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We explore the quasi-one-dimensional (thin torus, or TT) limit of fractional Chern insulators (FCIs) as a
starting point for their adiabatic preparation in quantum simulators. Our approach is based on tuning the hopping
amplitude in one direction as an experimentally amenable knob to dynamically change the effective aspect ratio
of the system. Similar to the TT limit of fractional quantum Hall systems in the continuum, we find that the
hopping-induced TT limit adiabatically connects the FCI state to a trivial charge density wave (CDW) ground
state. This adiabatic path may be harnessed for state preparation schemes relying on the initialization of a CDW
state followed by the adiabatic decrease of a hopping anisotropy. Our findings are based on the calculation of
the excitation gap in a number of FCI models, both on a lattice and consisting of coupled wires. By analytical
calculation of the gap in the limit of strongly anisotropic hopping, we show that its scaling is compatible with the
preparation of large-size FCIs for sufficiently large hopping anisotropy, where the amenable system sizes are only
limited by the maximal hopping amplitude. Our numerical simulations in the framework of exact diagonalization
explore the full anisotropy range to corroborate these results.

DOI: 10.1103/PhysRevResearch.5.023100

I. INTRODUCTION

Topologically ordered systems exhibit fascinating phenom-
ena, such as fractionalized excitations with exchange statistics
beyond bosons and fermions. Their defining feature is the
absence of any adiabatic path connecting them to conventional
phases of matter. In the field of quantum simulation, this
renders the preparation of paradigmatic topologically ordered
states, e.g., fractional quantum Hall (FQH) states [1–6], a
profound and salient challenge. There, a common strategy is
the quasiadiabatic preparation of a FQH state from a well-
controlled initial state through coherent time evolution [7–13].
However, this approach relies on a finite-size gap opening at
the phase transition between the trivial and the topological
state and is therefore fundamentally limited to small systems.

Interestingly, considering a change of the spatial dimen-
sion enables an adiabatic path between a two-dimensional
(2D) FQH phase and a one-dimensional charge density wave
(CDW). Specifically, when continuously decreasing the length
of the system along one direction, a FQH ground state may
continuously evolve into a CDW while maintaining a finite
energy gap [14–21]. In this one-dimensional limit of the FQH
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problem known as the thin-torus (TT) limit, the CDW has no
topological order and is well approximated by a product state
(along the long direction) of single-particle plane waves (in
the short direction). FQH states also exist in lattice systems
under the name “fractional Chern insulators” (FCIs) [22–24],
and so do CDWs in the TT limit [25–27]. Yet, a potential
adiabatic connection between FCI and CDW is not guaranteed
and may depend on the underlying lattice model.

In this paper, we propose and investigate a preparation
scheme of FCI states that is based on their adiabatic con-
nection to a CDW in an effective TT limit (see Fig. 1 for
an illustration). The key principle of our approach is to ef-
fectively modify the spatial dimension of the system without
changing its actual physical geometry. Concretely, we tune the
ratio of intersite couplings (kinetic energy) along the x and
y directions, which acts as a proxy for the system’s aspect
ratio [27,28]. To gauge the practicability of this general ap-
proach, we apply it to a number of different models that are
accessible to state-of-the-art experimental platforms. Using
numerical exact diagonalization (ED), we show the existence
of an adiabatic path between a one-dimensional CDW and the
ν = 1/2 bosonic Laughlin state in the semidiscrete coupled
wire [29,30] model, as well as the Harper-Hofstadter-Hubbard
[31,32] model in well-chosen geometries. Importantly, the
many-body gap always increases along this path; its minimal
value is reached in the CDW phase and does not depend on
system size, as shown by our analytical calculations of the gap
in the TT limit. Our results provide a generic recipe for the
preparation of FCI states in quantum simulators, where the
platform-dependent limiting factor regarding the amenable
system sizes is given by the range in which the stronger
coupling can be tuned experimentally.

2643-1564/2023/5(2)/023100(16) 023100-1 Published by the American Physical Society

https://orcid.org/0000-0002-0704-6955
https://orcid.org/0000-0003-2420-6815
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023100&domain=pdf&date_stamp=2023-05-15
https://doi.org/10.1103/PhysRevResearch.5.023100
https://creativecommons.org/licenses/by/4.0/


MICHEN, REPELLIN, AND BUDICH PHYSICAL REVIEW RESEARCH 5, 023100 (2023)

FIG. 1. Illustration of the adiabatic path from an effectively one-
dimensional charge density wave state (top) to a two-dimensional
fractional Chern insulator state (bottom) in an array of quantum wires
coupled by a tunable hopping Jx (t, y) = J (t )eiφy (see Sec. III B). In
particular, a ν = 1

2 Laughlin phase may adiabatically form in the
presence of contact interactions upon reducing J from a large value
towards a moderate value J/ER ≈ 1. The magnetic recoil energy ER

and J (t ) represent the kinetic energy scale along the continuous and
discrete directions, respectively.

