
HAL Id: hal-04268587
https://hal.science/hal-04268587

Submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tractable Explaining of Multivariate Decision Trees
Clément Carbonnel, Martin Cooper, Joao Marques-Silva

To cite this version:
Clément Carbonnel, Martin Cooper, Joao Marques-Silva. Tractable Explaining of Multivariate Deci-
sion Trees. KR 2023 - 20th International Conference on Principles of Knowledge Representation and
Reasoning, Sep 2023, Rhodes, Greece. pp.127-135, �10.24963/kr.2023/13�. �hal-04268587�

https://hal.science/hal-04268587
https://hal.archives-ouvertes.fr


Tractable Explaining of Multivariate Decision Trees

Clément Carbonnel1 , Martin C. Cooper2 , João Marques-Silva3

1LIRMM, CNRS, University of Montpellier, France
2IRIT, University of Toulouse, France

3IRIT, CNRS, Toulouse, France
clement.carbonnel@lirmm.fr, {cooper, joao.marques-silva}@irit.fr

Abstract

We study multivariate decision trees (MDTs), in par-
ticular, classes of MDTs determined by the language
of relations that can be used to split feature space.
An abductive explanation (AXp) of the classification
of a particular instance, viewed as a set of feature-
value assignments, is a minimal subset of the in-
stance which is sufficient to lead to the same deci-
sion. We investigate when finding a single AXp is
tractable. We identify tractable languages for real,
integer and boolean features. Indeed, in the case
of boolean languages, we provide a P/NP-hard di-
chotomy.

1 Background
Decision trees (DTs) are a classical family of ML
models. There is considerable interest in their mul-
tivariate extension (MDTs) in which feature-space
is split according to conditions on several features
rather than on a single feature (Brodley and Utgoff
1995; Zhu et al. 2020; Cañete-Sifuentes, Monroy,
and Medina-Pérez 2021). For example, in oblique
DTs these conditions are linear inequalities (Heath,
Kasif, and Salzberg 1993; Murthy, Kasif, and
Salzberg 1994; Barros et al. 2014; Wickramarachchi
et al. 2016; Carreira-Perpiñán and Tavallali 2018).
In this paper we study families of MDTs, parame-
terized by the language of possible multivariate con-
ditions, from the point of view of the tractability of
explaining decisions.

A multivariate condition can be seen as a con-
straint which can be decomposed into its scope (a
list ℓ of features) and its relation of arity |ℓ|. This al-
lows us to study multivariate decision trees accord-
ing to the language of possible constraint relations.

Definition 1. A multivariate decision tree is a deci-
sion tree in which the condition tested at a node is
a constraint on any number of features. An L-DT is
a multivariate decision tree in which the constraint
relations belong to the language L.

A multivariate DT may be exponentially smaller
than a DT. Consider the case of a parity function κ
on n boolean features: trivially an L-DT of depth
one can capture this function provided κ ∈ L,
whereas a classical DT would necessarily be of ex-
ponential size.

Tractable constraint languages have been investi-
gated in the context of the Constraint Satisfaction
Problem (CSP). A CSP instance consists of a set of
n variables, each with its domain, together with a
set of constraints, where each constraint is defined
by its scope (a list of variables) and the relation that
must hold on the variables in this scope. The de-
cision version of the CSP consists in determining
whether there exists some assignment to all n vari-
ables in the cartesian product of the domains that
satisfies all the constraints. Given a language L of
relations, CSP(L) is the subproblem of the decision
version of the CSP in which all relations belong to
the language L. The languages L we consider are,
as is classical in CSPs, arbitrary sets of relations that
can apply to any variables/features.

As we will see later, testing whether a subset of
the feature assignments comprising the instance is
sufficient to explain the decision involves solving
a constraint satisfaction problem consisting of the
conditions along each path to a leaf corresponding
to a different decision. In classical DT’s these con-
ditions are unary and the resulting CSP is trivial, but
for multivariate conditions, the resulting CSP is, in
general, NP-hard. We will see the close relation-
ship between tractability of explaining L-DTs and
the tractability of CSP(L). However, there is an im-
portant difference. In an MDT, for each edge corre-
sponding to the satisfaction of a relation R there is
an alternate edge corresponding to its complement
relation ¬R. It follows that in the context of MDTs,
it is important to study languages closed under com-
plement: languages L such that R ∈ L ⇒ ¬R ∈ L.
There is large body of work on the characterisa-
tion of languages L for which CSP(L) ∈ P, culmi-
nating in a dichotomy theorem in the finite-domain
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Figure 1: A decision tree corresponding to the classifier
κ(x) = ¬x1 ∨ (x2 ∧ (¬x3 ∨ x4)).

case (Bulatov 2017; Zhuk 2020). This result implies
a similar dichotomy for finite languages closed un-
der complement, but the dichotomy criterion does
not provide an explicit description of the tractable
cases.

Although DTs are sometimes considered to be in-
herently interpretable, it has recently been shown
that DT paths can exhibit significant redundancy,
both in theory and in practice, when considered
as explanations of decisions (Izza, Ignatiev, and
Marques-Silva 2022). In this paper, we there-
fore study the notion of abductive explanation
(AXp) (Shih, Choi, and Darwiche 2018; Ignatiev,
Narodytska, and Marques-Silva 2019) which can
provide a more succinct explanation of a particular
decision than the (M)DT path corresponding to the
decision (Izza, Ignatiev, and Marques-Silva 2022).
Definition 2. Let κ be a classifier and v a feature-
vector. A weak AXp (weak abductive explanation)
of the decision κ(v) = c is a subset S of the features
such that any assignment y that agrees with v on
the features in S satisfies κ(y) = c. An AXp of a
decision is a subset-minimal weak AXp.

