was investigated in the case Ω = R

d. The main
results in [12] we mention here are:

• Theorem 1.2 b): if ϕ ∈ L2(Rd), then (1.1) has a unique weak solution
u ∈ C(R, L2(Rd)) in the sense of Brezis [6].
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• Theorem 2.1: if λ > 0, and ϕ ∈ H1(Rd) is such that |ϕ|2 ln(|ϕ|2) ∈
L1(Rd), then (1.1) has a unique solution u ∈ C(R, H1(Rd)). In addition,
|u(t)|2 ln(|u(t)|2) ∈ L1(Rd) for all t ∈ R, and the mass and energy of u are
independent of time.

The goal of this paper is mostly to revisit the first statement above. The weak
solution in Theorem 1.2 b) is obtained as a limit of the sequence of strong solutions,
and the existence of this limit is guaranteed through the maximal monotone theory.
For the convenience of the reader, more details are provided in Appendix A.

The mathematical study of (1.1) has been considered since [12], regarding both
the Cauchy problem ([16, 9, 23]) and the dynamical properties of the solutions
(e.g. [10, 2, 9, 18, 19]). More recently, the Cauchy problem was revisited by the
second and third authors in [24], where strong global solutions are provided in a
constructive way, in each of the following functional settings:

• ϕ ∈ H1(Rd) for λ 6= 0,

• Energy space: ϕ ∈ W1 := {f ∈ H1(Rd), |f |2 ln(|f |2) ∈ L1(Rd)} for λ 6= 0,

• H2 energy space: ϕ ∈ W2 := {f ∈ H2(Rd), f ln(|f |2) ∈ L2(Rd)} for λ > 0.

We emphasize that unlike in the case of more standard power-like nonlinearities
for Schrödinger equations, due to the singularity of the logarithm at the origin,
several questions regarding the Cauchy problem (1.1) are unclear, such as:

• The propagation of higher regularity: if ϕ ∈ H3, can we guarantee that
the solution u remains in H3, even locally in time?

• Is there a minimal regularity for a “reasonable” notion of solution?

In this paper, we focus on the second question. When Ω = Rd, (1.1) is invariant
under Galilean transformations

u(t, x) 7→ eiv·x−i|v|2tu(t, x− 2vt) for v ∈ R
d,

which leave the L2(Rd) norm invariant, so it may be expected that like for nonlinear
Schrödinger equations with pure power nonlinearities, the flow map fails to be
uniformly continuous on Hs(Rd) when s < 0 ([28, 14, 15]). See also [15, 8, 30]
for stronger ill-posedness results. We note, however, that in the case of the KdV
equation the flow map was extended continuously to the level of H−1(R) ([29]),
even though it has been known that the flow map cannot be uniformly continuous
on Hs(R) when s < −3/4. Similar well-posedness pictures can also be seen in the
cubic NLS equation and the modified KdV equation ([22]).

Note that there is no natural scaling associated to (1.1), when Ω = Rd, of the
form uκ(t, x) = καu(κβt, κγx), which leaves the equation invariant. Yet, another
invariance, rather unique for nonlinear Schrödinger equations, shows that the size
of the initial data does not affect the Cauchy problem, nor the dynamical properties
of the solution: if u solves (1.1), then for any z ∈ C,

uz(t, x) = zu(t, x)eiλt ln |z|2
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solves the same equation, with initial datum zϕ. This unusual invariance also
shows that regardless of the function spaces considered, the flow map cannot be C1

at the origin, due to the above oscillating factor: it is at most Lipschitz continuous.
The main result of this paper is that the flow map defined on H1(Ω) can be

uniquely extended on L2(Ω), this extension is Lipschitz continuous, and preserves
possible intermediate Sobolev regularity:

Theorem 1.1. The equation (1.1) is globally well-posed in L2(Ω) in the following

sense: The H1 solution map Φ is uniquely extended to L2(Ω), and for ϕ ∈ L2(Ω),
u = Φ(ϕ) ∈ C(R, L2(Ω)) satisfies

i∂tu+∆u+ λu ln(|u|2) = 0 in H−2(ω)

for any open sets ω ⋐ Ω and all t ∈ R, with u|t=0 = ϕ. Moreover, Φ is Lipschitz

continuous:

‖Φ(ϕ)(t)− Φ(ψ)(t)‖L2 ≤ e2|λt| ‖ϕ− ψ‖L2

for any ϕ, ψ ∈ L2(Ω) and all t ∈ R. If in addition ϕ ∈ Hs(Ω) for some s ∈ (0, 1),
then Φ(ϕ) ∈ C(R, Hs(Ω)).

