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In geophysics, volcanoes are particularly difficult to image because of the multi-

scale heterogeneities of fluids and rocks that compose them and their complex

non-linear dynamics. By exploiting seismic noise recorded by a sparse array

of geophones, we are able to reveal the magmatic and hydrothermal plumb-

ing system of La Soufrière volcano in Guadeloupe. Spatio-temporal cross-

correlation of seismic noise actually provides the impulse responses between

virtual geophones located inside the volcano. The resulting reflection matrix

can be exploited to numerically perform an auto-focus of seismic waves on any

reflector of the underground. An unprecedented view on the volcano’s inner

structure is obtained at a half-wavelength resolution. This innovative observ-

able provides fundamental information for the conceptual modeling and high-

resolution monitoring of volcanoes.

In everyday life, a multitude of sensors surround us to monitor our environment. In wave

physics, those sensors can be active and work together to control the wave-field at will whether
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it be for focusing (1) or communication (2) purposes. For imaging, the problem is often ill-

posed because of the medium complexity and/or the sensor array sparsity. This is particularly

the case in seismology, where the topography of the site under investigation can be so irregular

that it is illusory to deploy a large and dense network of geophones.

This paper addresses the issue of seismic imaging in complex areas such as volcanoes or

fault zones based on data recorded by a sparse array of seismometers. The goal is to provide high

spatial resolution and in-depth imaging of such critical areas that are of paramount importance

for Earth sciences. To that aim, we will build on a matrix imaging approach imported from

other fields than geophysics, such as medical ultrasonics (3, 4) and optical microscopy (5, 6)

that were designed for scales ranging from a few centimeters for ultrasonic waves to a few

hundreds of nanometers for light. In contrast with concurrent seismic methods such as full

waveform inversion (7), the strength of matrix imaging lies in the fact that: (i) it does not

rely on a sophisticated wave velocity model whose knowledge is often limited and uncertain in

geophysics; (ii) it is robust with respect to data quality which is a frequent issue in seismology.

Matrix imaging relies on the array response matrix that contains the set of impulse responses

between each seismometer. Although a geophone is purely passive, cross-correlation of seis-

mic noise received at two stations is known to converge toward the Green’s function between

receiving stations (8, 9), as if one of them had been used as source, thus paving the way to

passive matrix imaging (10–12). As surface waves dominate ambient noise, most past studies

on the topic aimed at extracting surface wave properties from ambient noise correlations (13).

However, they also contain the contribution of body waves reflected by deep structures (14) and

fluid reservoirs (10).

As a proof-of-concept, we here exploit seismic noise recorded by a sparse geophone network

deployed at the surface of the La Soufrière volcano of Guadeloupe (15,16). The covariance ma-

trix of this seismic noise provides the reflection matrix that contains all the available information
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on the underground reflectivity. A numerical focusing process, often referred to as redatuming

in seismology (17), can then be applied to provide a confocal image of the subsoil reflectiv-

ity (10). This image is directly proportional to the axial fluctuations of the acoustic impedance

associated with length scales typically of the order or smaller than the wavelength. It is therefore

an extremely relevant observable for highlighting the presence of fluid-rock interfaces. How-

ever, the quality of the confocal image is drastically degraded by: (i) the mismatch between the

wave velocity model and its real distribution that gives rise to a foggy image; (ii) the sparsity

and finite size of the geophone network that limit its resolution. The former problem is solved

by compensating wave distortions from the Earth surface, thereby revealing an helical conduit

in the upper part of the volcano. The sparsity issue is addressed by an iterative phase rever-

sal process driven from the k−space (18, 19) that resolves the deep reflectors with a transverse

resolution of the order of a half-wavelength, thereby breaking the free space diffraction-limit

usually limited by the array aperture. The inner structure of the volcano is revealed up to a depth

of 10 km. It shows sub-horizontal bodies linked by thinner sub-vertical structures that match

the current state-of-the-art conceptual and data-derived view of transcrustal magmatic systems.

Such a mush-based model applies to numerous volcanic systems and has indeed been theorized

for La Soufrière of Guadeloupe (20–22).

Canonical Reflection Matrix

Figure 1A shows the virtual network of 76 geophones whose distribution has been dictated by

the topography of the volcano. It spans over a lateral extension d∣∣ = 1300 m and a vertical range

dz = 500 m. The impulse response R(i, j, t) between each pair of stations (i, j) is estimated

by cross-correlation of ambient seismic noise (9) (section S1). The set of impulse responses is

stored in a time-dependent response matrix R(t).

This canonical reflection matrix is powerful since it enables a post-processing projection of
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Figure 1: Passive imaging of La Soufrière volcano. (A) Map of the 76 geophones installed
above La Soufrière (Guadeloupe, France). Both permanent stations (red) and temporary nodal
array (green) are used. (B) Covariance matrix of seismic noise acquired during 2 months is
post-processed to obtain the impulse responses between a set of virtual geophones identified
by their position rin/out = (ρin/out, z) and mapping the inside of the volcano. (C) 1D-velocity
model (23) used for the seismic data redatuming process.

seismic data into different mathematical bases. The reflection matrix can be investigated into

the plane wave basis (or k-space) or any plane in the real space that sits between the Earth

surface (u) and the expected focal plane (ρ) at a given time-of-flight t. To project the seismic

data in these latter bases, a wave velocity model is nevertheless required.

Wave Velocity Model

As we consider only the vertical component of the impulse responses, collected echoes are

assumed to be mainly associated with P-waves (14). Thus, we adopt in the following a ho-

mogeneous P-wave velocity model. More precisely, for each depth, we define a homogeneous

velocity distribution whose value is calculated on the basis of the four-layer large scale velocity

model (23) (Fig. 1C). This value ranges from c0 = 2000 m.s-1 at shallow depth to c0 = 4300

m.s-1 at depth z = 10 km below the surface. The detailed evolution of the wave velocity model
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c0(z) with respect to depth is given in Figure 1C. The assumed background velocity model is

rough but is, as we will see, sufficient to image the volcano by leveraging the matrix approach.

Confocal Redatuming

In a first step, the velocity model is used to back-propagate in-depth the recorded echoes gath-

ered in the canonical reflection matrix R in order to retrieve local reflectivity information at

each depth of interest. Back-propagation is commonly achieved by applying appropriate time

delays at emission and at reception to migrate echoes in post-processing. Such focusing op-

erations are frequently used in imaging and are in particular known as redatuming in seismic

exploration (24). The matrix formalism offers a convenient framework to easily perform such

beamforming in post-processing, especially in the frequency domain where these operations are

described using simple matrix products (10–12, 25) (section S2).