Example 1. Consider the classifier κ(x) = ¬x1 ∨
(x2 ∧ (¬x3 ∨ x4)) where x1, x2, x3, x4 ∈ {0, 1} are
boolean features. κ can be represented by the de-
cision tree in Figure 1. An abductive explanation
(AXp) for the decision κ(1, 1, 1, 1) = 1 is {x2, x4}
since any feature-vector y with y2 = y4 = 1 satis-
fies κ(y) = 1 (but neither y2 = 1 nor y4 = 1 alone
is sufficient to guarantee κ(y) = 1). This AXp is
half the length of the path in the DT of Figure 1 cor-
responding to this decision (i.e. the leftmost path).

The need to apply formal reasoning to explainable
artificial intelligence (XAI), and in particular to de-
cisions taken by ML models, has been pointed out
by many researchers (Guidotti et al. 2019; Miller
2019; Marques-Silva and Ignatiev 2022; Amgoud
and Ben-Naim 2022). The computational complex-
ity of finding abductive explanations is an active

field of research in the application of formal reason-
ing to explaining decisions taken by classifiers (Au-
demard et al. 2022; Barceló et al. 2020; Cooper and
Marques-Silva 2023; Huang et al. 2022; Ignatiev,
Narodytska, and Marques-Silva 2019; Wäldchen et
al. 2021). Izza et al (Izza, Ignatiev, and Marques-
Silva 2022) showed that finding an AXp of a deci-
sion taken by a DT is in P. (This corresponds to the
case in which all constraints are unary , i.e. of the
form xi ∈ S for some subset S of the domain of
xi). In this paper we explore the tractability of this
problem for MDTs parameterised by the constraint
language L. We show that, in general, this problem
is NP-hard, but that there are nonetheless many in-
teresting tractable cases.

Let WAXPDT(L) denote the problem of deciding
whether a set of features is a weak AXp for a given
decision taken by a L-DT, where L is a language
of constraint relations. As we show in Section 2,
whenever WAXPDT(L) ∈ P, there is a polynomial-
time algorithm to find an AXp: starting with the set
of all features, for each feature test whether deleting
the feature still leaves a weak AXp (Chen and Toda
1995; Cooper and Marques-Silva 2023).

When L is the set of unary constraints, then an L-
DT can be viewed as a classical DT. In this case,
WAXPDT(L) is known to be tractable (Izza, Ig-
natiev, and Marques-Silva 2022). After identify-
ing, in Section 2, several languages L for which
WAXPDT(L) is tractable, in Sections 3 and 4, we
describe a dichotomy theorem in the case of boolean
languages. In Section 5 we consider a different
type of abductive explanation and show that the di-
chotomy theorem for boolean languages also holds
for this type of explanation.

2 Tractable explaining of decision tree
decisions

We begin by recalling a simple algorithm to
find minimal subsets satisfying a monotone prop-
erty (Chen and Toda 1995). We say that a property
H is monotone if for all sets S ⊆ T ,H(S)⇒ H(T ).
Lemma 1. Given an initial finite set S0 and a mono-
tone property H that can be tested in polynomial
time, a minimal subset S of S0 satisfying H can be
found in polynomial time.

Proof. The following so-called ‘deletion’ algorithm
finds a minimal S ⊆ S0 by testing |S0| times the
propertyH.

for each element e ∈ S0 :
ifH(S \ {e}) then S ← S \ {e}



The following corollary follows from the fact that
being a weak AXp is a monotone property and that
the set of all features is trivially a weak AXp (and
hence can be used as the initial set S0 in the deletion
algorithm).
Corollary 1. For any family of classifiers, finding a
single AXp is polytime if testing whether a subset of
features is a weak AXp is in P.

We assume that an MDT in L-DT is represented
as a binary tree in which each leaf node is labelled
by a class and each internal node is linked to its two
child-nodes by edges labelled respectively by a rela-
tion R ∈ L and its complement ¬R ∈ L. The as-
sumption of an explicit representation of ¬R avoids
technical issues related to the possible large dispar-
ity between the sizes of the explicit representation
of ¬R and its implicit representation as the comple-
ment of R. In the following proposition, we do not
impose a fixed representation of relations (as a table
of tuples or as a formula) but we do assume the same
representation of relations in CSP(L) and in MDTs
in L-DT.

Given an MDT, we use the notation path(α) to
represent the set of conditions satisfied on the path
from the root to a leaf α. Let Asst represent
all unary constraints consisting of assignments, i.e.
xi = u for some feature xi and some constant u.
We can view a feature-vector v as a set of liter-
als (i.e. variable-value assignments). For a fixed
feature-vector v, it will be convenient to interpret a
set X of features as a partial assignment, i.e. the set
of literals corresponding to the subset of v on these
variables.
Proposition 1. Let L be a language such that L is
closed under complement. Suppose that L ∪ Asst
⊆ C where CSP(C) ∈ P. Then WAXPDT(L) ∈ P
and an AXp of any decision taken by an L-DT can
be found in polynomial time.