Our contributions in this paper can be summarized as follows.

1.Meaning of L2 solutions revisited. We show that logarithmic nonlinearities make
sense for general functions belonging to L∞((−T, T ), L2(Ω)) for T > 0, which in
particular gives the meaning of solutions to (1.1) in the distribution sense (see
Lemma 3.1 and Remark 3.2). This differs from [12] in that it gives the meaning
to L2 solutions regardless of how the solution is constructed or independently of
limiting procedures.

2.GWP in L2 independently of the maximal monotone theory. We construct L2

solutions as an extension of the solution map on H1 while preserving L2 Lipschitz
flow in [12] (see Lemma 3.3 below). The formulation of the global well-posedness is
inspired from recent results on completely integrable systems ([29, 22, 21]). Note
that the L2 Lipschitz flow is a natural consequence of the remarkable inequality

∣

∣Im
[

(z1 − z2)(z1 log(|z1|)− z2 log(|z2|))
]
∣

∣ ≤ |z1 − z2|
2 for all z1, z2 ∈ C, (1.2)

which was discovered in [12, Lemme 1.1.1]. It may be common to [12, Theo-
rem 1.2 b)] that L2 solutions are constructed as a limit of sequences of strong
solutions, but our construction would be regarded to be a more direct consequence
of (1.2) and it is independent of the maximal monotone theory.

3. Intermediate Sobolev regularity. This regularity result is obtained as a new ap-
plication of the inequality (1.2). By using the Sobolev norm based on the difference
quotient, we can effectively utilize (1.2) to obtain an a priori estimates on Hs for
all s ∈ (0, 1).

The rest of the paper is organized as follows. In Section 2, we recall the con-
struction of the H1 solution map, from [24]. In Section 3, we show that this map
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can be uniquely extended to L2, as a Lipschitz continuous map. In Section 4, we
show that the intermediate Sobolev regularity is propagated by this map.

Notation. We sometimes use the abbreviated notation such as

CT (X) = C([−T, T ], X), L∞
T (X) = L∞((−T, T ), X)

for T > 0 and a Banach/Fréchet space X . For open sets ω,Ω ⊂ Rd, we write
ω ⋐ Ω if ω̄ ⊂ Ω and ω̄ is compact, where ω̄ is the closure of ω in Rd.

According to [17], we define the fractional Sobolev spaces Hs. For a general
open set Ω ⊂ Rd, the fractional Sobolev spaces Hs(Ω) for s ∈ (0, 1) are defined
via the norm

‖f‖2Hs(Ω) = ‖f‖2L2(Ω) +

∫∫

Ω×Ω

|f(x+ y)− f(x)|2

|y|d+2s
dxdy. (1.3)

We define Hs
0(Ω) by the closure of C∞

c (Ω) in the norm ‖·‖Hs(Ω) and H−s(Ω) by

the dual space of Hs
0(Ω) for s ∈ (0, 1). When Ω = Rd, the Sobolev space via the

norm (1.3) coincides with Bessel potential spaces endowed with the norm

‖f‖2Hs(Rd) =
∥

∥

∥
(1 + 4π2|ξ|2)sf̂(ξ)

∥

∥

∥

2

L2(Rd)
for s ∈ R, (1.4)

where f̂(ξ) is the Fourier transform defined by

f̂(ξ) =

∫

Rd

f(x)e−2πix·ξdx for ξ ∈ R
d.

Similarly to Bessel potential spaces on R
d, the Sobolev spaces Hs(Td) on the torus

are defined via the norm

‖f‖2Hs(Td) =
∑

n∈Zd

(

1 + 4π2|n|2
)s
|f̂(n)|2 for s ∈ R, (1.5)

where f̂(n) is the discrete Fourier transform defined by

f̂(n) =

∫

Td

f(x)e−2πix·ndx for n ∈ Z
d.

We use A . B to denote the inequality A ≤ CB for some constant C > 0.
The dependence of C is usually clear from the context and we often omit this
dependence. We may sometimes write A .∗ B to clarify the dependence of the
implicit constant.

