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The exploration of atomic fractional quantum Hall (FQH) states is now within reach in optical-
lattice experiments. While bulk signatures have been observed in a system realizing the Hofstadter-
Bose-Hubbard model in a box [Leonard et al., arXiv:2210.10919], how to access hallmark edge
properties in this setting remains a central open question. We propose and analyze a realistic
scheme to extract the momentum-resolved edge spectrum of atomic FQH states. Our proposal is
based on subjecting the prepared FQH ground state to two interfering Laguerre-Gaussian beams,
which transfer a controlled angular momentum l and energy ℏω to the system. The resonant coupling
is then detected through local density measurements, by tracking the transfer of atoms from the
bulk to the edge of the FQH droplet. We benchmark our method using numerical simulations of
the Hofstadter-Bose-Hubbard model, considering few bosons in the ν = 1/2 Laughlin ground state.
These studies demonstrate that our probing scheme is well suited to extract hallmark features of
FQH spectra: a chiral gapless edge branch and a gapped magneto-roton mode. These signatures
are already detectable in realistic systems of two bosons, provided that the box potential is larger
than the droplet. Our work paves the way for the detection of fractional statistics in cold atoms
through edge signatures.

Introduction — The interplay of topology and inter-
actions leads to fascinating phases of matter, such as the
fractional quantum Hall (FQH) states, which host frac-
tionalized anyonic excitations. The progress in engineer-
ing artificial gauge fields [1, 2] and topological bands [3]
has raised the hope of realizing FQH states of ultracold
atoms. Specifically, realistic protocols for the preparation
of FQH states were proposed [4–12], based on the quasi-
adiabatic evolution of a small ensemble of neutral atoms
loaded into an optical lattice. In this context, extracting
the universal signatures of FQH states is an important
goal and great challenge; theoretical proposals in this di-
rection have mostly focused on the measurement of the
Hall response [13–16], central charge [17], and the anyonic
properties of quasiholes [18–23]. Recently, a two-particle
bosonic Laughlin state was identified in an optical lat-
tice [24], where local density measurements permitted
the observation of key bulk signatures, including a nearly
quantized Hall conductivity and vortex-like correlations.

Edge states are a fundamental hallmark of topologi-
cal matter. In FQH systems, they form one-dimensional
conduction channels, which are well captured by the chi-
ral Luttinger liquid theory in the low-energy limit [25].
FQH edge modes are responsible for a wealth of quan-
tum coherent phenomena in mesoscopic systems [26], and
were instrumental in the observation of anyonic statis-
tics [27, 28]. Despite the success of chiral Luttinger liquid
theory in capturing these phenomena, microscopic details
such as boundary effects can deeply affect the low-energy
picture [29–33]. In numerical studies of few particles on
a lattice, the expected gapless chiral edge spectrum was
only reported in the presence of a smooth confining po-
tential [34, 35]. Indeed, the FQH ground state is gapped
in a confining box potential [14]. Thanks to the local
probes accessible in optical-lattice experiments, the re-
alization of the FQH effect in quantum gases may pro-
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FIG. 1. (a) Fractional quantum Hall (FQH) droplet at the
center of the Hofstadter-Bose-Hubbard lattice, with a sketch
of the expected edge spectrum. (b) Spatial shape of the
Laguerre-Gaussian (LG) laser field acting on the atoms, real-
ized by interfering two beams with angular momentum l1 and
l2, and resulting in a transfer of angular momentum l = l1−l2.
(c) Response of the FQH droplet to the LG beams at reso-
nance: edge states are populated, resulting in a detectable
increase of the density at the edge of the droplet.

vide an opportunity to reveal the rich phenomenology of
FQH edge modes. Promisingly, resolving individual edge
states would provide a marker of topological order, per-
mitting the unambiguous detection of non-Abelian FQH
states [36–38]. While edge properties have been detected
in weakly interacting cold atom settings [39–43], how to
extract and resolve the edge spectrum of FQH states re-
mains an open question.