The result is a focused reflection matrix Rρρ(z) = [R(ρout,ρin, z)] at each depth z that

contains the inter-element impulse responses between a set of virtual sources at rin = (ρin, z)

and virtual receivers at rout = (ρout, z) mapping the inner structure of the volcano (Fig. 1B). Its

diagonal elements are associated with coincident input and output focusing points (ρin = ρout,

see section S3). After compensation of wave attenuation with depth (section S4), a 3D confocal

image of the volcano is obtained (Fig. 2A) with horizontal cross-sections shown for different

depths in Fig. 2B : (i) z = 1.6 km i.e where the most abundant seismicity occurs at La Soufrière;

(ii) z = 6.9 km i.e at the level of the magma reservoir whose depth range is expected between

5.6 and 8.5 km (26); (iii) z = 9.1 km i.e beyond the magma reservoir.

Whether it be on the transverse or the vertical view (see Supplementary Movies 1, 2 and 3),

some scattering structures seem to emerge at different locations in Figs. 2A,B but the overall

structure appears to be fully blurred, suggesting a high level of aberrations. Such a raw confocal

image is indeed very sensitive to aberrations and its interpretation should be extremely cautious.
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Figure 2: Confocal redatuming (A) Vertical slice of the 3D confocal image along the South-
North direction. This image is shown after depth compensation of seismic wave attenuation
(section S4). (B) Horizontal slices and (C) associated RPSFs at depths z = 1.6 km, 6.9 km and
9.1 km below the summit. The spatial extension δρu (Eq. 1) of the theoretical diffraction-limited
focal spot is denoted as a white circle.

Focusing Quality

The focusing quality can actually be assessed by considering the off-diagonal elements of

Rρρ(z) (ρin ≠ ρout) that provide an estimator of the point spread function in reflection (RPSF,

see sections S5 and S6) as a function of the relative position ∆ρ = ρout −ρin (11,12). Figure 2C

displays the evolution of RPSF for different depths and highlights a significant spreading of the

back-scattered energy over off-diagonal elements of Rρρ(z). This is a direct manifestation of

the gap between the wave velocity model and its real distribution in the volcano. In absence

of aberration, all the back-scattered energy would be contained in a diffracted-limited confocal

spot (white circle in Figure 2C) whose size is governed by the angle θu = tan−1 (d∣∣/2z) under

6



which the geophone array is seen by the focusing point:

δρu = λ/ (2 sin θu) . (1)

In Fig. 2C, the focused wave-field spans over a much larger area than this ideal focal spot and

significant side lobes appear around the main central lobe, indicating that images suffer from a

high level of aberration.

Overcoming Aberrations

To isolate and compensate for these aberration effects, we build upon a physical phenomenon

referred to as the memory effect in wave physics (27). Waves produced by nearby points inside

a complex medium can generate highly correlated, but tilted, reflected wave-fields (Fig. 3A).

To exploit this tilt-tilt memory effect, our strategy is thus the following (28) (section S7): (i)

project the reflection matrix between the focused basis (r) and the Earth surface basis (u)

(Fig. 3A); (ii) highlight the angular correlations of the reflected wave-field by building a dual-

basis matrix (the distortion matrix D) that connects any input focal point in the medium with

the distortion exhibited at the Earth surface by the corresponding reflected wavefront (Fig. 3B);

(iii) take advantage of the angular correlations between those wave distortions to accurately

estimate the aberration phase transmittance in the Earth surface basis through an iterative phase

reversal algorithm (Fig. 3C); (iv) phase conjugate the resulting transmittance to tailor adaptive

focusing laws that shall compensate for the volcano’s heterogeneities (Fig. 3D).

Vertical and horizontal cross-sections of the resulting confocal image are displayed in Figs. 3E

and F, respectively. The comparison with the initial image demonstrates the benefit of the cor-

rection process, especially at shallow depths (z < 4 km) where the twisted conduit of the vol-

cano is revealed. The comparison of the original and the corrected RPSFs (Figs. 2C and 3G)

confirms that the focusing quality is significantly improved in this depth range: Whereas the

original RPSF (top panel in Fig. 2B) spreads far beyond the diffraction-limited focal spot, the
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Figure 3: Exploiting memory effect for overcoming aberrations. (A) Schematic view of
back-scattered wave-fronts in the Earth surface basis (u) generated by virtual sources (rin) at a
given depth z. (B) The extraction of wave-distortions amounts to an angular de-scan of each
input focal spot. (C) Iterative phase reversal applied to the D−matrix at each depth provides
an aberration transmittance whose phase is here shown at depths z = 1.6 km, 6.9 km and 9.1
km and whose modulus is encoded as a transparency mask. Black dots indicate the lateral
position of geophones. (D) Phase conjugation and tilt of such aberration phase laws enable an
adaptive focusing process on each point of the subsoil. (E) Vertical slice of the 3-D confocal
image obtained by means of these optimized focusing laws. This image is shown after a depth
compensation of seismic wave attenuation (section S4). (F) Corresponding horizontal slices at
depths z = 1.6 km, 6.9 km and 9.1 km. (G) Modulus and (H) phase of the resulting RPSFs at
the same depths. The spatial extension δρu (Eq. 1) of the theoretical diffraction-limited focal
spot is denoted as a white circle.
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Figure 4: Overcoming diffraction by operating the focusing process from the k−space. (A)
The distorted wave-field in the k−space amounts to a lateral de-scan of each reflected echoes.
Under the Franhofer approximation, the far-field projection of each focal spot is limited by
the de-scanned geophone network aperture. (B) In the present case, Fresnel diffraction gives
rise to a modulation of each focal spot by a parabolic phase law. The diffraction pattern of
each reflector then corresponds to Fresnel rings that cover the whole diffraction disk of radius
k0. For sake of clarity, only the contribution of a central reflector is displayed. (C) Iterative
phase reversal applied to D extracts those diffraction patterns here shown at depths z = 1.6 km,
6.9 km and 9.1 km. (D) Vertical slice of the resulting image (same view as in Figs. 2A and
3D). This image is shown after depth compensation of seismic wave attenuation (section S4).
(E) Corresponding horizontal slices and (F) RPSFs at the same depths as panel C. The spatial
extension δρu (Eq. 1) of the aperture-limited focal spot is denoted as a white circle.

transverse extension of the corrected RPSF is drastically reduced. However, the gain in image

and focusing quality is more modest at larger depths (Figs. 3E,F). The RPSFs still exhibit sec-

ondary lobes, a manifestation of residual aberrations (Fig. 3G). Moreover, the spatial extension

of the central lobe is limited by the geophone network aperture (Eq. 1). As a consequence,

the deep plumbing system of the volcano, in particular the deepest regions of the transcrustal

magmatic system and its magma storage zones beyond 5 km depth, cannot be resolved.