2. Global H1 solutions

In this section we review global H1 solutions to (1.1). Here let Ω ⊂ Rd be a
general domain and let ϕ ∈ H1

0 (Ω). Following the strategy of [24], we regularize
(1.1) like in [3]: for ε > 0, we consider approximate solutions uε to

i∂tu
ε +∆uε + 2λuε ln (|uε|+ ε) = 0, uε|t=0 = ϕ. (2.1)
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As the nonlinearity is now smooth, with moderate growth at infinity, the equation
(2.1) has a unique, global solution (see e.g. [11, Chapter 3], [24, Section 2.1]),

uε ∈ C(R, H1
0(Ω)) ∩ C

1(R, H−1(Ω)).

Uniqueness and regularity in time in the case of (2.1) follow from the generalization
of the inequality (1.2), generalized successively in [3] and [24]. We state the most
general version:

Lemma 2.1 ([24, Lemma A.1]). For all z1, z2 ∈ C, ε1, ε2 > 0,
∣

∣Im
[

(z1 − z2) (z1 ln (|z1|+ ε1)− z2 ln (|z2|+ ε2))
]
∣

∣ ≤ |z1 − z2|
2

+ |ε1 − ε2| × |z1 − z2|.

The uniform energy estimate

‖∇uε(t)‖2L2 ≤ e4|λt|‖∇ϕ‖2L2,

is easily obtained by differentiating the left hand side in time and invoking Gron-
wall’s lemma. Combined this with Lemma 2.1, one can prove that {uε} forms a
Cauchy sequence in CT (L

2
loc(Ω)) as ε ↓ 0 for any T > 0. Thus, we obtain the

following result.

Theorem 2.2 (From Theorem 4.1 in [24]). For any ϕ ∈ H1
0 (Ω), there exists a

unique solution u ∈ C(R, H1
0(Ω)) to (1.1), in the sense of

i∂tu+∆u+ λu ln
(

|u|2
)

= 0 in H−1(ω),

for all ω ⋐ Ω and all t ∈ R, and with u|t=0 = ϕ.

The whole argument holds true for the torus Td (not considered in [24]), in the
same way, and we obtain:

Theorem 2.3. For any ϕ ∈ H1(Td), there exists a unique solution u ∈ C(R, H1(Td))
to (1.1), in the sense of

i∂tu+∆u+ λu ln
(

|u|2
)

= 0 in H−1(Td),

for all t ∈ R, and with u|t=0 = ϕ.

3. The Cauchy problem in L2

In this section we construct strong L2 solutions to (1.1). For convenience of
notation, here we only consider the case where Ω is a general domain in Rd. In
the case of the torus Td, the same argument still works if we replace H1

0 (Ω) by
H1(Td).

The first task in order to consider (1.1) with initial data ϕ ∈ L2(Ω) is to clarify
in what sense the L2 solution satisfies the equation.

Lemma 3.1. Let u ∈ L∞
T (L2(Ω)) for T > 0. Then, for any small ε > 0 and all

ω ⋐ Ω, the nonlinear term satisfies u ln(|u|2) ∈ L∞
T (H−ε(ω)).
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Proof. We note that
∣

∣u ln(|u|2)
∣

∣ . |u|1−δ + |u|1+δ,

for any δ ∈ (0, 1). Writing, for ψ a test function supported in ω ⋐ Ω,

∣

∣

〈

u ln |u|2, ψ
〉
∣

∣ .

∫

ω

|u|1−δ|ψ|+

∫

ω

|u|1+δ|ψ|

. ‖u‖1−δ

Lp′(1−δ)‖ψ‖Lp + ‖u‖1+δ

Lq′(1+δ)‖ψ‖Lq ,

and considering p′(1− δ) = 2, that is p = 2
1+δ

, and q = 2
1−δ

, we get
∣

∣

〈

u ln(|u|2), ψ
〉
∣

∣ . ‖u‖1−δ
L2 ‖ψ‖

L
2

1+δ (ω)
+ ‖u‖1+δ

L2 ‖ψ‖
L

2
1−δ (ω)

. ‖u‖1−δ
L2 ‖ψ‖L2(ω) + ‖u‖1+δ

L2 ‖ψ‖Hdδ/2(ω),

where we have used the Sobolev embedding in the last inequality.1 Therefore, we
deduce that u ln(|u|2) ∈ H−dδ/2(ω), which proves the result. �

Remark 3.2. If u ∈ L∞
T (L2(Ω)), then the equation (1.1) makes sense in the sense

of

i∂tu+∆u+ λu ln(|u|2) = 0 in H−2(ω),

for any ω ⋐ Ω and a.e. t. In particular, it gives the meaning of the equation in
the distribution sense for any u ∈ L∞

T (L2(Ω)).