In this work, we develop a spectroscopy protocol to
extract the momentum-resolved edge spectrum of FQH
states in ultracold quantum gases. Our proposal builds
on Ref. [44] and is summarized in Fig. 1: two interfering
Laguerre-Gaussian (LG) lasers transfer an angular mo-
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mentum l and energy ℏω to the system prepared in the
FQH ground state of a lattice Hamiltonian. The absorp-
tion resonance is subsequently measured in-situ through
local density measurements, by monitoring the displace-
ment of the atomic density from bulk to edge. We nu-
merically benchmark our protocol using the experimen-
tally realized [24, 45] Hofstadter-Bose-Hubbard model,
which supports a Laughlin 1/2 ground state [46–48]. By
calculating the coupling matrix elements of our probe,
we obtain the angular momentum resolved absorption
spectrum and show that the expected chiral gapless edge
mode is present in systems with as few as two particles.
Interestingly, the LG matrix elements have an approxi-
mate selection rule beyond the exact symmetries of the
Hamiltonian, which we attribute to the emergent con-
tinuous rotation symmetry of the ground state and low-
energy excitations. This property allows us to extract the
edge mode even when bulk and edge states are energeti-
cally mixed. We take advantage of this finding to study
the behavior of the edge mode upon approaching the ex-
perimental configuration of Ref. [24]; there, the walls of
the confining box nearly coincide with the edge of the
FQH droplet, leading to a gapped edge mode, which lies
higher in energy than the first bulk excitation [14]. The
explicit time-dependent simulation of our protocol shows
that the time necessary to detect a measurable transfer
of density from bulk to edge is compatible with current
experimental constraints. Our protocol could apply to
other models of FQH states of ultracold atoms, includ-
ing rotating atomic traps [43].

Model — We consider the Hofstadter-Bose-Hubbard
(HBH) model, describing bosons hopping on the Harper-
Hofstadter lattice [49] and interacting through an on-site
Hubbard interaction,

Ĥ = −J
∑
m,n

(
b̂†m+1,nb̂m,ne

i2παn + b̂†m,n+1b̂m,n + h.c.

)
+
U

2

∑
m,n

b̂†m,nb̂m,n

(
b̂†m,nb̂m,n − 1

)
+
∑
m,n

V (m,n)b̂†m,nb̂m,n, (1)

where the operator b̂m,n (b̂†m,n) destroys (creates) a bo-
son at site (m,n), J is the tunneling energy, α is the
magnetic flux density, U > 0 is the interaction strength,
and V (m,n) = V0

(
(m−m0)

2 + (n− n0)
2
)
is a confin-

ing potential (m0, n0 are the coordinates of the lattice
center). Throughout the paper, we work in the strong
interaction regime U ≫ J =1, and use hardcore bosons
in the numerics unless otherwise stated. For large U
and α < 1/3, this model hosts a fractional Chern in-
sulator ground state [46–48], which is a lattice analog of
the ν = 1/2 bosonic Laughlin state. A cold-atom imple-
mentation of this model was realized using two bosons
in a box potential [24, 45], revealing signatures of the
Laughlin FQH state [24].

We start by reviewing the known properties of the FQH

edge spectrum. In the low-energy limit, the edge modes
of FQH states are described by a conformal field theory
(CFT), whose nature depends on the topological order
in the bulk [25, 36, 37]; for the Laughlin state consid-
ered in this paper, it coincides with the chiral Luttinger
liquid. This powerful bulk-edge correspondence can be
harnessed to identify FQH states from their low-energy
spectrum in a geometry with edges; indeed, the edge
spectrum reveals the universal counting of the CFT (the
number of low-energy edge states for each momentum
value). Extracting the edge spectrum is a non-trivial
task, even numerically, especially for the small lattices
accessible to numerics and experiments. Previous numer-
ical studies have shown that a gapless chiral edge mode,
whose counting matches the CFT expectation [34, 35],
could be extracted from the energy spectrum in the pres-
ence of a smooth confining potential. Interestingly, this
property is already present in two-boson systems, with
corrections to the CFT counting due to finite particle
number [35][50]. This is illustrated in Fig. 2(a), through
the low-energy spectrum of two bosons in the HBH model
in a weak harmonic trap. We use the eigenvalues of the
modified C4 rotation operator [51] as good quantum num-
bers to highlight the chirality of the edge spectrum. The
situation is different in a box potential: when the walls
of the box coincide with the edge of the FQH droplet,
the FQH ground state is gapped [13, 34], hence compli-
cating the study of edge excitations. When the walls
of the box are located far away from the droplet’s edge,
the low-energy spectrum is gapless. However, as shown
in Fig. 2(c), there is no structure permitting the extrac-
tion of the edge spectrum in this case. We now show
how chiral edge properties can nonetheless be extracted
in these relevant configurations, using a proper spectro-
scopic probe.