The remainder of this paper is structured as follows. In
Sec. II, we briefly review the TT limit of the continuum FQH
problem. In Sec. III, we provide an asymptotic treatment of
the TT limit as reached through strongly anisotropic coupling
in various models with at least one discrete spatial direc-
tion. Specifically, we demonstrate the formation of a CDW
and derive analytical estimates for the excitation gap in the
interacting semidiscrete coupled wire [29,30] and Harper-
Hofstadter models. We also extend the Kapit-Mueller model
[33] to incorporate anisotropic couplings and show that it
undergoes a band gap closing upon increasing the anisotropy,
which precludes an adiabatic connection between FCI and
CDW ground states. In Sec. IV, we corroborate our analytical
results by demonstrating the adiabatic transition between the
FCI and the CDW phases through ED simulations using the
full coupling anisotropy range. Finally, we present a conclud-
ing discussion in Sec. V.

II. SYNOPSIS OF THE THIN-TORUS LIMIT
IN THE CONTINUUM

We start with a brief review of the TT limit of the fractional
quantum Hall effect in the continuum. The FQH effect origi-
nates from the effect of a magnetic field on a two-dimensional

gas of interacting charged particles. It is observed in 2D elec-
tron gases in solid state physics but may also emerge in a
rotating ultracold gas of neutral bosons, where the effect of
a magnetic field is emulated by the Coriolis force [34–37].
Although this paper focuses on bosonic systems, this sec-
tion applies equally well to fermions; we adopt the traditional
notations of solid state physics for simplicity.

The single-particle eigenstates of a free-particle gas in a
perpendicular magnetic field B form extensively degenerate
Landau levels that are separated by a gap �B = h̄ eB

m . Their
degeneracy per area is the number of flux quanta Nφ piercing
that area. In the Landau gauge A = (By, 0, 0), the eigenstates
of the lowest Landau Level (LLL) take the form �LLL

kx
(x, y) =

eikxxe−(y+kxl2
B )2/(2l2

B ) with the magnetic length lB =
√

h̄
eB and kx

being the momentum along the translation invariant x direc-
tion. To avoid boundary considerations in a finite system,
we consider the torus geometry with dimensions Lx × Ly

and magnetoperiodic boundary conditions (MPBCs) �(x +
mxLx, y + myLy) = eiφmyLyx�(x, y) ∀mx, my ∈ Z . The consis-
tency of the MPBCs requires an integer number of flux quanta
Nφ = BLxLy

2π
. Then, the LLL is spanned by Nφ single-particle

states �LLL
n , n = 0, 1, ..., Nφ − 1, which are still localized

with a Gaussian decay length lB along the y direction and pos-
sess a well-defined momentum kx proportional to the orbital
index n [38,39].

We consider a generic two-body interaction V (|r|), which
falls off with increasing distance |r| between a pair of par-
ticles, where r is their relative coordinate. As long as the
gap �B between Landau levels is large enough compared
with the interaction strength, one may treat the FQH problem
entirely in the lowest Landau level (LLL) by projecting the
interaction. The following discussion is most intuitive for the
case of an infinite cylinder, i.e., finite Lx and Ly → ∞, but
it can be generalized to the torus [17,20]. For the infinite
cylinder, the LLL eigenfunctions can be taken as the same
�LLL

kx
as for the free system, but with discretized momenta

kx ∈ (2π/Lx )Z, such that the orbitals of the lowest band are

arranged in discrete steps of a = 2π l2
B

Lx
along the y direction.

The projected interaction (which we indicate from now on by
a tilde on the operator) can be brought to the form

H̃I =
∑
i, j,m

e−m2(πa/Lx )V m
i− jc

†
i c†

j c j+mci−m, (1)

where the field operators c j are labeled by the orbital index j
of the lowest band, yielding a one-dimensional problem with
lattice constant a [40]. The V m

i− j describe the pair-hopping
amplitude for two particles hopping m orbitals to the left and
right, respectively, and depend on the distance i − j of the
target orbitals and the hopping distance m. Using the Fourier
components V (|r|) = ∑

m V m(y)eim 2π
Lx

x of the interaction po-
tential, they can be written as

V m
s = 1√

8π

∫ ∞

−∞
dye− π

aLx
(y−(s−m)a)2

V m(y). (2)

Note that the conservation of the orbital index i + j in Eq. (1)
amounts to total x-momentum conservation due to translation
invariance [40].
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In the limit Lx → 0 of a thin cylinder, the m �= 0 terms in
Eq. (1) are exponentially damped such that we only retain the
electrostatic repulsion terms V 0

i− j between the orbitals of the
LLL, which decay with orbital distance i − j due to the finite
range of V (|r|). The projected interaction thus reduces to a
repulsive electrostatic potential that decays rapidly with dis-
tance for Lx → 0, and a FQH ground state at fractional filling
of the LLL will generally evolve into a CDW minimizing the
electrostatic repulsion [5,40].

For the torus case where Ly is finite, the TT limit is
defined as the limit of small aspect ratio Lx/Ly, taken for
constant B and area LxLy to preserve the integer number of
flux quanta Nφ . Since the LLL eigenfunctions on the torus
are still strongly localized along the y direction, the projected
interaction reduces to an electrostatic repulsion in the TT
limit as well, and the ground state at fractional filling of the
LLL transitions into a CDW [17,20], whose excitation gap
has been calculated analytically [41]. This transition has been
conjectured to be adiabatic, as is supported by all numerical
evidence so far [14–20]. In the following, we will investigate
how the counterpart to this well-studied TT limit may be
effectively achieved experimentally in systems with at least
one discrete spatial direction by tuning the anisotropy of the
kinetic energies rather than changing the geometry of the
system.