We now recall the following important lemma:

Lemma 3.3 ([12, Lemma 2.2.1]). Assume that u, v ∈ CT (H
1
0(Ω)) satisfies (1.1)

in the distribution sense. Then, we have

‖u(t)− v(t)‖L2 ≤ e2|λt| ‖u(0)− v(0)‖L2 for t ∈ [−T, T ]. (3.1)

Proof. For completeness, we give a proof of this result. To simplify the presenta-
tion, we consider only the case Ω = R

d. We set

M := max
{

‖u‖CT (H1) , ‖v‖CT (H1)

}

.

We note that u, v satisfy the equation in the sense of

i∂tu+∆u+ λu ln(|u|2) = 0 in H−1(BR) (3.2)

for any R > 0 and for all t ∈ R, where BR is the open ball of radius R with center
at the origin of Rd. Take a function ζ ∈ C∞

c (Rd) satisfying

ζ(x) =

{

1 if |x| ≤ 1,

0 if |x| ≥ 2,
0 ≤ ζ(x) ≤ 1 for all x ∈ R

d.

1More precisely, we first consider the zero extension of ψ, and then apply the Sobolev embed-

ding Hdδ/2(Rd) ⊂ L
2

1−δ (Rd).
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We set ζR(·) = ζ(·/R) for R > 0. It follows from (3.2) and Lemma 2.1 (with
ε1 = ε2 = 0) that

d

dt
‖ζR(u− v)‖2L2 = 2 Im

〈

iζ2R∂t(u− v), u− v
〉

H−1(B2R),H1
0 (B2R)

= 2 Im
(

∇(ζ2R)∇(u− v), u− v
)

L2

− 4λ Im
(

ζ2R (u ln |u| − v ln |v|) , u− v
)

L2

≤
C(M)

R
+ 4 |λ| ‖ζR(u− v)‖2L2 .

Integrating the last inequality over [0, t], and applying Gronwall’s lemma,

‖ζR(u− v)(t)‖2L2 ≤ e4|λt|
(

‖u(0)− v(0)‖2L2 +
C(M)

R
T

)

,

for all t ∈ (−T, T ). Applying Fatou’s lemma,

‖u(t)− v(t)‖2L2 ≤ lim inf
R→∞

‖ζR(u− v)(t)‖2L2 ≤ e4|λt| ‖u(0)− v(0)‖2L2 ,

which proves (3.1). �

Remark 3.4. For the proof of Lemma 3.3, we need to assume H1 solutions to give
a sense of the duality product. Note, however, that (3.1) remains meaningful for
L2 solutions.

Now we take ϕ ∈ L2(Ω) as the initial data. Take {ϕn} ⊂ H1
0 (Ω) such that

ϕn → ϕ in L2(Ω). We know from Theorem 2.2 that there exists a unique solution
un ∈ C(R, H1

0 (Ω)) of (1.1) with un(0) = ϕn. Then, it follows from (1.1) that {un}
forms a Cauchy sequence in L∞

loc(R, L
2(Ω)). Therefore we deduce that there exists

u ∈ C(R, L2(Ω)) such that

un → u in L∞
loc(R, L

2(Ω)).

The rest of the proof consists in verifying that u is an L2 solution in the above
sense.

Lemma 3.5. For any ω ⋐ Ω and for any ε > 0, we have

g(un) → g(u) in L∞
loc(R, H

−ε(ω)),

where we have set g(z) = z ln (|z|2).

Proof. We take a function θ ∈ C1
c (C,R) satisfying

θ(z) =

{

1 if |z| ≤ 1/2,

0 if |z| ≥ 1,
0 ≤ θ(z) ≤ 1 for z ∈ C.

We set

g1(u) = θ(u)g(u), g2(u) = (1− θ(u))g(u).
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We note that for α ∈ (0, 1),

|g1(z)− g1(w)| .α |z − w|α, (3.3)

|g2(z)− g2(w)| .
(

ln+ |z| + ln+ |w|
)

|z − w|, (3.4)

for any z, w ∈ C. It follows from (3.3) that

g1(un) → g1(u) in L∞
loc(R, L

2(ω)). (3.5)

Regarding the convergence of g2(un), we use the argument in the proof of Lemma
3.1. For ψ ∈ C1

c (Ω) and any δ > 0, we obtain from (3.4) that
∣

∣

∣

∣

∫

(g2(un)− g2(u))ψ

∣

∣

∣

∣

.