Beating Diffraction

Strikingly, an analysis of wave distortions from the k-space will allow us to break this funda-

mental limit. In the plane wave basis, each distorted wave-field corresponds to the diffracted
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patterns of each laterally de-scanned output focal spot (4). In a far-field approximation, the

contribution of each scatterer would emerge onto limited parts of the k−space because of the

finite size of the geophone array (see Fig. 4A and section S8). However, the focal spots also

exhibit a parabolic phase law scaling as exp(jk0∣∆ρ∣2/z) and resulting from the curvature of

focused wave-fronts (see Fig. 3H and section S5). Projected in the k-space, the associated trans-

fer function is thus a superposition of Fresnel rings associated with each reflector. The support

of those Fresnel rings is not limited by the geophone network aperture (k0 sin θu) but covers the

whole diffraction disk of radius k0 (Fig. 4B). Iterative phase reversal applied to the D−matrix

expressed in the k−space leads to a focusing law (Fig. 4C) that realigns the phase of each spatial

frequency component such that the focal spot size reduces to the diffraction limit δρ0 ∼ λ/2 (sec-

tion S9). It leads to a new confocal image whose several cross-sections are displayed in Figs. 4D

and E. In particular, a complex multi-lens melt reservoir is revealed by Fig 4D beyond a depth

of 5 km. The comparison with the previous image (Figs. 3E and F) highlights the spectacular

gain in terms of contrast and resolution provided by a k−space analysis of the D−matrix. This

observation is confirmed by the new RPSFs displayed in Fig. 4F. Compared to their previous

version (Fig. 3G), the diffuse background has been suppressed by a compensation of residual

wave distortions (28) exhibiting a shift-shift memory effect (27). More importantly, the RPSF

extension is now of the order of λ/2 over the whole considered depth range, thereby beating the

usual aperture-limited resolution (Eq. 1) displayed by conventional imaging methods.

One necessary condition for this striking performance is the sparsity of the volcano reflec-

tivity with only a few reflectors emerging at each depth (Fig. 4E). As the signature of each

reflector is independent, we are able to focus simultaneously on each scatterer provided that

they are not too numerous. More precisely, the contrast of the confocal image will typically

scale as the ratio between the number of independent geophones and the number of reflectors

lying at each depth.
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Figure 5: Three-dimensional view of the first 10 km of the hydrothermal and magmatic
system of La Soufrière. (A,B) Isosurface plots of the three-dimensional image of the volcano
viewed from East and North, respectively. The isosurface is fixed to be -15 dB. (C,D) Corre-
sponding zooms on the first 3 km depth. The isosurface is fixed to be -10 dB. This image is
shown after a depth compensation of seismic wave attenuation (section S4).

Unveiling the plumbing system of La Soufrière

Figure 5 shows two perpendicular views of La Soufrière down to a depth of 10.5 km below

the summit (see also Supplementary Movies 1, 2 and 3). Based on an analysis of the P-wave

reflected wave-field, it displays the iso-surfaces of the confocal image obtained at the end of

the matrix imaging process. As outlined above, the superior part of the volcano, from a depth

of 5 km up to the surface, exhibits the clear signature of a tortuous conduit that finds its way

through the hostrock forming the upper part of the volcano. On the contrary, its deep struc-

ture, between ca. 5 and 8.5 km depth, induces a more diffuse scattering that is compatible

with the existence of a vertical succession of several sub-horizontal and irregular globular co-

alescing structures. Those elements are superimposed over a distance of a few kilometers and

linked together by narrow sub-vertical diffuse structures. The sub-horizontal structures extend
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laterally over a distance of about 8 km. The presence of the superimposed magma storage

zones is also highlighted by the depth-dependence of unnormalized scattering signal displayed

in Fig. S4. The magma strorage system (z =5-8.5 km) exhibits a weaker reflectivity probably

due the presence of extended magma volumes. The enhancement of the confocal signal above

the outer carapace of the magma storage zone (z = 3.5-5 km) may be induced by gases and/or

liquid and/or supercritical hydrothermal and magmatic fluids that are present in the pores of

the hostrock along special zones of elevated porosity-permeability. The increase of reflectivity

observed at the bottom of the magma storage system (z = 8.5-10 km) is probably due to a strong

back-reflection at the eruptible melt / hostrock interface. The 3D-view of the internal structure

of La Soufrière volcano displayed in Figure 5 thus constitutes a remarkable advance beyond

the current state-of-the-art because it confirms, for the first time, with great detail and striking

similarity the typical structure of transcrustal magmatic systems below volcanoes that has been

predicted by previous conceptual and petrological models (29–31).

Transcrustal magmatic systems consist of vertically-arranged piles of lenses of magmatic

mushes more or less ductile (intricate network of crystals and intersticial melt fraction), erupt-

ible melt, and magmatic fluids that extend laterally. This model of a magmatic plumbing system

has been described at many other volcanoes (32,33). The internal image of the volcano revealed

by Fig. 5 strikingly matches the complex structure described by recent studies on La Soufrière

of Guadeloupe (21, 22, 34, 35).

Last but not least, the seismic confocal image of La Soufrière shows that the main magmatic

plumbing systems extends from about 5 km below the surface to a depth of at about 8.5 km,

values in agreement with this those determined by independent petrological studies (26) who

showed that, for the last magmatic eruption of La Soufrière in 1530 CE, the top of the magma

storage zone was located between 5.6 and 7 km and the base could not exceed 8.5 km.
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Discussion

Inspired by pioneering works in optical microscopy (6, 18), ultrasound (4, 19) and passive seis-

mology (10–12), a novel matrix approach to volcano imaging is proposed in this paper. Ex-

ploiting Green’s functions retrieval from seismic noise (8,9), it takes advantage of bulk seismic

waves reflected by heterogeneities in depth to map the internal structure of La Soufrière of

Guadeloupe. This volcano is currently in a state of significant long-lasting unrest that could

result from dynamic changes in the magmatic plumbing system. Such changes can propagate

to the shallow hydrothermal system and could herald eruptive unrest in the future.