Proof. Let κ be the classifier defined by an L-DT
and consider a decision κ(v) = c to be explained.
By Corollary 1, we only need to show that we can
test that a set X is a Weak AXp in polynomial time.
Testing whether X is a Weak AXp can be achieved
by testing whether for all leavesα corresponding to a
decision different to c, X (considered as a partial as-
signment) is incompatible with the set of constraints
path(α). The constraints of path(α) are in L. Fur-
thermore, the partial assignment X can be viewed
as a set of constraints in Asst, so this test of incom-
patibility is a CSP with constraints in L∪Asst, and
hence, by the hypotheses L∪Asst ⊆ C and CSP(C)
∈ P, is solvable in polynomial time.

In all the following examples, L is closed under
complement, L ∪Asst ⊆ C and CSP(C) ∈ P, and so
Proposition 1 applies.

Boolean domains We begin with examples in
which features are boolean. Two well-known
boolean languages C for which CSP(C) is tractable
are conjunctions of Horn clauses and conjunctions
of 2-clauses.

Example 2. Let L be the class of Horn clauses and
their negations. The complement (negation) of a
Horn clause is a conjunction of unary clauses and
unary clauses are trivially Horn. C is the class of
conjunctions of Horn clauses, and hence CSP(C) ∈
P since it corresponds to HORNSAT.

Note that, in general, the complement of a con-
junction of Horn clauses is not the conjunction of
Horn clauses. In Section 4.1 we identify the max-
imal generalisation of the class in Example 2. It
consists of a specific form of conjunctions of Horn
clauses.

Example 3. Let L be the class of 2-conjunctions of
2-clauses (i.e. the conjunction of at most two clauses
each of which contains at most two literals) together
with the complements of such constraints. The com-
plement of a 2-conjunction of 2-clauses is also the
conjunction of 2-clauses, since ¬((a ∨ b) ∧ (c ∨ d))
≡ (¬a∨¬c)∧ (¬a∨¬d)∧ (¬b∨¬c)∧ (¬b∨¬d).
L ∪ Asst ⊆ C where C is the set of conjunctions of
2-clauses. CSP(C) ∈ P by tractability of 2SAT.

In general, the complement of an arbitrary con-
junction of 2-clauses is not the conjunction of 2-
clauses. We identify the maximal generalisation of
this example in Section 4.3.

Finite domains We now consider finite feature-
domains of arbitrary size. Define a two-fan con-
straint to be a constraint of the form xi = a∨xj = b,
where a, b are constants.

Example 4. Let L be the class of two-fan con-
straints and their complements, together with all
unary constraints xi ∈ S where S is any sub-
set of the domain of xi. The complement of the
two-fan xi = a ∨ xj = b is the constraint
xi ̸= a ∧ xj ̸= b which is the conjunction of
two unary constraints. Let maj : D3 → D be
the function defined by maj(a, b, c) = b if b = c
and maj(a, b, c) = a if b ̸= c. It returns the
majority value among its arguments, if it exists,
and its first argument otherwise. A binary rela-
tion R is maj-closed if (a1, a2), (b1, b2), (c1, c2) ∈
R ⇒ (maj(a1, b1, c1),maj(a2, b2, c2)) ∈ R, and all
unary constraints are maj-closed. All two-fan con-
straints and conjunctions of unary constraints are
maj-closed. It is well known that CSP(C) ∈ P where
C is the set of maj-closed relations (Cooper, Cohen,
and Jeavons 1994; Jeavons, Cohen, and Gyssens
1995).



Now suppose that all domains are finite and to-
tally ordered. Define a generalised interval con-
straint (GIC) to be a constraint of the form xi ≤
a ∨ xj ≥ b, where a, b are constants.

Example 5. LetL be the set of GIC’s and their com-
plements, together with all unary constraints xi ∈ S
where S is any subset of the domain of x. The com-
plement of the GIC xi ≤ a ∨ xj ≥ b is the con-
straint xi > a ∧ xj < b, which is the conjunc-
tion of unary constraints. A binary relation R is
said to be max-closed if (a1, a2), (b1, b2) ∈ R ⇒
(max(a1, b1),max(a2, b2)) ∈ R, and all unary con-
straints are max-closed (Jeavons and Cooper 1995).
It is easy to check that GIC’s and their complements
are max-closed. Let C be the class of conjunctions
of max-closed constraints of arity at most two. Then
L ∪ Asst ⊂ C and CSP(C) ∈ P since instances in
this class are solved by arc consistency (Jeavons and
Cooper 1995).

Infinite domains We now consider infinite do-
mains, firstly integer domains and then real domains.

Example 6. A unit two variable per inequality
(UTVPI) constraint is of the form axi + bxj ≤ d
where xi and xj are integer variables, the coeffi-
cients a, b ∈ {−1, 0, 1} and the bound d is an in-
teger constant. The negation of such a constraint is
−axi−bxj ≤ −(d+1) and is hence also an UTVPI
constraint. A unary assignment xi = d is equivalent
to xi ≤ d ∧ −xi ≤ −d, a conjunction of UTVPI
constraints. Let L be the set of UTVPI constraints
and C the class of constraints consisting of conjunc-
tions of UTVPI constraints. Then L∪Asst ⊂ C and
it is known that CSP(C) ∈ P (Lahiri and Musuvathi
2005).

Example 7. Let L be the class of linear inequalities
(≤ or <) over the reals. The complement of a linear
inequality is again a linear inequality and assign-
ments xi = u can be viewed as two linear inequali-
ties (xi ≤ u and −xi ≤ −u). C is the set of systems
of linear inequalities over R. Hence L ∪ Asst ⊂ C
and it is well known that CSP(C) ∈ P.