∫

(|un|
δ + |u|δ)|un − u| |ψ|

.
(

‖un‖
δ
L2 + ‖u‖δL2

)

‖un − u‖L2 ‖ψ‖
L

2
1−δ

,

where we have used Hölder inequality with the exponent relation

δ

2
+

1

2
+

1− δ

2
= 1.

Thus, we obtain
∣

∣

∣

∣

∫

(g2(un)− g2(u))ψ

∣

∣

∣

∣

≤ C(‖ϕ‖L2) ‖un − u‖L2 ‖ψ‖Hε ,

where we take ε = dδ/2 by the Sobolev embedding. Therefore, we deduce that

‖g2(un)− g2(u)‖H−ε . ‖un − u‖L2 ,

which implies that

g2(un) → g2(u) in L∞
loc(R, H

−ε(Ω)). (3.6)

Hence, the result follows from (3.5) and (3.6). �

We recall that un satisfies

i∂tun +∆un + λun ln
(

|un|
2
)

= 0 in H−1(ω), (3.7)

for all ω ⋐ Ω. We now fix ω ⋐ Ω, and take ψ ∈ C∞
c (ω) and φ ∈ C1

c (R). It follows
from (3.7) that

∫

R

(iun, ψ)L2 φ
′(t)dt = −

∫

R

〈i∂tun, ψ〉H−1,H1
0
φ(t)dt

=

∫

R

(

(un,∆ψ)L2 + 〈λg(un), ψ〉H−1,H1
0

)

φ(t)dt.

Passing to the limit as n→ ∞, we obtain from Lemma 3.5 that
∫

R

(iu, ψ)L2 φ
′(t)dt =

∫

R

(

(u,∆ψ)L2 − 〈λg(u), ψ〉H−1,H1
0

)

φ(t)dt

=

∫

R

〈∆u− λg(u), ψ〉H−2,H2
0
φ(t)dt.
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It is easily verified from this formula that

u ∈ C(R, L2(Ω)) ∩ C1(R, H−2(ω)),

for any ω ⋐ Ω, and u satisfies (3.7) for any ω ⋐ Ω and all t ∈ R.
The L2 solution just constructed can be regarded as a unique extension of the

solution map in H1. We define the solution map from H1 initial data by

Φ : H1
0 (Ω) ∋ ϕ 7→ u ∈ C(R, H1

0(Ω)). (3.8)

For any ϕ ∈ L2(Ω), we take a sequence {ϕn} ⊂ H1
0 (Ω) such that ϕn → ϕ in L2(Ω)

and define

Φ(ϕ) = lim
n→∞

Φ(ϕn) ∈ C(R, L2(Ω)).

From the above discussion, Φ(ϕ) yields an L2 solution of (1.1). We note from
(3.1) that Φ(ϕ) is defined independently of the approximate sequence ϕn → ϕ.
Therefore the solution map (3.8) is uniquely extended from H1

0 (Ω) to L
2(Ω), and

hence the first part of Theorem 1.1 follows.

4. Intermediate Sobolev regularity

To prove the last part of Theorem 1.1, we show that the flow map associated
to (2.1) propagates Hs regularity for s ∈ (0, 1), uniformly in ε ∈ (0, 1]. For
domains Ω ⊂ Rd the fractional Sobolev spaces space Hs(Ω) may be defined either
by real/complex interpolation between L2(Ω) and H1

0 (Ω). When Ω = R
d, it is

well known that the Bessel potential spaces by (1.4) are characterized by complex
interpolation as

Hs(Rd) = [L2(Rd), H1(Rd)]s, s ∈ (0, 1).

In the first three cases considered for Ω in the introduction (whole space, half
space, or smooth bounded domain), [1, Theorem 7.48] states that the fractional
Sobolev spaces defined by real interpolation are equivalent to the ones equipped
with the norm (1.3). Regarding the last case Ω = Td, it is also known that a
similar equivalence relation holds as follows.

Lemma 4.1 ([4, Proposition 1.3]). Let s ∈ (0, 1). Then, for f ∈ Hs(Td) we have

the relation

‖f‖2Hs(Td) ∼ ‖f‖2L2(Td) +

∫∫

Td×[− 1
2
, 1
2
)d

|f(x+ y)− f(x)|2

|y|d+2s
dxdy.