III. FRACTIONAL CHERN INSULATORS IN THE
THIN-TORUS LIMIT FROM HOPPING ANISOTROPY

Fractional Chern insulators (FCIs) are lattice analogs of
FQH states, whose stability in numerous lattice models has
been demonstrated analytically and numerically [22,23]. They
represent a promising alternative to the continuum model
presented in the previous section in view of preparing FQH
states in engineered quantum platforms. CDWs also emerge
in the one-dimensional limit of FCI models [25–27], obtained
by reducing the number of lattice legs, but the behavior of the
many-body gap across this dimensional transition is unknown.
In this section, we reach the TT limit of three discrete or
semidiscrete models by tuning the ratio of coupling energies
along the x and y directions. Thanks to an asymptotic treat-
ment, we demonstrate the emergence of a CDW ground state
and derive an analytical expression for the many-body gap in
the TT limit for two of them.

A. Road map

We consider three different lattice models: the coupled
wire (CW) [29], Harper-Hofstadter [31], and Kapit-Mueller
[33] models, which all have a lowest band with a Chern
number C = 1. We fix the number of bosons such that the
filling fraction in the lowest band is ν = 1/2, and we turn
on contact two-body interactions of amplitude U . This type
of interaction is relevant in ultracold-atom experiments, since
bosons experience s-wave scattering. In the isotropic limit,
with well-chosen kinetic parameters, these conditions lead to
the emergence of a FCI ground state akin to the Laughlin
1/2 state in all three models, as shown in previous numerical
studies [30,32,33,42–44].

FIG. 2. Qualitative phase diagram for the coupled wire model
[Eqs. (3) and (5)]. Tuning the amplitude J of the interwire coupling
between moderate values comparable to the magnetic recoil energy
ER and very large values J 	 ER induces a phase transition between
a topological FCI phase (red) and a trivial CDW (gray). J and
ER represent the kinetic energy scale along the x and y directions,
respectively. The Harper-Hofstadter model [Eqs. (8) and (9)] yields
a similar phase diagram for certain geometries, where the hoppings
Jx and Jy take the roles of J and ER, respectively.

To reach the effective TT limit of a lattice model, we tune
the anisotropy of the kinetic energies following the intuition
that in a nearest-neighbor tight-binding model, the ratio Jx

Jy
of

hopping constants scales with the ratio of lattice constants as
ay

ax
∝

√
Jx
Jy

(see Appendix A for a first-principles derivation). In

turn, when tuning the ratio Jx
Jy

externally, the effective aspect

ratio of the system should scale as Ly

Lx
∝

√
Jx
Jy

. In our setting

the kinetic energy scale in the y direction is fixed, whereas
the hopping strength Jx in the x direction is assumed to be
tunable to adiabatically change the effective aspect ratio of
the lattice setup by changing the effective distance between
the legs. In state-of-the-art experiments on ultracold atoms
trapped in optical potentials, the hopping Jx may be realized
as a photon-assisted tunneling process and is thus naturally
tunable [45,46].

In the effective TT limit of Jx 	 Jy, we expect a strong
analogy between lattice and continuum models. Namely, we
expect the single-particle orbitals of the lowest band to expe-
rience an increasingly tight Gaussian localization along the
weak coupling direction, accompanied by the suppression
of the overlap between neighboring orbitals and in turn the
emergence of a CDW ground state.

The coupled wire model and the Harper-Hofstadter model
are found to behave this way and permit an approach similar
to the continuum approach reviewed in Sec. II: After pro-
jecting the interaction Hamiltonian onto the lowest band, we
derive the effective 1D Hamiltonian in the TT limit, explicitly
show the emergence of a CDW ground state, and calculate its
excitation gap analytically. Figure 2 summarizes these results
in a qualitative phase diagram.

B. Coupled wires with tunable hopping

An array of coupled quantum wires with a synthetic per-
pendicular magnetic field provides a semidiscrete setup [29]
to realize FCI phases and is within reach of current experi-
mental methods using cold atoms in optical lattices [30]. The
synthetic magnetic field is realized by the Peierls phase eiφy

of the interwire hopping Jx(y) = Jeiφy, such that a system of
Nx discrete wires is pierced by a number NxNy of magnetic
flux quanta. This defines the magnetic length lB = 2π

φ
as the
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relevant length scale, and the wire length is NylB. The nonin-
teracting Hamiltonian for atoms of mass m takes the form

HCW
0 =

∑
x

∫ NylB

0
dy

[
�†

x,y

p̂2
y

2m
�x,y

+ (Jx(y)�†
x,y�x+a,y + H.c.)

]
, (3)

where a is the distance between wires. The relevant energy
scale of the problem is given by the magnetic recoil energy
ER = h̄2φ2

2m . We use periodic boundary conditions (PBCs),
which imposes Ny ∈ N. Starting from the decoupled limit
and increasing the coupling J results in changes to the
single-particle properties, which favor the emergence of a
FCI ground state: The lowest band flattens, the associated
Berry curvature becomes more homogenous, and the band gap
increases. Consequently, around J/ER ≈ 1, the many-body
ground state in the presence of contact interactions is a FCI
in the Laughlin phase, as numerically confirmed in Ref. [30].
Further increasing the interwire coupling, the limit J/ER 	 1
corresponds to the effective TT limit outlined in Sec. III A.