Since an oblique decision tree is an MDT in which
all conditions are linear inequalities, we can deduce
that there is a polynomial-time algorithm to find
an AXp of a decision taken by an oblique decision
tree. The dual of an abductive explanation is a con-
trastive explanation, a minimal set of features that
if changed changes the output of the classifier. It
has been observed that an optimal contrastive ex-
planation, known as a counterfactual explanation or
adversarial example, can be found for oblique deci-
sion trees in polynomial time for a linear error func-
tion, by reduction to Linear Programming (Carreira-
Perpiñán and Hada 2021).
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Figure 2: A decision tree TI which has a non-empty AXp
if and only if the constraints C1, . . . , Ce are simultane-
ously satisfiable.

3 Tractable boolean languages: the
algebraic approach

Recall that we are interested in languages L closed
under taking complements, i.e. R ∈ L⇒ ¬R ∈ L.

We first study the characterisation of tractable lan-
guages L for WAXPDT(L) from an abstract alge-
braic point of view, before looking for a detailed
characterisation.

Let f : Dk → D be a function. A relation R
has f as a polymorphism (we say that R is closed
under f ) if ∀t1, . . . , tk ∈ R, the tuple f(t1, . . . , tk)
obtained by applying f componentwise to the k vec-
tors t1, . . . , tk belongs to R (Jeavons, Cohen, and
Gyssens 1997). We say that a language L has the
polymorphism f if all relations in L are closed un-
der f .

In the following, let max (min) be the binary func-
tion which returns the maximum (minimum) of its
two arguments. Let maj : {0, 1}3 → {0, 1} be the
ternary majority function (already introduced in Ex-
ample 4) defined by

maj(x, y, z) =

{
y if y = z
x otherwise

Let miny : {0, 1}3 → {0, 1} be the ternary minority
function defined by

miny(x, y, z) =

{
z if x = y
¬z otherwise

It returns the minority value if the three values x, y, z
are not all equal.
Theorem 1. Let L be a finite boolean language
closed under taking complements. Then, assuming
P̸=NP, WAXPDT(L) ∈ P iff L has either max, min,
maj or miny as a polymorphism.

Proof. ⇐: Suppose that L has either max, min, maj
or miny as a polymorphism. It is well known that
this implies that CSP(L) ∈ P (Jeavons, Cohen, and



Gyssens 1997). Furthermore, all unary constraints
have these four polymorphisms. Thus, we also have
CSP(L ∪ Asst) ∈ P, and hence by Proposition 1,
WAXPDT(L) ∈ P.
⇒: We first give a polynomial reduction from

CSP(L) to WAXPDT(L). Let I be an instance of
CSP(L) consisting of constraints C1, . . . , Ce. We
build a DT TI , shown in Figure 2, as a sequence
of tests corresponding to these constraints. C1 is the
test at the root of TI , and each Ci (i = 2, . . . , e) is
the test at the positive child of Ci−1 (i.e. the node
attained after a positive response to the test Ci−1).
The positive child ofCe is a leaf node labelled 0. All
negative children of all nodes of TI are leaf nodes la-
belled 1. Let κ be the function defined by the DT
TI . Now consider any decision κ(v) = 1. The
empty set is a weak AXp of this decision iff it is
impossible to simultaneously satisfy the constraints
C1, . . . , Ce, since the only leaf node labelled 0 can
only be reached if all these constraints are satisfied.
Thus deciding whether ∅ is a weak AXp amounts to
solving I ∈ CSP(L).

Thus, assuming P̸=NP, WAXPDT(L) ∈ P only if
L is a sublanguage of one of Schaefer’s tractable
boolean constraint languages (Schaefer 1978). By
Schaefer’s theorem, assuming P̸=NP, CSP(L) ∈ P
iff L has (at least) one of the six polymorphisms 0,
1, max, min, maj or miny. A relation R is a-closed,
where a ∈ {0, 1}, iff the tuple (a, . . . , a) (of length
the arity ofR) belongs toR. So it is clear thatR and
¬R cannot both be a-closed. Thus there is no non-
empty language L closed under complement which
is a-closed. ThusL has either max, min, maj or miny
as a polymorphism. The empty language L = ∅ triv-
ially has all polymorphisms.

Theorem 1 shows that there is a complexity di-
chotomy. In the next section we provide a more ex-
plicit characterisation of the tractable boolean lan-
guages.

4 Characterisation of tractable
boolean languages

We now study tractable boolean languages closed
under taking complements, in order to gain a better
insight into the tractable classes identified in Theo-
rem 1. Let Lf be the language of boolean relations
having the polymorphism f . It is well known (Jeav-
ons, Cohen, and Gyssens 1995; Jeavons and Cooper
1995; Jeavons, Cohen, and Gyssens 1997) that

1. Lmin is the set of conjunctions of Horn clauses.

2. Lmax is the set of conjunctions of anti-Horn
clauses.

3. Lminy is the set of conjunctions of affine con-
straints (i.e. linear equations).

4. Lmaj is the set of conjunctions of 2-clauses.
In all four cases, Lf is not closed under complement
and so we require extra work to identify the (unique)
maximal sublanguage closed under complement.