We denote the approximate nonlinearity by

gε(z) = 2z ln (|z|+ ε) for ε ∈ (0, 1].

For domains Ω ⊂ Rd, we differentiate ‖uε(t)‖2Hs with respect to time, where we
recall the Hs norm defined by (1.3). Then, in view of the conservation of mass,
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we obtain

d

dt
‖uε(t)‖2Hs(Ω)

= 2Re

∫∫

Ω×Ω

(uε(t, x+ y)− uε(t, x))∂t (u
ε(t, x+ y)− uε(t, x))

dxdy

|y|d+2α

= − Im

∫∫

Ω×Ω

(uε(t, x+ y)− uε(t, x))∆ (uε(t, x+ y)− uε(t, x))
dxdy

|y|d+2α

− 2λ Im

∫∫

Ω×Ω

(uε(t, x+ y)− uε(t, x)) (gε (u
ε(t, x+ y))− gε (u

ε(t, x)))
dxdy

|y|d+2α
.

The first term on the right hand side is zero by integration by parts in x. For the
second term, by applying Lemma 2.1 we obtain

d

dt
‖uε(t)‖2Hs(Ω)

≤ 2|λ|

∫∫

Ω×Ω

∣

∣

∣
Im

[

(uε(t, x+ y)− uε(t, x)) (gε (u
ε(t, x+ y))− gε (u

ε(t, x)))
]
∣

∣

∣

dxdy

|y|d+2α

≤ 4|λ|

∫∫

Ω×Ω

|uε(t, x+ y)− uε(t, x)|2
dxdy

|y|d+2α
≤ 4 |λ| ‖uε(t)‖2Hs(Ω) .

Therefore, by Gronwall’s lemma we deduce

‖uε(t)‖2Hs(Ω) ≤ e4|λt|‖ϕ‖2Hs(Ω) for all t ∈ R. (4.1)

For the torus Td, a similar estimates is obtained through Lemma 4.1 as

‖uε(t)‖2Hs(Td) ≤ eC|λt|‖ϕ‖2Hs(Td) for all t ∈ R (4.2)

for some C > 0 independent of ε and t.
In view of the construction presented in Section 3, it follows from (4.1), (4.2),

and limiting procedures that Φ(ϕ) ∈ Cw(R, H
s(Ω)) when ϕ ∈ Hs(Ω). Applying

the argument of [27, Remarks (c)], one can improve the regularity in time as
Φ(ϕ) ∈ C(R, Hs(Ω)) (see the proof of [24, Lemma 2.11] for more details). This
completes the proof of the last part of Theorem 1.1.

Appendix A. Weak solutions in the sense of Brezis

In this section, we state the content of [12, Theorem 1.2 b)] in a mostly self-
contained manner. The construction of their L2 weak solutions depend on the
maximal monotone theory. We define the nonlinear operator A by

Au = −i∆u− iλu ln(|u|2)

with the domain

D(A) =
{

u ∈ H1
loc(R

d) ∩ L2(Rd) : ∆u+ λu ln(|u|2) ∈ L2(Rd)
}

.
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From [12, Theorem 1.1] we know that A + 2|λ|I is maximal monotone in L2(Rd).
Note that the inequality (1.2) is used to show the monotonicity of A. We now
rewrite the equation (1.1) as

du

dt
+ (A+ 2|λ|)u = 2|λ|u, u(0) = ϕ. (A.1)

The definition of weak solutions in the sense of Brezis is given as follows.

Definition A.1 ([6, Definition 3.1]). Let A be a maximal monotone operator on

the Hilbert space H. Assume f ∈ L1((0, T ), H) for some T > 0. We say that u ∈
C([0, T ], H) is a weak solution of the equation du

dt
+Au = f if there exists sequences

fn ∈ L1((0, T ), H) and un ∈ C([0, T ], H) such that un satisfies dun

dt
+Aun = fn for

a.e. t ∈ (0, T ), fn → f in L1((0, T ), H), and un → u in C([0, T ], H).

The authors in [12] apply [6, Theorem 3.17] to the equation (A.1) and prove
that there exists a unique L2 weak solution in the sense of Definition A.1. We
note that in the proof of [6, Theorem 3.17] the inequality (26) therein plays a key
role in guaranteeing both the existence and uniqueness of solutions, and that this
inequality is a consequence of monotonicity of the operator.
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