We now project the contact interaction onto the lowest
band of the coupled wire model HCW

0 , assuming that the
interaction strength U is small compared with J . This approx-
imation becomes increasingly accurate in the TT limit, and a
gap closing above the lowest band only occurs for J = 0.

We start by deriving the eigenfunctions of Eq. (3)
in the limit of large J . Generally, the separation ansatz
ϕkx (x, y) = eikxx f (y) leads to the kx-dependent eigenvalue
equation [− h̄2

2m ( d
dy )2 + 2J cos(φy + kxa)] f (y) = E f (y) for

the y component of the wave function. For large J , the cosine
potential can be approximately treated like a harmonic poten-
tial by expanding it up to quadratic order; the lowest-energy
eigenfunctions are then Gaussians centered in the minima.
This yields a mixed real-momentum space Wannier basis [47]
for the lowest band of Eq. (3) spanned by the discretized
versions of the LLL wave functions in the Landau gauge, i.e.,
up to normalization

ϕn,kx = eikxxe−
√

J/ER
2 (φ(y−yn )−kxa)2

(4)

with yn = (2n − 1)π
φ

, n = 1, 2, . . . , Ny, with a constant spac-

ing of �y = lB
Nx

between the centers of neighboring orbitals.
Before projection, the contact interaction in this semidiscrete
setup reads

HCW
I = U

∑
x

∫ NylB

0
dy�†

x,y�
†
x,y�x,y�x,y. (5)

The projection of HCW
I follows immediately from the above

eigenfunctions ϕn,kx . Indeed, a single field operator is pro-
jected through its expansion in the single-particle basis,
dropping all terms but those in the lowest band, such that
�̃†

x,y = ∑
n,kx

ϕn,kx (x, y)c†
n,kx

in the limit of large J . Addi-
tionally, the projection of a normal ordered string of field
operators is just the string of the individual projections. Car-
rying out the sum over x by using the orthogonality relation of
plane waves, and performing the Gaussian integral over y, we

obtain (see Appendix B for details)

H̃CW
I = U

lB

√
τ

π

∑
i, j,m

e−τ (m2+( j−i−m)2 )c†
i c†

j c j+mci−m, (6)

where τ = 2
√

J/ER(π/Nx )2 is a dimensionless measure of
the hopping anisotropy. The field operators cn,kx have been
relabeled with the index j ∈ {1, 2, . . . , NxNy} reflecting the
arrangement of the orbitals along the y direction, similar to
the continuum FQH problem [cf. Eq. (1)], leaving us with a
one-dimensional problem of lattice constant �y.

Equation (6) is generally justified for J large enough to
localize the eigenstates in the valleys of the cosine poten-
tial, which happens independently of the number of wires
Nx. If now J is increased further to yield large values of τ ,
we can truncate H̃CW

I to first order in e−τ . The projected
Hamiltonian thus reduces to a 1D lattice model with nearest-
neighbor density-density interaction, leading to the emergence
of a CDW at half filling ν = 1/2. The excitation gap above
this ground state can also be inferred from the truncated
Hamiltonian in Eq. (6). The low-energy excitations consist
of configurations with two particles on neighboring sites; the
excitation gap is thus

�
CW = 4

U

lB

√
τ

π
e−τ . (7)

The expression of the gap depends explicitly on the number
of wires Nx and on the coupling strength J through the di-
mensionless parameter τ ; yet the gap in the TT limit does not
depend on system size at a given τ . Indeed, according to our
expansion of the projected Hamiltonian HCW

I [cf. Eq. (6)], the
transition to the TT regime is controlled by the value of τ ,
independently of system size.

In conclusion, we expect the formation of a CDW in the
coupled wire model at a fixed value τTT of the anisotropy pa-
rameter τ = 2

√
J/ER(π/Nx )2, with an excitation gap �CW =

4U
lB

√
τTT
π

e−τTT independent of system size. In Sec. IV, we will

present numerical calculations confirming this intuition and
indicating that the transition happens around e−τTT ≈ 0.2, with
a finite excitation gap of �CW

TT = 0.8U
lB

√
π

√
ln(5).

C. The anisotropic Harper-Hofstadter model

We now turn to the fully discrete Harper-Hofstadter-
Hubbard (HH) model [31,32], which was implemented
in cold-atom experiments [48,49] and is considered as
a candidate for the realization of FCI states of cold
atoms [9–12,32,42–44,49]. The HH model consists of a
square lattice with nearest-neighbor hopping and a uni-
form magnetic flux per plaquette 2πφ implemented through
Peierls substitution. The kinetic part of the Hamiltonian
reads

HHH
0 = −

∑
m,n

[Jxein2πφc†
m+1,ncm,n + Jyc†

m,n+1cm,n + H.c.],

(8)

where c†
m,n creates a boson on site (m, n), and the amplitudes

of hopping terms along the x, y directions Jx, Jy are tuned
to navigate between the isotropic (Jx = Jy) and TT (Jx 	 Jy)
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limits as explained in Sec. III A. We focus on fluxes φ = 1
n

with n ∈ N and periodic boundary conditions (PBCs), such
that the magnetic unit cell consists of 1