4.1 Horn and anti-Horn
We start with the language Lmin. By the discussion
above we need to characterise the maximal sublan-
guage of Lmin closed under complement, or equiva-
lently the Horn formulas whose negation is express-
ible by a Horn formula. We will prove that these
formulas are exactly those in which the sets of neg-
ative literals appearing in clauses are totally ordered
with respect to set inclusion. We call such formulas
star-nested.
Definition 3. A Horn formula ψ is star-nested if and
only if there exist sets of literals L and ∅ = S0 ⊂
S1 ⊂ S2 ⊂ . . . ⊂ Sq such that
• all literals in L are positive, and
• all literals in Sq are negative, and
• every clause C in ψ is of the form C =

∨
s∈Si

s

or C = l ∨
(∨

s∈Si
s
)

with l ∈ L.
To clarify the definition, we point out that each

set Si may occur more than once in the formula (in
clauses with different positive literals l). In particu-
lar, star-nested Horn formulas may contain any num-
ber of unit clauses with positive literals (which cor-
respond to the set S0 = ∅). Clearly, since the sets
Si are nested, a star-nested formula with no redun-
dant clauses contains at most one clause consisting
of only negative literals and at most one clause for
each positive literal l ∈ L.
Proposition 2. Let ψ be a star-nested Horn formula.
Then, ¬ψ is equivalent to a star-nested Horn for-
mula.

Proof. We proceed by induction on the number of
sets Si. For q = 0, we have ¬ψ =

∨
l∈L ¬l and

hence ¬ψ is a star-nested Horn formula. Now, let
q > 0 and ψ be a star-nested Horn formula with sets
L, S0, . . . , Sq . Suppose that the claim is true for all
formulas with strictly fewer sets. If we denote by L0

the subset of literals in L that appear in unit clauses
of ψ, then ψ can be rewritten as

ψ =

( ∧
l∈L0

l

)
∧

(
(
∨
s∈S1

s) ∨ ϕ

)
where ϕ is Horn and star-nested with setsL\L0, S1\
S1, S2 \ S1, . . . , Sq \ S1. In particular, ϕ is star-
nested with one fewer set than ψ. By induction, ¬ϕ
can be assumed to be Horn and star-nested with sets
L′, S′

0, . . . , S
′
p. Then, we have

¬ψ =

( ∨
l∈L0

¬l

)
∨

(
(
∧
s∈S1

¬s) ∧ ¬ϕ

)



and hence ¬ψ is star-nested with sets S′′
0 = ∅, S′′

1 =
S′
0∪{¬l | l ∈ L0}, . . . , S′′

p+1 = S′
p∪{¬l | l ∈ L0},

and L′′ = L′ ∪ {¬s | s ∈ S1}.

Proposition 3. LetR be a boolean relation such that
min is a polymorphism of both R and ¬R. Then
R(x1, . . . , xr) ≡ ψ(x1, . . . , xr), where ψ is a star-
nested Horn formula.

Proof. We proceed by induction on the arity r of
R. The claim is true for r = 1 since R is either
empty, complete, or equivalent to a unit clause; in
all cases it is expressible by a star-nested Horn for-
mula. Let r > 1 and suppose that the claim is
true for all relations whose arity is strictly smaller
than r. Let R be a relation of arity r such that
min is a polymorphism of both R and ¬R. We as-
sume without loss of generality that the all-zeroes
tuple of length r belongs to R. (If this is not the
case, then ¬R contains this tuple and we prove the
claim on ¬R instead.) If R is complete then we are
done. Otherwise, its negation ¬R = {t1, . . . , tn}
is not empty. Since ¬R has the polymorphism min
(which we can assume to be of any arity), we have
t = min(t1, . . . , tn) ∈ ¬R. Note that each ti is
a tuple, so here the operation min is applied com-
ponentwise to the set of tuples t1, . . . , tn. The tu-
ple (0, . . . , 0) does not belong to ¬R, so the set
P = {i ≤ r | t[i] = 1} is not empty. We as-
sume without loss of generality that P = {1, . . . , c}.
Since tj [i] = 1 for all j ∈ {1, . . . , n} and i ∈ P ,
there exists a relationQ such that ¬R(x1, . . . , xr) ≡
x1 ∧ . . . ∧ xc ∧ Q(xc+1, . . . , xr). Both Q and ¬Q
have the polymorphism min (because Q is a pro-
jection of ¬R and ¬Q is a projection of a conjunc-
tion of R with unit clauses; the polymorphism min
is invariant under these transformations) and the ar-
ity of Q is strictly smaller than r. By induction,
there exists a star-nested Horn formula ψ such that
¬Q(xc+1, . . . , xr) ≡ ψ(xc+1, . . . , xr). Then, we
have

R(x1, . . . , xr)

≡ ¬(x1 ∧ . . . ∧ xc ∧Q(xc+1, . . . , xr))

≡ ¬x1 ∨ . . . ∨ ¬xc ∨ ¬Q(xc+1, . . . , xr)

≡ ¬x1 ∨ . . . ∨ ¬xc ∨ ψ(xc+1, . . . , xr)

and hence R is equivalent to a star-nested Horn for-
mula by distributivity of ∨ over ∧.

Theorem 2. Let L be a boolean constraint lan-
guage. The following are equivalent:

(i) L has the polymorphism min and is closed un-
der taking complements

(ii) Each relation in L is equivalent to a star-
nested Horn formula

Proof. Follows from Proposition 2 and Proposi-
tion 3.

We also note that, given in input the list of tuples
of a relation R, star-nested formulas for R and its
complement ¬R can be constructed in polynomial
time if they exist. The algorithm is given by the re-
cursive constructions used in the proofs of Proposi-
tion 2 and Proposition 3.