Optical spectroscopy — We propose to probe the FQH
edge spectrum by using two Laguerre-Gaussian (LG)
lasers, designed to induce a transition from the prepared
FQH ground state to low-energy edge excitations. This
transition involves a transfer of angular momentum l,
and energy ℏω, which are conveniently controlled by the
pair of LG beams [52] (see Fig. 1). This is in contrast
with the detection scheme of Refs. [31, 53], where the
dispersion relation is extracted through a Fourier trans-
form of the particle density following a quench. Such a
LG-driving scheme was initially proposed in Ref. [44] to
probe the edge spectrum of integer QH states. Beyond
the strongly-interacting nature of the FQH state treated
in this work, the small system sizes envisaged to realize
FQH states in experiments results in a highly discretized
spectrum. Our proposed scheme takes these key proper-
ties into account, and we discuss their consequences on
the resulting absorption spectrum.

Inspired by Ref. [44], we consider a spectroscopic probe
that results from the interference of two LG beams.
The LG modes are solutions of the cylindrical-symmetric
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wave equation, and take the following form

LG(r, θ) ∝
(
r

r0

)|l|

e
− r2

2r20 eiθl ≡ fl(r)e
iθl, (2)

where the integer l represents the quantum of orbital an-
gular momentum carried by each photon. As shown in
Fig. 1(b), such an optical mode has a spatial vortex struc-
ture, with a ring of maximum amplitude that can be ad-
justed to optimize the edge response. The interference of
two such LG beams, with frequencies ω1, ω2 and angular
momenta l1, l2, produces a time-periodic potential acting
on the atoms,

Ôl(t) = 2ϵ
∑
j

fl(rj) cos (ωt+ θj l) b̂
†
j b̂j , (3)

where j sums over the lattice sites, θj is the polar angle
at j, ω = ω2 − ω1 and l = l2 − l1. The strength of the
probe ϵ can be taken small enough to treat the driving
field within linear response.

To predict allowed transitions, we calculate the cou-
pling of the FQH ground state ψ0 to excitations ψn

through the LG drive, i.e. the coupling matrix elements

In =
∑
j

⟨ψn|fl(rj)eiθj lb̂†j b̂j |ψ0⟩ . (4)

We calculate the low-energy eigenstates of Ĥ for a sys-
tem of N = 2 hard-core bosons on a 10x10 lattice with
magnetic flux α = 1/8 using exact diagonalization (ED).
The corresponding low-energy spectrum and matrix el-
ements In are represented in Fig. 2 for a harmonic and
a box potential, respectively. In both cases, the matrix
elements exhibit a chiral branch at l < 0, and two iso-
lated gapped states at l = 1 and l = 2. We interpret
the gapless l < 0 branch as the chiral edge mode, in
agreement with the expectation that the sign of orbital
angular momentum injected by the probe should match
the chirality of the edge boson. Conversely, the l > 0 sig-
nal is interpreted as low-energy bulk excitations, which
could correspond to the magneto-roton mode [54]. While
the maximum value of |l| in the edge mode is dictated by
the lattice size (here, the 10x10 box), giving rise to a
large number of low-energy edge states, the number of
bulk magneto-roton excitations is equal to the number of
particles [55, 56] (see Appendix E). The analysis of den-
sity profiles (below in the main text and in Appendix D)
corroborates this interpretation of negative and positive
l states as edge and bulk states, respectively.
Interestingly, the LG probe identifies a chiral branch

even when no structure can be extracted from the low-
energy ED spectrum. This is illustrated in Figs. 2(c)
and (d), for a small droplet located within a large 10x10
box. This behavior originates from an approximate selec-
tion rule, associated with the approximate conservation
of the angular momentum l. While the discrete C4 rota-
tion symmetry of our lattice model guarantees the con-
servation of l modulo 4, in the continuum limit α ≪ 1,
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FIG. 2. Low-energy spectrum (a, c) and corresponding cou-
pling matrix elements (b, d) for a system of 2 hardcore bosons
in the HBH model at flux density α = 1/8, in a 10x10 box,
with (a, b) or without (c, d) a harmonic potential of strength
V0 = 0.01. While the presence of the harmonic potential is
necessary to distinguish the edge branch in the energy spec-
trum, the matrix elements In reveal the edge branch either
way. The numbers in (a) indicate the number of states in
each small “cluster”, which matches the CFT counting with
finite particle number correction. In some clusters, one of the
states [red dashed line in (b)] has a coupling amplitude 10
times smaller than the others.