φ
lattice sites along the

y direction. We call Nx, Ny the number of unit cells along the
x, y directions. The contact interaction of strength U is written
as

HHH
I =U

2

∑
m,n

c†
m,ncm,n(c†

m,ncm,n − 1). (9)

In the isotropic limit, for sufficiently low flux φ � 1/3, nu-
merical simulations [32,42–44] have established that the HH
model with strong contact interactions hosts a FCI at bosonic
filling factor ν = 1/2. Reference [10] noted the existence of
a continuous phase transition to a trivial state in the limit of
decoupled wires (Jy = 0), accompanied by a gap closing and
reopening at intermediary Jx or Jy. A fundamental difference
between the approach of Ref. [10] and the approach presented
here is that the scheme of Ref. [10] relies on a finite-size gap.
Without contradicting the findings of Ref. [10], we find that
for some well-chosen geometries, it is possible to reach the
TT limit continuously without closing the many-body gap, as
we explain below.

We first notice an important single-particle property of the
HH model: In contrast to the CW model, the lowest band
does not necessarily become perfectly flat upon reaching the
TT limit Jy/Jx → 0. Indeed, in the TT limit, the HH model

reduces to a set of decoupled wires with dispersion En(kx ) =
−2Jx cos(kx − n2πφ) on the nth wire. The bandwidth of the
lowest band then depends on the discretization of the mo-
menta kx, and perfect flatness is only achieved for a system
length Nx = 1

φ
in units of the lattice spacing (or any divisor

of 1
φ

). In a generic geometry, the finite kinetic energy in the
lowest band thus competes with the interaction, which can
give rise to additional phase transitions and many-body gap
closings, as we will show in the numerical section (Sec. IV).
To avoid these complications, we restrict our analytical treat-
ment of the HH model’s TT limit to Nx = 1

φ
.

For a lattice geometry Nx = 1
φ
, Ny, the gap to the second

band of the HH model in the TT limit is

�band = 4Jx sin(πφ)2; (10)

see Appendix C for details. For a large enough band gap
�band, the interaction Hamiltonian HHH

I can be projected
to the lowest band of the single-particle Hamiltonian HHH

0 .
For this, we expand the field operators in the Bloch basis
as c j,α = 1√

NxNy

∑
k eik j ∑

β uα,β (k)γk,β , where uα,β (k) is the

unitary matrix that contains the eigenvectors of the Bloch
Hamiltonian HHH

0 (k). The general expression of the projected
Hamiltonian is then obtained by normal-ordering and drop-
ping all terms but those with β = 1 as

H̃HH
I = U

2NxNy

∑
k1,k2,k3

⎡
⎣ 1/φ∑

α=1

u∗
α (k1)u∗

α (k2)uα (k3)uα (k1 + k2 − k3)

⎤
⎦γ

†
k1

γ
†
k2

γk3γk1+k2−k3 , (11)

where we have dropped the subscript β.
We now conduct a perturbative analysis of the projected

Hamiltonian equation (11) in the TT limit for geometries
where Nx = 1

φ
, Ny = 1, which corresponds to a square lattice

of 1
φ

× 1
φ

individual sites. For Jy

Jx
→ 0, the HH model reduces

to a set of decoupled wires, and therefore uα (k) = δα,nx with
nx being the nearest integer to kx

2πφ
(see Appendix C for

more details). As a result, Eq. (11) reduces to an on-site
density-density interaction independently of the system ge-
ometry. For increasing Jy

Jx
, we expect the eigenstates uα (k)

to spread out over more wires, so that longer-range terms
will gradually appear in Eq. (11). To investigate this be-
havior for the geometry of Nx = 1

φ
, Ny = 1, we use the

hopping ratio Jy

Jx
as a perturbative parameter and express

uα (kx ) using nondegenerate perturbation theory up to linear
order

uα (kx, Jy/Jx ) = A1(Jy/Jx )[δα,nx − Jy/JxA2(δα,nx+1 + δα,nx−1)],

A1(Jy/Jx ) = (1 + 2(Jy/Jx )2(A2)2)−
1
2 ,

A2 = (4 sin(πφ)2)−1. (12)

This allows for an expansion of Eq. (11) as H̃HH
I =

UA4
1φ

2 (hden + h1)+O(J4
y /J4

x ), where

hden =
∑

kx

[
γ

†
kx
γkx γ

†
kx
γkx

+ 8(Jy/Jx )2(A2)2γ
†
kx
γkx γ

†
kx+�kx

γkx+�kx

]
,

h1 =
∑

kx

2(A2)2(Jy/Jx )2
[
γ

†
kx
γ

†
kx
γkx−�kx

γkx+�kx
+ H.c.

]
. (13)

We can further simplify the projected Hamiltonian us-
ing degenerate perturbation theory in the TT limit. For Jy =
0 (and half filling ν = 1/2 of the lowest HH band), the
degenerate ground-state manifold of H̃HH

I consists of all con-
figurations where at most one particle sits in each orbital. It is
separated by a gap of order 1 from the lowest-energy excited
states, consisting of all combinations with two particles in
one of the orbitals. Since this gap is large compared with
J2

y

J2
x
, it is possible to diagonalize H̃HH

I within the degenerate

ground-state manifold for small Jy

Jx
. Conveniently, all matrix

elements of h1 vanish within this subspace, and we are left
with only hden. The ground state of hden at half filling is a
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CDW, and the first excited state is formed by putting one pair
of particles in neighboring orbitals.