An anti-Horn formula is star-nested if replacing
each literal by its negation yields a star-nested Horn
formula. The following directly follows from the ar-
guments above, with only slight adaptations.

Theorem 3. Let L be a boolean constraint lan-
guage. The following are equivalent:

(i) L has the polymorphism max and is closed un-
der taking complements

(ii) Each relation in L is equivalent to a star-
nested anti-Horn formula

4.2 Affine

We now turn our attention to the case ofLminy, which
is straightforward.

Theorem 4. Let L be a boolean constraint lan-
guage. The following are equivalent:

(i) L has the polymorphism miny and is closed un-
der taking complements

(ii) Each relation in L is equivalent to a linear
equation over GF(2), the finite field of two ele-
ments.

Proof. The fact that any language satisfying (ii) is
closed under taking complements is trivial, as the
complement of the equation a1x1 + . . .+ arxr = b
is a1x1 + . . . + arxr = 1 − b. In addition, rela-
tions equivalent to linear equations over GF(2) have
the minority polymorphism (Jeavons, Cohen, and
Gyssens 1995). This establishes (ii)⇒ (i).

Now, let R be a relation of arity r such that both
R and ¬R have the minority polymorphism. If R is
either empty or complete then it is expressible as a
linear equation (0 = 1 or 0 = 0, respectively). Oth-
erwise, both R and ¬R correspond to the solution
sets of systems of linear equations over GF(2) that
are not degenerate (i.e. at least one equation has a
nonzero coefficient). Since any nondegenerate lin-
ear equation over GF(2) over r variables has exactly
2r−1 solutions, we have |R| = |¬R| = 2r−1 and
only one equation will remain in both systems after
discarding all redundant equations. This establishes
(i)⇒ (ii) and concludes the proof.



4.3 Conjunctions of 2-clauses
As mentioned above, over boolean domains a rela-
tion has the polymorphism maj if and only if it is a
conjunctions of 2-clauses (clauses containing up to
two literals). Thus, to complete the study of tractable
cases identified in Theorem 1, we now characterise
those formulas Φ such that both Φ and ¬Φ are ex-
pressible as conjunctions of 2-clauses.

A 2-clause is a clause consisting of at most two
literals and a 2-term is a term consisting of at most
two literals. The following lemma follows immedi-
ately from De Morgans’ theorem.
Lemma 2. A boolean formula Φ such that ¬Φ is ex-
pressible as conjunction of 2-clauses is expressible
as a disjunction of 2-terms.
Lemma 3. Suppose that a boolean formula Φ is
such that Φ is expressible as conjunctions of 2-
clauses and also as a disjunction of 2-terms. Sup-
pose, furthermore, that Φ ≡ (a ∨ b) ∧ Φ1 and
Φ ≡ (c ∧ d) ∨ Φ2. Then there is a non-empty in-
tersection between the two sets of literals {a, b} and
{c, d}.

Proof. With the assignments a = b = 0 and c =
d = 1 we have a contradiction. This can only be
avoided if the sets of literals {a, b} and {c, d} inter-
sect.

Lemma 4. Suppose that a boolean formula Φ is
such that Φ is expressible as a conjunction of 2-
clauses and also as a disjunction of 2-terms of the
form Φ = a ∨ Φ1, where a is a literal. Then Φ
is of one of the three forms (1) a, (2) a ∨ b, or (3)
(a ∨ b) ∧ (a ∨ c).

Proof. Suppose that Φ ≡ (b∨c)∧Φ2. Setting a = 1
and b = c = 0 leads to a contradiction, so to render
this impossible we must have a = b or a = c. Since
this is true for any conjunct, when Φ is expressed
as a conjunction of 2-clauses, we can deduce that
Φ ≡

∧m
i=1(a∨bi) for some literals b1, . . . , bm. Since

Φ is also expressible as a disjunction of 2-terms, we
only need to consider the cases in which m ≤ 2.
When we include the case Φ = a we have the three
cases (1) a, (2) a ∨ b, (3) (a ∨ b) ∧ (a ∨ c).

We give without proof the analogous lemma ob-
tained by exchanging conjunction and disjunction.
Lemma 5. Suppose that a boolean formula Φ is
such that Φ is expressible as a disjunction of 2-terms
and also as a conjunction of 2-clauses of the form
Φ = a∧Φ1, where a is a literal. Then Φ is of one of
the three forms (1) a, (2) a∧b, or (3) (a∧b)∨(a∧c).

Observe that case (3) in Lemma 5 when written as
a conjunction of 2-clauses is a ∧ (b ∨ c).

A binary term is a 2-term that contains exactly
two distinct literals.

Lemma 6. Suppose that a boolean formula Φ ̸= ⊥
is such that Φ is expressible as a conjunction of 2-
clauses and also as a disjunction of binary terms of
the form Φ = (a∧c)∨(b∧d)∨Φ1, where a, b, c, d are
distinct literals. Then Φ is of one of the three forms
(1) (a ∨ b) ∧ (c ∨ d), (2) (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ d),
or (3) (a∨ b)∧ (b∨ c)∧ (a∨d)∧ (c∨d) for distinct
literals a, b, c, d.