the continuous rotation symmetry is recovered, leading
to the conservation of l. For a flux α = 1/8, coupling
matrix elements that satisfy the conservation of l mod 4
but not the conservation of l are two orders of magnitude
smaller than those that do. Even for the experimentally
relevant value α = 1/4, this ratio is larger than 40. See
Appendix A for more details on the influence of α on the
approximate conservation of angular momentum. Over-
all, the absorption spectra in Figs. 2(b) and (d) show
that the addition of a weak harmonic potential increases
the velocity of the chiral edge mode, such that its winding
becomes visible in the folded energy spectrum [Fig. 2(a)].

We have chosen the value r0 = 2 for the Gaussian
extension of the probe such that fl(r) remains non-zero
both in the bulk and a few magnetic lengths outside the
edge of the FQH droplet, at least for |l| ≤ 5. This is
a necessary condition for the corresponding matrix ele-
ments to be non-zero, due to the different density profiles
of the ground state and low-energy excited states, whose
spatial extension increases with increasing energy (see
Appendix D). Naturally, the optimal value of r0 depends
on the size of the droplet; in larger droplets, it is espe-
cially useful to optimize r0 for different values of l, taking
into account the respective edge and bulk nature of l < 0
and l > 0 states (see Appendix E).

Connection to the Harvard experiment — We now ap-
ply our spectroscopy protocol to the experimental setup
of Léonard et al. [24]. In this realization, where N = 2
interacting (U = 8.1J) bosons are confined to a 4x4 box
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FIG. 3. Absorption spectra for N = 2 interacting bosons
(U = 8.1J) on a 10x10 HBH lattice with flux α = 0.25, and
different trap configurations, keeping V0 = 0 in the central
4x4 portion of the lattice. (a) Harvard experiment configura-
tion [24], with infinite walls around the 4x4 box. The inset
shows the corresponding energy spectrum. (b-d) Harmonic
potential of respective strength V0=0.2, 0.1, 0.06. Upon low-
ering the potential in the outer box, the bulk gap (l=2 sig-
nal) increases, while the edge branch (l < 0) becomes gapless.
Note the presence of a weak spurious signal at l= 2, at the
same energy as the l=−2 edge signal, due to the imperfect
conservation of l in our lattice system.

with hard walls on the HBH lattice, a FQH ground state
was identified within a flux window 0.24 < α < 0.3. Fo-
cusing on α = 0.25, we show our probe’s matrix elements
for this experimental configuration in Fig. 3(a). The ab-
sorption spectrum is gapped, and the lowest energy ex-
citation appears at l = 2. These features are compatible
with the spectrum of a FQH state, whose edge mode is
gapped due to the small size of the box. To confirm this
interpretation, we release the FQH state into a 10x10
box, by lowering the potential strength in the outer box
from infinite to a harmonic potential of strength V0. The
corresponding absorption spectrum is displayed in Fig. 3,
with the trap shape drawn as an inset. Upon releasing
the walls of the 4x4 box, the l < 0 edge branch goes
down and becomes gapless, while the l = 2 bulk gap
state increases in energy. We have systematically studied
the effect of a change in box size on the absorption spec-
trum in Appendix C: generically, in a large box, the FQH
droplet recovers a gapless edge mode, and its bulk gap
increases until it reaches its thermodynamic value. Con-
versely, when the size of the box is reduced, the bulk gap
decreases and eventually closes, marking a phase transi-
tion. Overall, our calculations show that increasing the
size of the quantum-simulation box could permit the ob-
servation of a chiral gapless edge mode in ongoing exper-
iments, even in two-atom droplets.