The seismic matrix image of the magmatic plumbing system reveals, for the first time,

high-resolution features of the magma storage zone, its geometry and dimensions, its complex

layered structure, its relative connectedness with other regions of the multi-layer transcrustal

magmatic system, and the size and geometry of the upper final eruptive conduit.

The impedance contrast in this complex image also offers the potential, upon further anal-

ysis, to distinguish zones of mush from those of eruptible melt, their relative volume, their

position in the system. Hence, it can lead to the estimation of parameters such as pressure,

temperature, volatile saturation, density contrast, and the connectivity to the surface in evolving

magmatic systems, parameters that drive volcanic eruptions.

The strength of this new imaging method lies in its robustness with respect to sparsity of the

geophone array and inaccuracy of the wave velocity model. In the future, it will be combined

with time-lapse ability resulting from reiteration surveys at active unresting volcanoes and can

be coupled with multiparameter data analysis from other classic monitoring networks. Matrix

imaging can therefore become a revolutionary game changer in the way scientists understand

and model volcanic systems and how volcano observatories monitor their evolving dynamics

to forecast their potential for hazardous eruptive activity that threatens the lives of 800 million

people living within 100 km from a dangerous volcano (36).
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Supplementary Information

This document provides further information on: (i) the seismic data and noise corre-
lation processing; (ii) the building of the focused reflection matrix; (iii) the formation of
the confocal image ; (iv) its depth gain compensation for display purpose; (v) the transmit
point spread function; (vi) the reflection point spread function; (vii) the iterative phase re-
versal algorithm for compensation of wave distortions from the Earth surface basis; (viii)
iterative phase reversal driven from k-space and its comparison with a singular value de-
composition approach; (ix) the spatial resolution of the final image; (x) the depth evolution
of the maximum confocal signal.

S1 Seismic data and noise correlation processing
The seismic data used in this study consists of a temporary nodal array of 65 geophones (16)
and 6 permanent stations (15) operated by the OVSG-IPGP (Volcanologic and Seismologic Ob-
servatory of Guadeloupe). The geophone sensors were Zland 3C Gen2 (Fairfieldnodal) with a
natural frequency of 5 Hz, recording at 500 samples per second and along 3 orthogonal direc-
tions (Vertical, North and East). The 6 OVSG seismic stations are 3 components broadband
sensors, all having a flat response in the [1-50] Hz frequency band. The seismic records are
sampled at 100 Hz. For this study only vertical components are used. The temporary nodal
array was deployed from mid-November 2017 to mid-January 2018 during 2 sessions in order
to download seismic data and recharge batteries. Since we moved the location of 5 geophones
between both acquisition sessions, we ended with a virtual network of 76 sites, for which we
could applied the computation of seismic noise correlation functions (NCFs).

The procedure to compute the seismic NCF mainly follows the stages detailed in Ref. (40).
Here, we summarize each step that we apply on seismic recordings whether it was a temporary
geophone or a permanent seismic sensor. (1) We detrend each hourly vertical seismic record and
removed the mean. (2) We remove the instrument response to homogenize the seismic signals
and we applied a band-pass filter between 1 Hz and 20 Hz. (3) We resample the seismic record
to a unique sample frequency of 100 Hz. (4) We apply a spectral and temporal normalization by
proceeding to a spectral whitening followed by a 1-bit normalization to only keep the sign of the
seismic signal. (5) We end with the computation of the NCF by cross-correlating hourly seismic
records at each stations pair for time delays ranging from -30 to +30 seconds. To increase the
signal to noise ratio of a NCF, we apply some quality checks and a waveform summation by
first averaging the 24 hourly NCFs in a daily one, for which we discard hourly segments that
were not coherent with the raw daily average (correlation coefficient threshold of 0.5). The
average over each daily NCF estimated during the 2 months of nodal array deployment finally
provides an estimation of the impulse response R(gj,gi, t) between each couple of geophones i
and j whose positions are identified by vector g. The set of the estimated 2850 vertical impulse
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responses forms the canonical reflection matrix Rgg(t) = [R(gout,gin, t)] that is used to image
the inner structure of La Soufrière volcano in the accompanying paper.

S2 Broadband focused reflection matrix
To that aim, a temporal Fourier transform is first applied to Rgg(t) to get the set of monochro-
matic canonical reflection matrices Rgg(f) over the desired frequency bandwidth [10−20] Hz.
The monochromatic matrices are then propagated at emission and at reception towards a focal
plane at depth z using the corresponding free-space Green propagator G0(z, f):

G0(ρ,g, z, f) =
e−i2πf

√

∥ρ−g
∣∣
∥
2
+∥z−gz∥

2
/c0(z)

4π
√
∥ρ − g∣∣∥2 + ∥z − gz∥2

. (S1)

G0(z, f) describes the causal 3-D propagation of waves between any geophone g = (gx, gy, gz) =
(g∣∣, gz) and any focusing point ρ = (x, y) in the focused basis at depth z in a supposed homo-
geneous medium with a wave velocity c0(z). The evolution of the wave velocity c0(z) with
respect to depth is provided in Fig. 1C of the accompanying paper.

Within the framework of matrix imaging, the projection of Rgg(f) at each depth z is de-
scribed by the following matrix product:

Rρρ(z, f) =G∗0(z, f) ×Rgg(f) ×G†
0(z, f) (S2)

or in terms of matrix coefficients :

R(ρout,ρin, z, f) = ∑
gout

G∗0(ρout,gout, z, f) ∑
gin

R(gout,gin, f) G∗0(ρin,gin, z, f) (S3)

where the symbols ∗, † and × stand for phase conjugate, transpose conjugate and matrix prod-
uct respectively. It leads to the set of monochromatic focused reflection matrices Rρρ(z, f) =
[R(ρout,ρin, z, f)]. Physically, each coefficient of Rρρ(z, f) contains the inter-element im-
pulse response between a virtual source located at rin = (ρin, z) and a virtual detector at
rout = (ρout, z) (see Fig. 1B of the accompanying paper). In the single scattering regime an
in absence of reverberations, the axial dimension of this focal spot, δz̄0, is only limited by
diffraction, such that

δz̄0 ∼ 2λz/ sin2 θu (S4)

with λz = c(z)/f , the wavelength at depth z.
In order to enhance this axial resolution, a broadband focused reflection matrix Rρρ can be

derived at each depth by coherently summing the monochromatic matrices over the frequency
bandwidth:

Rρρ(z) = ∫
f+

f−
df Rρρ(z, f) (S5)
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with f± = f0 ± ∆f/2, f0 = 15 Hz, and ∆f = 10 Hz. The operation amounts to a ballistic
time gating of singly-scattered echoes at times t ∼ 2z/c0(z). Thanks to this operation, the axial
dimension of virtual geophones is greatly reduced and only limited by the frequency bandwidth
∆f :

δz0 ∼ c0(z)/∆f. (S6)

In the single scattering regime, the coefficients of Rρρ(z) can be theoretically expressed as
follows (25):

R(ρout,ρin, z, f) = ∫ dρH(ρ,ρout, z)γ(ρ, z)H(ρ,ρin, z) (S7)

where γ(ρ, z) is the medium reflectivity at depth z. H(ρ,ρin/out, z) corresponds to the point-
spread-function (PSF), that is to say the spatial amplitude distribution of the focal spot around
the focusing point rin/out. Its support defines the characteristic size of each virtual source at rin
and detector at rout .