Proof. Applying Lemma 3 twice, we know that all
conjuncts, when Φ is expressed as a conjunction of
2-clauses, must contain one of a, c and one of b, d.
Since a, b, c, d are distinct literals, we can deduce
that the only possible 2-clauses are (a ∨ b), (b ∨ c),
(a∨d) and (c∨d). Eliminating symmetrically equiv-
alent cases, by exhaustive search, we easily obtain
only three distinct cases, namely Φ is of one of the
three forms (1) (a∨b)∧(c∨d), (2) (a∨b)∧(b∨c)∧
(c∨d), or (3) (a∨b)∧ (b∨c)∧ (a∨d)∧ (c∨d).

Observe that although a, b, c, d are distinct liter-
als, the variables are not necessarily distinct. For
example, if d = ¬a then case (1) becomes (a ∨ b) ∧
(¬a ∨ c).
Lemma 7. Suppose that a boolean formula Φ, ex-
pressible as a non-empty conjunction of 2-clauses,
is also expressible as a non-empty disjunction of bi-
nary terms in which each pair of terms share a lit-
eral. Then either Φ is of the form Φ = a∧Φ1, where
a is a literal, or Φ is of the form (a ∨ b) ∧ (b ∨ c) ∧
(a ∨ c).

Proof. If Φ can be expressed as a disjunction of 2-
terms with only one term or two terms (which share
a literal), then Φ is of the form Φ = a∧Φ1, for some
literal a. If Φ can be expressed as a disjunction of
three distinct binary terms (where each pair of terms
shares a literal), then Φ is of the form (a ∨ b) ∧ (b ∨
c) ∧ (a ∨ c). There is no set of four distinct binary
terms which satisfy the property that each pair shares
a literal.

We now obtain the following characterisation the-
orem.
Proposition 4. Let Φ be a boolean formula such
that both Φ and ¬Φ are expressible as non-empty
conjunctions of 2-clauses. Then Φ has one of the
following forms (in which a, b, c, d are distinct liter-
als):

(1) a,
(2) a ∨ b,
(3) a ∧ b,
(4) a ∧ (b ∨ c),
(5) (a ∨ b) ∧ (a ∨ c),
(6) (a ∨ b) ∧ (c ∨ d),
(7) (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ d),



(8) (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ c),
(9) (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ d) ∧ (c ∨ d).

Proof. By Lemma 2, we are interested in Φ that can
be expressed as a conjunction of 2-clauses and a dis-
junction of 2-terms. If Φ, when written as a disjunc-
tion of 2-terms, has a unary term (i.e. Φ can be writ-
ten in the form a∨Φ1), then Lemma 4 applies (cases
(1), (2), (5)). If Φ can be expressed as a disjunction
of binary terms, two of which share no literals, then
Lemma 6 applies (cases (6), (7), (9)). If Φ can be
expressed as a disjunction of binary terms, each pair
of which share a literal, then Lemma 7 applies (case
(8)). In the subcase of Lemma 7 in which Φ can be
written in the form a ∧ Φ1, Lemma 5 applies (cases
(1), (3), (4)).

The following corollary is simply a more succinct
rewriting of Proposition 4.

Corollary 2. If Φ is a boolean formula such that
both Φ and ¬Φ are expressible as non-empty con-
junctions of 2-clauses, then Φ has one of the three
following forms (in which the four literals are not
necessarily distinct):

(i) (a ∨ b) ∧ (c ∨ d),
(ii) (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ d),

(iii) (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ d) ∧ (c ∨ d).

Proof. We can obtain the nine cases listed in Propo-
sition 4 as follows: (1) set a = b = c in (iii), (2) set
a = c and b = d in (iii), (3) set a = b and c = d in
(iii), (4) set a = d in (iii), (5) set a = c in (iii), (6)
is case (i) (7) is case (ii), (8) set a = d in (ii), (9) is
case (iii).

It is straightforward to verify that the converse to
Corollary 2 holds, that is, any formula Φ satisfying
at least one of items (i), (ii) or (iii) is such that both Φ
and ¬Φ are expressible as conjunctions of 2-clauses.
In the following, we use the name square 2CNF for
formulas that are expressible as both conjunctions of
2-clauses and disjunctions of 2-terms (characterised
in Proposition 4 and Corollary 2). The name reflects
the fact these formulas are the subformulas of the
square given by item (iii) of Corollary 2 (seeing lit-
erals a,b,c,d as vertices and clauses as edges).

It is worth observing that square 2CNF formulas
include all binary relations. For example, the rela-
tion a ̸= b can be obtained by setting c = ¬b and
d = ¬a in (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ d).
Theorem 5. Let L be a boolean constraint lan-
guage. The following are equivalent:

(i) L has the polymorphism maj and is closed un-
der taking complements

(ii) Each relation in L is equivalent to a square
2CNF, i.e. either empty, complete, or express-
ible in one of the three following forms (in
which the four literals are not necessarily dis-
tinct): (i) (a∨b)∧(c∨d), (ii) (a∨b)∧(b∨c)∧
(c∨d), (iii) (a∨ b)∧ (b∨ c)∧ (a∨d)∧ (c∨d).