In conclusion, the ground state of the HH model in the TT
limit is a CDW, with an excitation gap

�HH =4Uφ
J2

y

J2
x

[A1(Jy/Jx )]4(A2)2, (14)

where A1 and A2 are the dimensionless parameters defined in
Eq. (12). Following a reasoning similar to Sec. III B, we ex-

pect the formation of the CDW state at a fixed value of
J2

y

J2
x

(A2)2

independent of system size [cf. Eq. (13)]. Our numerical data
(see Sec. IV) indicate that this happens around a hopping
ratio of Jy

Jx
≈ π2φ2. The corresponding excitation gap will be

finite with a value evaluated from Eq. (14) as �HH
TT ≈ Uφ

4 . For
further details on the derivations of the results in this section,
please refer to Appendix C.

D. The anisotropic Kapit-Mueller model

Finally, we consider an anisotropic version of the Kapit-
Mueller (KM) model [33]. In the isotropic limit, the KM
model with bosons at filling ν = 1/2 interacting through a
contact interaction provides an exact parent Hamiltonian to
the Laughlin wave function [33]. Here, we demonstrate how
the hopping amplitudes can be manipulated to tune the effec-
tive aspect ratio of the system while keeping Laughlin’s wave
function as the exact many-body ground state. However, in our
anisotropic KM model, the closing of the band gap prevents
the adiabatic connection between the Laughlin state and a
CDW state, in contrast to the coupled wire and HH models
discussed above.

The KM model takes the form

HKM
0 =

∑
j,k

j �=k

J (z j, zk )c†
j ck (15)

with complex notation z j = x j + iy j , x j ∈ N, y j ∈ N, and

J (z j, zk ) =W (z)e
π
2 (z j z∗−z∗

j z)φ,

W (z) = tG(z)e
−π
2 (1−φ)|z|2 ,

G(z) = (−1)x+y+xy, (16)

where z = zk − z j is the distance between the connected sites
and t = 1 in the following. For any flux 0 < φ < 1, the
single-particle eigenstates of the lowest band can be chosen as
the LLL wave functions in the symmetric gauge �LLL

sym,n(z) =
(z)ne

−πφ

2 |z|2 , n ∈ N, discretized to the lattice, and the lowest
band will be exactly flat with energy ε = −1 [33]. Since the
Laughlin wave function is composed of LLL single-particle
wave functions and vanishes if two particles are at the same
position, it is the ground state of Eq. (15) if any contact
interaction is added.

The KM Hamiltonian is readily extended to magnetoperi-
odic conditions in a finite geometry of Nx × Ny sites. This can

be done by replacing J (z j, zk ) in Eq. (16) with

JNx,Ny (z j, zk ) =
∑

R

J (z j, zk + R) exp

[
πφ

2
(z jR

∗ − z∗
j R)

]

=
∑

R

J (z j, zk + R) exp[iπφ(y jnNx − x jmNy)],

(17)

where the sum runs over all R = (nNx + imNy) with n, m ∈ Z.
The purpose of the phase factor in Eq. (17) is to compensate
the phase factor resulting from a magnetic translation. As a
result, LLL single-particle wave functions satisfy the MPBC
�LLL

Nx,Ny
(z + nNx + imNy) = eiπφ(nNxy−mNyx)�LLL

Nx,Ny
(z), and the

KM’s lowest band is still exactly flat and spanned by these
wave functions, provided that there is an integer number of
flux quanta Nφ = φNxNy. Therefore, in the torus geometry, the
torus generalization of the Laughlin wave function remains
the many-body ground state of the KM model in the presence
of contact interactions.

We now introduce an anisotropic extension of the KM
model, through a parameter α > 0. We want our anisotropic
model to preserve the key property of the KM model, i.e.,
the lowest band single-particle wave functions should be LLL
single-particle wave functions. This can be achieved by trans-
forming W (z) from Eq. (16) into

W α (z) =G(z)e
−π
2 (1−φ)(|αx|2+| y

α
|2 ), (18)

while leaving the rest of the model invariant. The single-
particle eigenstates in the lowest band of the anisotropic KM
Hamiltonian will then be LLL wave functions living on a torus
of size αNx × Ny

α
such that the aspect ratio scales as α2. This

follows from the fact that a rescaled LLL wave function of the
form

�α
Nx,Ny

(x + iy) = �LLL
αNx,Ny/α

(αx + iy/α) (19)

obeys the same boundary conditions as �LLL
Nx,Ny

, namely,

�α
Nx,Ny

(z + nNx + imNy) = eiπφ(nNxy−mNyx)�α
Nx,Ny

(z). This
phase factor still cancels with the phase from the MPBC
extension in Eq. (17), and the term W α from Eq. (18) is
chosen such that the eigenstates of the lowest band can be
constructed by evaluating the rescaled LLL wave functions
�α

Nx,Ny
at the lattice coordinates. The lowest band contains

Nφ = φNxNy states and remains exactly flat at an energy of
εα = − ∑

R G(R)e
−π
2 (1−φ)|Rα |2 with the sum running over all

R = nLx + imNy with n, m ∈ Z and Rα = nαLx + imNy/α.
This can be shown in analogy to the original KM model; see
Appendix D for a detailed calculation. As a consequence, the
Laughlin state on a torus of αNx × Ny

α
is the exact many-body

ground state (GS) of the anisotropic KM model with a contact
interaction at any α.