Extracting the edge spectrum from in-situ density mea-
surements — We now show how to obtain the absorp-
tion spectrum studied in the previous paragraphs using
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FIG. 4. Time evolution of 2 hardcore bosons on a 10x10 HBH
lattice with flux α = 1/8 and a harmonic trap of strength
V0 = 0.01, upon a LG drive of amplitude ϵ = 0.05. (a) Exci-
tation fraction as defined in Eq. (5), for an injected angular
momentum l = −1. (b) Density variation at the edge and
at the bulk, for l = −1 angular momentum injected, at res-
onance ω = 0.03. (c) Increment of the density at the edge
evaluated at t∗ = 50ℏ/J (d) Chiral branch retrieved by the
protocol in the l < 0 region, up to l =−8. Dots (ωres) are
the resonance frequencies obtained by density measurements,
whereas the background color plot indicates the coupling ma-
trix elements.

observables accessible to cold atom experiments.
Let us first address the time-dependent behavior of the

excitation fraction:

Nl,ω(t) = 1− | ⟨ψ(t)|ψ0⟩ |2. (5)

Due to its well-defined angular momentum l, our LG
probe only couples the ground state to a handful of ex-
cited states at most, as observed in our numerical anal-
ysis of transition matrix elements In. As a result, the
LG drive induces an effective two-level coupling for each
value of l. Using unitary time-evolution of the FQH
ground state subjected to the LG drive, we numerically
observe Rabi oscillations, whose amplitude is maximal at
the resonance frequency ω = ωres; see Fig. 4(a).
We propose to detect the resonant excitations through

local density measurements, which are experimentally ac-
cessible using a quantum gas microscope [24, 45]. Indeed,
following the excitation of chiral edge states, we expect
that the density profile will change in order to populate
the external rings outside the bulk. We define the instan-
taneous density at the edge as

∆ρedge(t) =
∑

j∈edge

ρj(t)− ρj(0), (6)

where ρj is the local density on site j, and we have de-
fined the complementary bulk and edge regions [green
and purple regions in the inset of Fig. 4(b)] from the
density profile in the ground state (see Appendix D). The
time-dependent behavior of ∆ρedge(t), as obtained using
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numerical time-evolution is shown in Fig. 4(b), confirms
the migration of the particle density from bulk to edge
for a negative injected angular momentum. Figure 4(c)
shows the values of ∆ρedge at different probing frequen-
cies ω, taken after an observation time t∗ = 50ℏ/J : we
can clearly distinguish the resonance around ω = 0.03 for
l = −1. Iterating this procedure for different values of
the injected angular momentum l, we retrieve the chiral
edge spectrum in Fig. 4(d). We point out that a realistic
observation time t∗ ∼ 10− 100ℏ/J leads to a clear signal
∆ρedge(t

∗) ∼ 0.1−1, which can be detected in-situ using
a quantum gas microscope [24]. While our scheme is par-
ticularly well suited to detect edge resonances, we note
that it could be designed to probe the bulk (magneto-
roton) excitations at l > 0. We also verified the ability
of our protocol to detect edge signals in the experimental
configuration of Ref. [24]; see Appendix B.

Discussion — Our work indicates that the chiral edge
branch of atomic FQH droplets can be probed by mea-
suring the local density following a Laguerre-Gaussian
drive. Our method is especially well suited to probe
the few-atom droplets addressed by ongoing experiments,
and reveals the angular momentum resolved spectrum in
lattices with as few as 2 particles. We have verified the
validity of our results beyond this limit, for 3 or 4 parti-
cles, where we can still address very dilute systems (see
Appendix E). Overall, our results show that increasing
the lattice size beyond the small boxes realized so far in
experiments [24] would permit the extraction of a gapless
edge mode even in two-particle systems.

Beyond experimental purposes, the calculation of LG

matrix elements is a convenient theoretical tool to ex-
tract the angular momentum of energy states, especially
in lattice systems without continuous rotation symmetry.
It has allowed us to distinguish bulk and edge states even
when they are energetically mixed, to track the evolution
of the bulk gap and of the velocity of the edge branch
upon changing the confining conditions.
Finally, our method is promising in view of identify-

ing the fractional statistics of anyonic excitations from
edge signatures (see also Ref. 18). Indeed, we have found
that the number of states detected by our LG probe for
each value of the angular momentum l matches the CFT
counting for a free chiral boson (with corrections due to
the small particle number [35]), which is expected to de-
scribe the edge of a Laughlin droplet. We note, however,
that longer probing times will be needed to resolve the
resonances occurring at the same l, since they are very
close in energy. Moreover, some of the non-zero matrix
elements have a very small amplitude (10 to 100 times
smaller than the maximal signal), which could impede
their detection. We leave to future work the optimiza-
tion of the microscopic model and probe shape in view of
resolving the universal CFT counting of FQH droplets.
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100, 053624 (2019).