4.4 The dichotomy for boolean languages
Bringing together what we have learnt in this sec-
tion, we have the following theorem.
Theorem 6. Let L be a finite boolean language
closed under taking complements. Then, assuming
P̸=NP, WAXPDT(L) ∈ P iff at least one of the con-
ditions holds:

1. Each relation in L is equivalent to a star-nested
Horn formula

2. Each relation in L is equivalent to a star-nested
anti-Horn formula

3. Each relation in L is equivalent to a linear equa-
tion over GF(2)

4. Each relation in L is equivalent to a square 2CNF
formula.
The requirement that L is finite in Theorem 6

arises from technicalities related to the representa-
tion of infinite languages. Indeed, certain degen-
erate representations for the relations of an infinite
language L may be problematic from an algorith-
mic perspective. For example, the promise that the
relations of L are equivalent to star-nested Horn for-
mulas might not be sufficient to ensure tractability
(or even membership in NP) if they are encoded in a
way that makes even the most elementary relational
operations NP-hard. However, this theorem is still
true for infinite languages if one makes the mild as-
sumptions that (i) relations equivalent to linear equa-
tions are always represented as such, and (ii) the
representation used for relations equivalent to star-
nested Horn/anti-Horn formulas allows for checking
in polynomial time whether a given assignment ex-
tends to a tuple.
Example 8. Consider the language L of Exam-
ple 3, which consists of all 2-conjunctions of 2-
clauses. Now, extend L with pseudo-boolean con-
straints a + b + c ≥ 2 for any literals a, b, c, where
summation is over Z. This larger language L′ is
closed under taking complements (the complement
of a+ b+ c ≥ 2 is ¬a+¬b+¬c ≥ 2), and all con-
straints in L′ can be expressed as square 2CNF for-
mulas because a+b+c ≥ 2 ≡ (a∨b)∧(b∨c)∧(c∨a).
Therefore, by Theorem 6 we have WAXPDT(L′)∈ P.
However, no quaternary pseudo-boolean constraint
a+ b+ c+ d ≥ k with 1 ≤ k < 4 can be expressed
as a square 2CNF formula. In fact, adding any
such constraint to L would cause the correspond-
ing WAXPDT problem to become NP-complete by



Theorem 6 as the resulting language would violate
each of the four tractability conditions.

5 Path-based explanations
Izza et al. (Izza, Ignatiev, and Marques-Silva 2022)
introduced the notion of path-based explanations for
decision trees: a path-based explanation is a subset
of the conditions on a path to a leaf. Since they
study DT’s in which conditions are arbitrary unary
constraints of the form xi ∈ S, this is also the ba-
sic building block of path explanations. Such expla-
nations are potentially more useful to the user than
an AXp which is composed of literals of the form
xi = u. We generalize the notion of path-based ex-
planations to MDT’s, before showing that the P/NP-
hard dichotomy for boolean languages also holds for
this alternative notion of explanation. Recall that we
use path(α) to represent the set of conditions satis-
fied on the path from the root to a leaf α of a MDT.

Definition 4. Let κ be a classifier calculated by an
MDT, v a feature-vector, and α the leaf of the MDT
attained when calculating κ(v). A weak APXp
(weak abductive path explanation) of the decision
κ(x) = c is a subset P of the conditions path(α)
such that any assignment y that satisfies the condi-
tionsP also satisfies κ(y) = c. An APXp (abductive
path explanation) of a decision is a subset-minimal
Weak APXp.

Let wAPXpDT(L) denote the problem of decid-
ing whether a set of constraints is a weak APXp
for a given decision taken by an L-DT. We can
deduce from Lemma 1 that finding an APXp of a
decision taken by an L-DT is polynomial-time if
wAPXpDT(L) ∈ P. We omit the proof of the fol-
lowing theorem since its proof is almost identical to
the proof of Theorem 1.

Theorem 7. Let L be a finite boolean language
closed under taking complements. Then, assuming
P̸=NP, WAPXPDT(L)∈ P iffL has either max, min,
maj or miny as a polymorphism.

Corollary 3. Let L be a finite boolean lan-
guage closed under taking complements. Then
WAPXPDT(L) ∈ P iff WAXPDT(L) ∈ P

It follows that we have the same tractable-
explainability dichotomy for boolean languages for
path-based explanations (APXp’s) as for instance-
based explanations (AXp’s) (Theorem 6).

6 Conclusion
We have shown the close link between classes of
multivariate decision trees for which decisions can
be explained in polynomial time and tractable con-
straint languages closed under complement. We
have shown that tractable explainability applies to

existing and well-studied classes of MDTs, such as
oblique DTs, but also to novel classes of MDTs.
Such novel classes provide generalisations of clas-
sical DTs in that branching is possible not only on
the value of a single variable but also according to
specific (non-linear) conditions on two or more vari-
ables.

Interesting open questions concern the evalua-
tion of the practical utility (Cañete-Sifuentes, Mon-
roy, and Medina-Pérez 2021; Li, Dong, and Kothari
2005) and the theoretical computational power of
such generalised DTs. There is a rich history
of the study of MDTs with linear conditions as
a computational model, such as bounds on the
depth of such decision trees to test the equality of
two sets (Reingold 1972). An avenue of future
work is a similar theoretical study of the compu-
tational power of MDTs with generalised interval
constraints, two-fan constraints, UTVPI constraints,
star-nested Horn constraints (studied in Section 4.1),
or square 2CNF formulas (studied in Section 4.3)
to determine whether there is a substantial gain in
depth or size when compared with classical DTs.

Our P/NP-hard dichotomy for boolean languages
closed under complement is an interesting theoreti-
cal result which may find applications in other do-
mains. This dichotomy for boolean languages can
also be seen as a foundation on which to build a
characterisation of tractable finite-domain languages
closed under complement.

An independent question is the so-called recog-
nition problem: given an arbitrary multivariate DT,
determine whether the set of constraints it uses is
a sublanguage of one of the tractable languages we
have identified. It is reasonable to assume that this
problem would be solved off-line, if at all.
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