Low regularity solutions to the logarithmic Schrodinger equation
Résumé
We consider the logarithmic Schrödinger equation, in various geometric settings. We show that the flow map can be uniquely extended from H^1 to L^2 , and that this extension is Lipschitz continuous. Moreover, we prove the regularity of the flow map in intermediate Sobolev spaces.
Origine | Fichiers produits par l'(les) auteur(s) |
---|