S3 Confocal Imaging
A confocal image of the medium can be easily retrieved from the focused reflection matrix at
each depth z by considering the diagonal elements which verify ρc = ρin = ρout:

I(ρc, z) = R(ρc,ρc, z) (S8)

Injecting Eq. S7 into the last equation leads to the following expression for the confocal image:

I(ρc, z) = ∫ dρH2(ρ,ρc, z)γ(ρ, z) (S9)

Each line of the confocal image results from the sample reflectivity γ and the confocal PSF H2.
The raw confocal image is displayed in Fig. 2 but note that a time gain compensation is priorly
applied to compensate for geometrical spreading as well as scattering and absorption losses that
drastically decreases the backscattered energy as a function of depth.

S4 Depth gain compensation of the confocal image
The raw confocal image exhibits a strong amplitude drop with depth (Fig. S1). This attenuation
is due to the decay of energy experienced by seismic waves while they propagate. Without
compensation, this attenuation strongly degrades the contrast of the confocal image at large
depths.

The depth attenuation of the confocal signal can be caused by several factors such as geo-
metrical spreading, scattering and absorption (intrinsic or anelastic attenuation) (38, 39). In the
present case, the geometrical spreading of waves is compensated, at least partially, by the focus-
ing process performed both at input and output of the reflection matrix. The attenution of the
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Figure S1: Scattering intensity vs. depth. The logarithm of the mean confocal intensity,
⟨∣I ′(ρ, z)2⟩ρ, is plotted as a function of depth. The depth decay of intensity is fitted with an
exponential curve over four depth ranges summarized in Tab. S1.

confocal image is thus mainly due to scattering and absorption. In a statistically homogeneous
disordered medium, the mean intensity, ⟨∣I(ρ, z)∣2⟩, shall scale as exp(−2z/ℓext). ℓext is the
extinction length that combines the scattering and absorption losses as follows: ℓ−1ext = ℓ−1s + ℓ−1a ,
with ℓs, the scattering mean free path and ℓa, the absorption length.

To retrieve such an exponential decay, the random-like fluctuations of the confocal image
due to lateral reflectivity variations should be priorly smoothed out by averaging. The resulting
mean confocal intensity, ⟨∣I(ρ, z)∣2⟩ρ, is displayed in log-scale as a function of effective depth
z in Fig. S1. It highlights four depth ranges with distinct decay rates. For each depth range, the
decrease of the mean confocal intenity is fitted by an exponential curve whose decay provides
an estimation of ℓext reported in Tab. S1.

Depth range Extinction length
0 - 0.5 km 1665 m

0.5 - 1.9 km 310 m
1.9 - 3.8 km 765 m
3.8 -10.5 km 3070 m

Table S1: Extinction length. Estimation of the extinction length ℓext from the depth decay of
the confocal intensity displayed in Fig. S1.

Beyond the near-field (0 - 0.5 km) that is probably be polluted by surface waves, the confocal
intensity decays rapidly with an exponential fit (red dashed line in Fig. S1) yielding a relatively
small value of ℓext ∼ 310 m , a manifestation of the strong heterogeneities encountered by the
seismic waves in the upper part of the volcano. From depth z = 1.9 km to 3.8 km, this decay
slows down. As a consequence, the fitting curve (green dashed line in Fig. S1) is associated with
a larger value for the extinction length: ℓext ∼ 760 m. Beyond z = 3.8 km (purple dashed line
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in Fig. S1), the mean confocal intensity decays even more slowly and the value of ℓext increases
drastically: ℓext ∼ 3075 m. In this region (magma storage zone), there is more back-reflection at
interfaces between rocks and fluids but less scattering in average (see Fig. 4D and Fig. 5). This
point will be discussed in more details in Sec. S10

The overall fitting curve, exp[−β(z)], displayed in Fig. S1, can be used to normalize at each
depth the confocal images shown in the manuscript, such that:

IN(ρ, z) = exp[β(z)/2]I(ρ, z), (S10)

with IN(ρ, z), the normalized confocal image displayed in the accompanying manuscript.
Despite our effort to improve the image contrast by compensating attenuation, the raw con-

focal image displayed in Fig. 2A appears to be fully blurred, suggesting a high level of aber-
rations. To understand the effects of diffraction and aberrations on this confocal image, the
theoretical expression of the transmit PSF is now investigated.

S5 Transmit point-spread function
The PSF H(ρ,ρin/out, z) can be expressed using the real Green’s function G(ρ,gi, z) between
the geophones and the focused basis (25):

H(ρ,ρin/out, z) =∑
gi

G(ρ,gi, z, f0)G∗0(ρin/out,gi, z, f0) (S11)

This discrete equation can be rewritten under a continuous form as a function of a coordinate
u describing the Earth surface at a depth origin z = 0 defined by the average elevation of the
seismic stations gi:

H(ρ,ρin/out, z) = ∫ duO(u)G(ρ,u, z, f0)G∗0(ρin/out,u, z, f0) (S12)

with O(u) = N−1g ∑i δ(u−g∣∣,i), the distribution of geophones, Ng, their number and δ the Dirac
distribution.