Importantly, in our anisotropic KM model, the single-
particle gap above the lowest band appears to close very
fast with α in the TT limit (see Appendix D), such that a
competing GS involving orbitals from higher bands may form.
Therefore the many-body gap may also close before the CDW
regime is reached. This analytical observation is confirmed
by numerical ED simulations on the full (unprojected) lattice
system that we present in Sec. IV. Upon tuning α continu-
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ously, we find that the many-body gap closes long before the
formation of a CDW can be identified, thereby rendering this
generalization of the KM model not suitable for adiabatic FCI
state preparation.

IV. NUMERICAL SIMULATIONS

To study the full parameter range between the analytically
tractable TT limit and the isotropic FCI regime, we now
present exact diagonalization (ED) data for the coupled wire
model (see Sec. III B) and the HH model (see Sec. III C). For
all numerical data, the filling factor is ν = 1/2, and periodic
boundary conditions are imposed. To facilitate the calcula-
tions, we project the contact interaction to the lowest band,
without performing any additional truncation. For the coupled
wire model, the projection for general interwire coupling J
was calculated using the lowest band eigenfunctions derived
in Ref. [50], and for the HH model the projection was calcu-
lated using Eq. (11). Additionally, we present a data set for
the anisotropic KM model, which confirms that the excitation
gap closes before the ground state reaches a CDW configu-
ration. There, the interaction term is not projected due to the
narrowing single-particle band gap.

We first focus on the coupled wire model defined in
Eqs. (3) and (5). In Fig. 3, we show the ED results for a system
of Nx = 6 wires of length Ny = 3 in units of the magnetic
length lB. In the thermodynamic limit, both the FCI and the
CDW are twofold degenerate on the torus, due to the the
topological order of the FCI and to the broken translation
symmetry of the CDW. In finite-size numerical data, the de-
generacy is not exact, but there may be a small lifting �1,2

between the first and second eigenstates. The many-body gap
is the energy difference �2,3 between the second and third
eigenstates. �1,2 and �2,3 are shown in the upper panel of
Fig. 3. The twofold quasidegeneracy of the GS is unbroken
throughout the whole parameter range (i.e., �1,2 ≈ 0). More-
over, the excitation gap �2,3 remains finite along the path
from the CDW to the FCI phase, with no minimum indicating
any phase transition. Finally, the numerically obtained �2,3

matches the analytical excitation gap estimate �CW [Eq. (7)]
in the limit of large interwire coupling J (the TT limit). This
confirms the mechanism for the formation of a CDW in the
TT limit proposed in Sec. III B.

In addition to the energy gap, we establish the transition
between the FCI and the CDW phase through the particle
entanglement spectrum (PES) [51]. The PES is defined as
the spectrum of − log ρA, where ρA = TrB[ρd ] is the reduced
density matrix obtained by tracing out NB particles of the
density matrix ρd = 1√

d

∑d
j=1 |GS j〉〈GS j | associated with the

d-fold-degenerate ground state. For a FQH or FCI system in
a Laughlin phase, the PES features a topological entangle-
ment gap, where the number of eigenvalues below the gap
essentially counts the number of quasihole states that would
be created by removing NB particles from the system [51]. If
the lowest band is filled to a fraction of ν = 1

m by p particles
of which NB are traced out, the counting can be inferred from
a generalized Pauli exclusion principle [52,53] as

NLaugh = mp
(p + (m − 1)NB − 1) !

(p − NB) !(mNB) !
. (20)

FIG. 3. ED data for the coupled wire model as described by
Eqs. (3) and (5) with Nx = 6, Ny = 3, p = 9 particles, and interac-
tion strength U = ERlB. All energies are measured in units of the
magnetic recoil energy ER. Top panel: Gaps �1,2 and �2,3 between
the first and second eigenstates and between the second and third
eigenstates, respectively, as a function of the interwire coupling J
along with the perturbative prediction �CW [cf. Eq. (7)] for the ex-
citation gap. The zoom-ins show the low-energy spectrum at J = ER

and J = 19ER, respectively. Bottom panel: Particle entanglement
spectrum of each twofold-degenerate ground state, as obtained by
tracing out NB = 5 particles. The colors indicate the number of states
expected from Eqs. (20) and (21) for the FCI and CDW phases.
The point at which the transition to the CDW is complete is marked
by a red line in both plots, which corresponds to the critical value
τTT = ln(5) of the dimensionless anisotropy parameter.