[12] B. Michen, C. Repellin, and J. C. Budich, Phys. Rev.
Res. 5, 023100 (2023).

[13] C. Repellin and N. Goldman, Phys. Rev. Lett. 122,
166801 (2019).
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SUPPLEMENTARY MATERIAL

Appendix A: Influence of lattice effects on angular
momentum selection rules

In the continuum, the conservation of continuous rota-
tion symmetry results in a selection rule for the coupling
matrix elements In defined in Eq. (4), which would allow
the detection of a chiral edge branch with unbounded an-
gular momentum in the absorption spectrum. In a square
lattice with discrete rotation symmetry, in principle,
we expect non-zero matrix elements In = ⟨ψL′ |Ôl|ψL⟩
whenever L′ = L + l(mod)4, where L and L′ ∈ Z4 are
the rotation eigenvalues of two Hamiltonian eigenstates.
Yet, as we have observed in the main text, many matrix
elements satisfying this discrete rotation selection rule
are negligible. This reveals the approximate continuous
rotation symmetry, which becomes exact in the contin-
uum limit α≪ 1 of the Hofstadter Hamiltonian. To fur-
ther illustrate this phenomenon, we show the evolution of
matrix elements upon increasing the flux from α = 0.12
to α = 0.22 in Fig. 5. We note that the ground state
remains a FQH state across this magnetic flux range, as
denoted by the visible chiral edge branch at l < 0 and
bulk gap at l = 2. Figure 5(e) shows the sum over ex-
cited states of the l = −1 matrix elements; it highlights
the increase in amplitude of the spurious signal associ-
ated with l = −1+4p, where p is a non-zero integer (the
biggest contribution comes from l = −5, as is visible in
Fig. 5(d)).

Appendix B: Time-dependent density measurements
in the Harvard-experiment configuration

In the main text we presented the absorption spectra
related to the experimental setup of Ref. [24]. We now ap-
ply our time-dependent protocol to test its robustness in
real scenarios. We show again the absorption spectrum in
the experimental configuration in Fig. 6(a) but this time
on an extended energy scale. We note the presence of
spurious states, associated with the imperfect conserva-
tion of angular momentum l in this small lattice system.
For example, the low-energy state previously identified
as the bulk gap is present with its largest matrix element
at l = 2, but it is also visible (with a much smaller am-
plitude) at l = −2 and l = ±10. We might then worry
that this spurious bulk signal at l = −2 might obfuscate
the extraction of the edge spectrum. Fortunately, our
time-dependent density measurement protocol easily dis-
tinguishes edge and bulk signal, as is shown in Fig. 6(b),
since the bulk-to-edge density transfer only occurs when
the LG probe couples the ground state to an edge state.
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FIG. 5. (a-d) Coupling matrix elements of the LG probe
for a system of N = 2 bosons on a harmonically trapped
(V0 = 0.01) 10x10 lattice with different flux densities α. The
LG beam has a radius r0 = 2. (e) Sum of matrix elements in
the sectors l = −1 as a function of the flux density, excluding
the red-circled, lowest energy state.
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FIG. 6. (a) Absorption spectrum for N = 2 bosons on a
4x4 lattice with hard walls (V0 = 0), for a flux density α =
0.25 and on-site interaction U = 8.1J . The laser beam has a
radius r0 = 2. (b) Bulk to edge density transfer, as retrieved
through the time-dependent protocol explained in the main
text, probing the l = −2 sector of the absorption spectrum
in (a), showing the absence of bulk to edge transfer below
ω ≃ 0.4

Appendix C: Exploring the dilute to dense transition

In the main text we showed how a gapless edge mode
can be detected in the absorption spectrum when we have
a sufficiently dilute system (i.e. when the simulation box
is larger than the FQH droplet). On the other hand we
have seen how the chiral branch becomes gapped if the
box size nearly coincides with the size of the FQH droplet,
as in the experimental configuration [24] involving N = 2
bosons in a 4x4 box.
In Fig. 7, we show additional data illustrating this phe-
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FIG. 7. (a)-(d) Absorption spectra for different lattice size,
in the case of N = 2 bosons and a flux density α = 0.125,
in a harmonic trap (V0 = 0.01) and a LG radius r0 = 2. We
observe a transition to a trivial phase for a 5x5 lattice (not
shown).