In the absence of aberrations, i.e if the wave velocity model is valid (G ≡ G0), the expression
of the PSF becomes under the Fresnel approximation:

H0(ρ,ρin/out, z) = exp [i
k0
2z
(∣ρ∣2 − ∣ρin/out∣2)]O (

ρ − ρin/out

λz
) (S13)

In absence of aberration, the reference PSF H0 is thus the product between: (i) a geometrical
spreading term; (ii) a parabolic phase law that accounts for the curvature of the focused wave-
front; (iii) the Fourier transform O of the geophone network aperture O, such that O (ρ−ρin/out

λz
) =

∫ duO(u) exp [ik0z u.(ρ − ρin/out)]. The transverse dimension of the focal spot, δρu, is then only
limited by diffraction:

δρu(z) ∼ λz/[2 sin[θu(z)] (S14)
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with θu, the mean angle under which the geophone network is seen by the focusing point rin/out.
In the presence of aberrations, i.e., if the velocity model is inaccurate, there is a mismatch

between the true Green’s matrix G and its model G0. If aberrations are moderate (δρ <
√
λz),

they can be accounted for, at each depth z, by a phase screen A(u, z) at the Earth surface, such
that

G(ρ,u, z, f0) = A(u, z)G0(ρ,u, z, f0) (S15)

Equation S12 then simplifies into:

H(ρ,ρin/out, z) = ∫ duF (u, z)G0(ρ,u, z, f0)G∗0(ρin/out,u, z, f0) (S16)

with F (u, z) = O(u)A(u, z), the overall transmittance that combines the array aperture O and
the aberration phase screen A. Under the Fresnel approximation,the previous equation becomes:

H(ρ,ρin/out, z) = exp [i
k0
2z
(∣ρ∣2 − ∣ρin/out∣2)]∫ duF (u, z) exp [ik0

z
u.(ρ − ρin/out)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F(

ρ−ρin/out
λz

)

(S17)

The PSF H is thus the product of a parabolic phase law that results from the curvature of focused
wave-fronts and a focusing function F , that results from the convolution between the network
PSF O that accounts for diffraction and the aberration PSF A defined as the Fourier transform
of the aberration transmittance A:

F (ρ − ρin/out

λz
) = O ⊗A(ρ − ρin/out

λz
, z) (S18)

where the symbol ⊗ stands for the convolution product.

S6 Reflection point spread function
Interestingly, the focused reflection matrix can provide a local assessment of the focusing qual-
ity. Lambert et al. (25) and Touma et al. (11) showed that the amplitude distribution along each
antidiagonal of Rρρ(z) provides a key quantity that we will refer to as the reflection point-
spread function (RPSF):

RPSF (∆ρ,ρc, z) = R(ρc −∆ρ,ρc +∆ρ) (S19)

Along an antidiagonal of Rρρ(z), all couple of points on a given antidiagonal share the same
midpoint ρc = (ρout + ρin)/2 but with a varying relative position ∆ρ = (ρout − ρin)/2. This
RSPF is a direct indicator of the local focusing quality. For a sparse scattering medium like a
volcano, the RPSF at a scatterer position ρs scales as:

RSPF (∆ρ,ρs, z) = exp(i
k0
z
∣∆ρ∣2)F (∆ρ

λz
)F (−∆ρ

λz
) . (S20)
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Therefore, the energy spreading in the vicinity of each scatterer position shall enable one to
probe the spatial extension of the PSF. As the scatterer position is a priori unknown, the RPSF
is, in practice, probed by considering the antidiagonal whose common mid-point exhibits the
maximum confocal signal.

S7 Iterative phase reversal from the Earth surface basis
As highlighted in the previous section, the focused basis is the proper framework for imaging
and quantification of focusing quality. However, a dual basis is a better framework to analyse
and compensate for aberrations. In the accompanying paper, aberrations are unscrambled by
projecting the reflection matrix between the Earth surface (u) and focused basis (r).

The broadband focused reflection matrix can be projected in a geophone basis (here at
ouput) by the following matrix product:

Ruρ(z) =G⊺0(z, f0) ×Rρρ(z) (S21)

where the symbol ⊺ stands for matrix transpose. An angular de-scan of the input focusing
points as sketched in Fig. 3B can be performed by a Hadamard product between Ruρ and its
ideal counterpart G0(z):

Duρ(z) =G†
0(z, f0) ○Ru,ρ(z) (S22)

Each column of the resulting distortion matrix Duρ(z)maps the phase-distortions withe respect
to the ideal wave-front that would be obtained for a point-like source at rin . Injecting Eqs. S7
and Eq. S1 leads to the following expression of the D−matrix coefficients under the Fresnel
approximation:

D(uout,ρin, z) = F (uout, z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

transmittance

∫ dργ(ρ, z) exp(ik0
z
∣ρ∣2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
apparent reflectivity

F (ρ − ρin

λz
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
transmit PSF

exp(ik0
z
uout.(ρ − ρin))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
angular de-scan

(S23)
In previous works, the aberration transmittance was extracted through a singular value decom-
position (SVD) of Duρ or, equivalently, an eigenvalue decomposition (EVD) of the correlation
matrix Cuu =DuρD

†
uρ (11,28). This result can be understood if we assume a point-like transmit

PSF in the previous equation. In that case, we have

D(uout,ρin, z) = F (uout)γ(ρin, z) exp (ik0∣ρin∣2/z) .

The D-matrix is then of rank 1 and its first singular vector U1 directly provides the aberration
transmittance at depth z.

Physically, the first eigenvector U1 is the result of a virtual iterative time reversal (ITR)
experiment on a guide star whose reflectivity corresponds to the transmit PSF intensity (28).
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Mathematically, the time reversal invariant can be found by solving the following iterative rela-
tion (41):

λ
(n+1)
1 U

(n+1)
1 =Cuu ×U(n)1 (S24)

with U1 = lim
n→∞

U
(n)
1 and λ1 = lim

n→∞
λ
(n)
1 , the first eigenvalue of Cuu. ITR converges towards the

wave-front that maximizes the energy backscattered by the virtual guide star. If this guide star
is point like, U(n)1 thus converges towards the aberration transmittance. However, in reality, the
transmit PSF is of course not point-like and its blurring biases the estimation of the aberration
transmittance with a time reversal invariant that concentrates on the central part of the geophone
array and vanishes on its edge (28).

To circumvent this problem, a related approach consists in an iterative phase reversal (IPR)
process (18, 19) that forces a uniform amplitude for the phase reversal invariant W, such that

W(n+1) = exp (iarg{C ×W(n)}) (S25)

with W(0) = [1⋯1]T chosen arbitrarily as a unit wave-front. The resulting wave-front, W =
lim
n→∞

W(n), provides a satisfying estimation of the aberration transmittance over the whole array
aperture, as shown in Fig. 3D of the accompanying paper.

Mathematically, the success of IPR can be explained by expressing the correlation matrix
Cuu. In the speckle regime (42) or in a sparse medium made of a few point-like reflectors, its
coefficients can be expressed as follows:

C(uout,u
′

out, z) = F (uout, z)F
∗(u′out, z) [F

uout⊗ F ] (uout − u′out, z) (S26)

The correlation term of the right hand side results from the Fourier transform of the input focal
spot intensity distribution ∣F (ρ − ρin/λz) ∣2. This formulation is reminiscent of the Van Cittert
Zernike theorem for an aberrating layer, which links the spatial correlation of a wavefield to the
Fourier transform of the intensity distribution from the virtual guide stars (here the input focal
spots). In other words, the support of the coherence function scales as the inverse of the input
focal spot size. Injecting Eq. S26 into Eq. S25 leads to the following equation:

W (uout, z) = exp
⎛
⎝
jarg
⎧⎪⎪⎨⎪⎪⎩
F (uout, z) ∑

u′out

W (u′out, z)F
∗(u′out, z) [F

uout⊗ F ] (uout − u′out, z)
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
.

(S27)
For a real autocorrelation function F⊗F , or equivalently, a symmetric input PSF ∣F ∣2, the solu-
tion of the previous equation is

W (uout, z) = F (uout, z). (S28)

If the previous condition is not fulfilled, the estimation of the aberration transmittance suffers
from a bias that can be reduced by iterating the aberration correction process, thereby gradually
reducing the size of the virtual guide star and flattening the autocorrelation function F⊗F .
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To do so, the phase conjugate of the estimator W is first used as a focusing law to compen-
sate (partially) for wave distortions. An updated focused reflection matrix is obtained through
the following relation:

Rρρ(z) =G†
0(z, f0) × [G0(z, f0) ○W∗(z) ○Duρ(z)] (S29)

The whole process is then iterated to improve the estimation of the aberration transmittance
by alternating aberration correction at input and output (4). In practice, two iterations of the
aberration correction process were enough to converge in the present case.

At the end of the process, a novel confocal image is obtained by considering the diagonal
elements of the updated focused reflection matrix [Figs. 3 E and F]. The fine compensation
of wave distortions is highlighted by the RSPF (Eq. S20) deduced from the updated focused
R−matrix (Fig. 3G). As expected theoretically, compensation of aberrations in the geophone
basis enables the recovery of a resolution only limited by the geophone aperture. As explained in
the acompanying paper, this is nevertheless not sufficient to have a contrasted image of volcano
in depth.

S8 Iterative phase reversal driven from the k-space
To go beyond, we will now tackle the parabolic phase law exhibited by the transmit PSF
(Eq. S17) that was not addressed in the geophone basis and highlighted by the phase of the
RPSF in Fig. 3H. To that aim, the R−matrix can be investigated from the k−space.

As previously done for the geophone basis, the first step consists in a projection of the
focused reflection matrix in the plane wave basis:

Rkρ(z) = T0 ×Rρρ(z), (S30)

with T0, the Fourier transform operator

T0(k∣∣,ρ) = exp (−ik∣∣.ρ) . (S31)

Then, the D−matrix is built by isolating the difference between each reflected wave-field and
the reference wave-field that would be obtained for a point-like guide star at rin:

Dkρ(z) =Rkρ(z) ○T∗0(z) (S32)

To derive an expression for the D-matrix coefficients in the k−space, one can inject Eqs. S7,
S13, S30 and S31 into the last equation. Assuming that aberrations have been fully compensated
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in the geophone basis (F ≡ O and F ≡ O), this expression writes as follows:

D(kout,ρin, z) = ∫ dρ

transmittance
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
K(kout,ρ, z)

reflectivity
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
γ(ρ, z) exp(−i k0

2z
∣ρ∣2)

O (ρ − ρin

λz
) exp(i k0

2z
∣ρin∣2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
input PSF

exp [ikout.(ρ − ρin)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

lateral de-scan

, (S33)

with
K(kout,ρ, z) = ⊮∣kout∣<k0 {O(ρ + λzkout)

kout⊗ exp (iπλz∣kout∣2)} , (S34)

the aperture transmittance projected in the k-space. The symbol ⊮∣kout∣<k0 accounts for the low
pass filter operated by diffraction in the spatial frequency domain: Only spatial frequencies kout

whose magnitudes are smaller than ∣k0∣ can propagate into the Earth; higher spatial frequency
components are evancescent and cannot probe in depth the Earth beyond a wavelength.

If we compare Eq. S33 with the D−matrix in the geophone basis (Eq. S23), the main differ-
ence lies in the fact that the aperture transmittance is no longer isoplanatic from the k−space.
Indeed, the angular component of the wave-field recorded by the geophone network and in-
duced by one scatterer in the field-of-view strongly depends on its position, as shown by the
term O(ρ + λzkout) in Eq. S34 and highlighted by Fig. 4A. While this would be an issue in the
speckle regime (random reflectivity), this property can become an asset in a sparse scattering
medium made of a few reflectors: γ(ρ, z) = ∑s γsδ(ρ−ρs(z)). Under this assumption, Eq. S33
becomes:

D(kout,ρin, z) =∑
s

K(kout,ρs, z)γs exp(−i
k0
2z
∣ρs(z)∣2)O (

ρs(z) − ρin

λz
) exp(i k0

2z
∣ρin∣2)

exp [ikout.(ρs(z) − ρin)] . (S35)

The coefficients of the associated correlation matrix, Ckk(z) =Dk,ρ(z)D†
kρ(z), are given by:

C(kout,k
′

out, z) =∑
s

∣γs∣2K(kout,ρs, z)K∗(k′out,ρs, z) [O
kout⊗ O] (kout − k′out) (S36)

For analytical tractability, we will consider, in first approximation, the correlation term O
kout⊗ O

as constant:
C(kout,k

′

out, z) ≃∑
s

∣γs∣2K(kout,ρs)K∗(k′out,ρs) (S37)

Under this assumption and provided that the scatterers belong to different resolution cells
(K†K∝ I, with I the identity matrix), Eq. S36 has the form of an eigenvalue decomposition of
Ckk:

C(kout,k
′

out) =∑
s

σ2
sUs(kout)U∗s (k′out) (S38)
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Figure S2: Comparison between iterative time reversal (left) and iterative phase reversal
(right) processes for aberration phase law extraction - Illustration at depth z = 6.9 km. (A)
Singular value histogram of the distortion matrix Dkr. (B) Phase and (C) modulus of the first
three singular vectors Us = [Us(kout)]. (D) Sum of the modulus of the first three eigenvectors.
(E) Final image resulting from the combination of each image displayed in panel F. (F) Image
obtained using the phase conjugate of Us as the focusing law. (G) Phase ϕ of the IPR invariant
W and (H) associated angular spectrum obtained by considering the modulus of Ckk ×W. (I)
Confocal image using the phase conjugate of W as the focusing law.

with σs, the singular values of Dk,ρ, and Us = [Us(kout)], the eigenvectors of Ckk, or equiv-
alently the output singular vectors of Dk,ρ(z). The identification of Eqs. S37 and S38 shows
a one-to-one association between each eigenstate of Ckk and each scatterer. The singular val-
ues σs are proportional to each scatterer reflectivity γs, while each eigenvector Us provides the
far-field transmittance K(kout,ρs) of each scatterer.