nomenon, for hard wall boxes of different sizes, a droplet
of N = 2 bosons and a confinement potential of strength
V0 = 0.01, with a flux density α = 0.125. We observe the
chiral branch becoming steeper as the number of sites de-
creases, and the bulk gap (as tracked through the l = 2
signal) decreasing accordingly. The closure of the bulk
gap occurs between the 6x6 and the 5x5 boxes. We have
verified that the ground state in the 5x5 box is a triv-
ial state, which is adiabatically connected to the infinite
trap limit (particles confined to the central site of the
lattice).

Note that Fig. 5 illustrates the same phenomenon:
there, the size of the FQH droplet changes, while the
box size does not. As α decreases, the radius of the FQH
droplet increases (so that the density in the bulk satis-
fies Streda formula [14]), which results in a steeper edge
mode and smaller bulk gap.

Appendix D: Local density patterns

Here, we show the local density of the ground state and
edge excitations in our model. We consider N = 2 bosons
on a 10x10 square lattice with flux density α = 0.125,
confined in a harmonic trap of strength V0 = 0.01. The
ED spectrum in this configuration was shown in the main
text, and is reproduced in Fig. 8(a). The eigenstates
considered for the calculation of the density are marked
with coloured dots. The ground state density profile in
Fig. 8(b) shows a FQH droplet mostly confined to the
center square, whereas the density of the excited states in
Fig. 8(c)-(e) is more spread out. This behaviour explains
the success of our detection protocol based on density
measurement.
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FIG. 8. (a) Energy spectrum for N = 2 bosons in a 10x10
lattice, for a flux density α = 0.125 and a harmonic trap of
strength V0 = 0.01. The four coloured dots represent the
state considered for the local density calculations in the next
panels. (b) Local density profile of the ground state. (c)-(e)
Local density profiles of three different excited states.

Appendix E: Absorption spectra for N = 3, 4
particles: chiral branch and magneto-roton mode

We now verify the validity of our protocol in systems
with N = 3 and N = 4 particles, which are amenable
to ED calculations in a lattice of respective size 10x10
and 8x8. A gapless edge branch requires the walls of the
simulation box to lie sufficiently far outside of the FQH
droplet, which prevents us from addressing systems with
more than 4 particles with ED. For N = 3, we have used
a flux density α = 1/8, while for N = 4, we have used a
larger value α = 1/5 to decrease the radius of the FQH
droplet in this smaller box. In Fig. 9, we can identify the
chiral edge branch in the l < 0 region, in both cases. Let
us now focus on the bulk excitations in the l > 0 region.
We find a low-energy mode with a cut-off at lmax = N ,
in agreement with our interpretation of this branch as
the magneto-roton mode [55, 56].

The size of the FQH droplet scales with the number
of particles N , so it is reasonable to expect an optimized
chiral response by increasing the LG beam radius r0 com-
pared to the N = 2 case of the main text. In Fig. 9(a,c)
the edge states are probed with the same r0 = 2.5. Note
that in order to emphasize the bulk response, it is useful
to adjust the value of r0 to the value of injected angu-
lar momentum l; specifically, we tuned r0 = 2.0 in order
to have low-angular momentum injections acting mostly
in the bulk region. This is especially important in sys-
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FIG. 9. Absorption spectra at different LG beam radii r0 for
N = 3 bosons in a 10× 10 lattice with a flux density α = 1/8
(a,b) and N = 4 bosons in a 8× 8 lattice with a flux density
α = 1/5 (c,d) trapped in a harmonic potential of strength
V0 = 0.01. We emphasize the chiral branch in the l < 0
region when r0 = 2.5 for N = 3, 4 particles (a,c), whereas we
show the emergent magneto-roton mode in the l > 0 region
when the LG beam is acting deep in the bulk for low l values,
namely when r0 = 2 for N = 3 (b) and r0 = 1.5 for N = 4
(d).

tems where the FQH droplet is larger (larger number of
particles in particular).
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