Figure S2 confirms this conjecture by showing the result of the ITR processing applied to
Dkρ(z) at depth z = 6.9 km. As seen before, this process is mathematically equivalent to
the SVD of Dkρ(z). Figure S2A shows the singular value spectrum of Dkρ(z) dominated by
three singular values eigenvalues. Each corresponding eigenvector Us covers a distinct part
of the k-space (Fig. S2D), as predicted by the term O(ρs + λzkout) in Eq. S34. The phase of
these eigenvectors (Fig. S2B) shows the Fresnel rings corresponding to the parabolic phase term
exp (iπλz∣kout∣2) in Eq. S34.

Note that this observation also enables to revisit the results of Ref. (11) that showed a similar
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feature in the fault area of San Jacinto. As shown in that previous paper, the phase conjugate of
each eigenstate can provide the focusing law to image each scatterer (Figure S2F). A compound
image can be built by combining the result provided by each eigenstate. However, this approach
only provides an image of the main structures of the volcano. As we will see further, it actually
fails in highlighting smaller reflectors.

The IPR process that we previously introduced above in the geophone basis can provide a
much more complete view of the inner volcano structure. By forcing a transmittance estimation
with the same weight over the whole k−space, the resulting focusing law W (Fig. S2G) can ad-
dress simultaneously all scatterers in the field-of-view. The angular spectrum addressed by this
focusing law can be estimated by considering the modulus of the vector Ckk ×W (Fig. S2H).
The comparison with the angular spectrum covered by the three first eigenvectors of Ck,k(z)
(Fig. S2D) shows the benefit of IPR for tailoring a focusing law operating over the whole k-
space. Also applied at input of the R−matrix, the focusing law derived by IPR leads to the
confocal image displayed in Fig. S2I. Compared with the ITR process that only focuses on the
three main reflectors at the considered depth (Fig. S2E), the IPR algorithm provides a full-field
image of the subsoil highlighting six main structures at the same depth (Fig. S2I).

One could argue that this difference comes from the fact that we did not consider enough
eigenstates in the ITR process. However, the higher-order eigenstates cannot be used for imag-
ing purposes (11). Figure S3C illustrates this fact by showing the fourth eigenstate U4 of Dkρ.
Its support emerges in the same angular range as U2. The link between the second and fourth
eigenstates is confirmed by Fig. S3D that displays the phase difference between U4 and U2.
U4 is an higher-order eigenstate associated with the same reflector as U2. Each reflector gives
actually rise to a set of eigenmodes induced by the autocorrelation term in Eq. S36. Only the
fundamental modes corresponding to the highest singular values can be considered for imaging.
Higher-order eigenmodes as U4 in Fig. S3 correspond to smaller singular values and give rise
to distorted PSFs (28). They cannot be used for imaging but they pollute the singular value
spectrum of Dkρ. Hence they can prevent from imaging scatterers of smaller reflectivity within
the framework of an ITR process. The proposed IPR process allows to circumvent this limit by
finding a phase reversal invariant over the whole angular spectrum (Fig. S2G).

S9 Overcoming diffraction to attain a half-wavelength reso-
lution

As highlighted by the final confocal image (Fig.4E and F) and corresponding RPSF (Fig.4G and
F), the IPR algorithm driven from the k−space leads to a resolution of the order of λ/2 much
thinner than the usual diffraction limit dictated by the geophone aperture: δρu ∼ λz/d0. Math-
ematically, this can be understood by the convolution product between the geophone aperture
and Fresnel rings exhibited by the transmittance K(kout, ρs) in the k-space (Eq. S34). These
Fresnel rings originate from the parabolic phase law exhibited by the focal spots in real space
(Eq. S20). Encoded in the secondary lobes of the PSF, this Fresnel phase law exhibits spatial
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Figure S3: Limit of iterative time reversal processing - Illustration at depth z = 6.9 km. (A)
Singular value histogram of the distortion matrix Dkr. (B) Modulus and (C) phase of the second
and fourth singular vectors, U2 and U4. (D) Phase of the Hadamard product between U2 and
U∗4 .

frequency components from 0 to k0. When properly realigned in phase, those frequency com-
ponents lead to a corrected PSF whose extension spans over λ/2 instead of the usual aperture
limited resolution ∆ρu ∼ λz/d0.

S10 Depth evolution of the maximum confocal signal
Figure S4 shows the depth evolution of the maximum confocal signal at each depth without
normalization. This curve is plotted at the end of the matrix imaging process. The compensa-
tion of aberrations and diffraction operated by matrix imaging allows a finer analysis than the
preliminary study provided in Sec. S4. It shows different behaviors in each main part of the
volcano. While a strong attenuation is observed in the superior part of the volcano (z =0-3.5
km, see also Sec. S4), the deeper part of the volcano (Fig. S4B) exhibits fluctuations around a
relatively constant reflectivity. The magma storage zone (z=5-8.5 km) shows a weaker reflec-
tivity probably due the presence of extended magma volumes. This region is surrounded by
two areas of larger reflectivity around 4 and 9 km. This larger confocal signal is probably a
manifestation of the important impedance mismatch existing at the boundaries of the magma
storage zone (fluid-rock interface). Above the outer carapace of the magma storage system,
there are lenses of supercritical acid fluids/brines, and then closer to the surface these super-
critical fluids become zones with gases and/or liquid hydrothermal fluids that are present in the
pores of the host-rocks, along special zones of porosity-permeability (20). On the one hand,
this porous region may account for the enhancement of the confocal signal observed between
z = 3.5 and 5 km in Fig. S4. On the other hand, the increase of reflectivity at the bottom of the
magma storage system (z = 8.5 − 10 km) is a priori due to the back-reflection echo induced by

31



Figure S4: Depth evolution of the maximum confocal intensity at each depth: (A) between
z = 1 and 10.5 km; (B) between z = 3 and 10.5 km.

the interface between eruptive melt of the magma storage system and the deeper host-rock.
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