The PES of an m-fold-degenerate CDW state at filling 1
m also

features an entanglement gap, but the number of eigenvalues
below the gap is lower [25]. It is given by

NCDW = m

(
p

NB

)
. (21)

In the TT limit, the entanglement gap becomes infinite, and
the eigenvalues below the gap become exactly degenerate,
since all CDW configurations are orthogonal Slater determi-
nant or permanent states, such that the counting is simply the
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FIG. 4. The excitation gap �2,3 above the twofold-degenerate
ground state of the coupled wire model [Eqs. (3) and (5)] showing a
collapse of different system sizes as a function of the dimensionless
anisotropy parameter τ = 2

√
J/ER(π/Nx )2. The legend entries indi-

cate the system size as �2,3(Nx, Ny ), and the particle number is p =
NxNy

2 . All data points fall onto the same curve and are almost undis-
tinguishable, except for the smallest system size (red points, p = 6
bosons). For comparison, the analytical prediction �CW [Eq. (7)] is
shown as a continuous line. The value τTT = ln(5), which roughly
marks the CDW transition for all studied system sizes, is indicated
as a red line.

number of ways to remove NB particles out of p times the
degeneracy m. Throughout this paper, we use m = 2 since we
work at half filling of the lowest band (hence the degeneracy
of the Laughlin state and CDW on the torus is d = 2).

The lower panel of Fig. 3 shows the PES of the twofold-
degenerate ground state of the interacting CW model for the
same parameter regime as the upper panel, using a color
code to represent the counting. The first NCDW states are red,
the ones above that are purple until NLaugh is reached, and
the rest are gray. The PES features the expected quasihole
count NLaugh below the entanglement gap in the FCI phase
at moderate coupling J , and the expected CDW count NCDW

in the TT limit of large J . This confirms the respective FCI
and CDW nature of the ground state in these two regimes and
provides additional evidence for the adiabatic phase transition
between the two. Note that the accumulation of data points
at the top of the panel starting at J/ER ≈ 13 is an artifact of
limited machine precision.

In general, we consider the transition to the CDW complete
once there is a significant gap in the PES above the first NCDW

eigenvalues; these NCDW eigenvalues are exactly degenerate,
and the analytical prediction for the CDW excitation gap
matches the numerically obtained value, which is indicated
as a red line in Fig. 3. Our numerical data indicate that this
happens for a fixed value τTT = ln(5) of the dimensionless
anisotropy parameter τ in the CW model, regardless of system
size in agreement with the previous analytical analysis.

The numerically obtained excitation gaps for all system
sizes in the CW model are summarized in Fig. 4 as a function
of τ along with the analytical prediction from Eq. (7). Asymp-
totically, all data sets collapse onto the analytically obtained
curve, and the transition point to the CDW is consistently
located around τTT = ln(5), indicated again by a red line. This
corroborates our analytical treatment. The only curve with
a slight deviation from the analytical prediction belongs to
the smallest system size of Nx = 4 wires. There, even larger

FIG. 5. ED data for the interacting HH model at half filling de-
scribed by Eqs. (8) and (9) with φ = 1

18 , p = 9 particles, and a system
size of Nx = 1

φ
, Ny = 1 unit cells. Top panel: Gaps between the first

and second eigenstates and between the second and third eigenstates
as a function of the hopping ratio Jy

Jx
along with the perturbative

prediction �HH [cf. Eq. (14)] for the excitation gap. Energy is mea-
sured in units of U . Bottom panel: Particle entanglement spectrum of
the twofold-degenerate ground state obtained by tracing out NB = 5
particles. The colors indicate the number of states expected from
Eqs. (20) and (21) for the FCI and CDW phases.

values of τ correspond to moderate values of J such that the
eigenfunction approximation from Eq. (4) is not as good.

In Fig. 5, we present similar ED data on the HH model
[Eqs. (8) and (9)] at half filling for a system of size Nx = φ−1,
Ny = 1 at φ = 1

18 as a function of the hopping ratio Jx
Jy

. As

a reminder, Nx × Ny is the number of 1 × φ−1 magnetic unit
cells, so that the total number of lattice sites is φ−1 × φ−1.
The upper panel shows the numerically obtained energy gaps
between the first three eigenstates. The analytical estimate for
the excitation gap �HH [Eq. (14)] matches with the numerics
in the TT limit ( Jx

Jy
	 1). As for the coupled wire model, the

twofold GS quasidegeneracy remains unbroken, and the exci-
tation gap remains open along the way from the FCI regime to
the CDW in the TT limit. The associated PES (with the same
color code as in Fig. 3) in the lower panel of Fig. 5 further
confirms the phase transition.

To complement the analysis of the HH model, we present
data for a geometry of Nx = 8, Ny = 1 and φ = 1

6 in Fig. 6.
This geometry does not satisfy the TT limit exact flat band
requirement derived in the analytical section (Sec. III C), since
Nx is not a divisor of φ−1. As a result, we do not necessarily
expect an adiabatic path between FCI and CDW ground states.
We indeed find that the ground state does not transition into a
CDW in the TT limit, but instead the ground-state degeneracy
is broken along the way, as the top panel shows. The PES
data further illustrate the breakdown of the FCI phase, and the
absence of a CDW phase in the TT limit Jx

Jy
	 1.
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FIG. 6. ED data for the interacting HH model at half filling de-
scribed by Eqs. (8) and (9) with φ = 1

6 , p = 4 particles, and a system
size of Nx = 8, Ny = 1 sites. Top panel: Gaps between the first and
second eigenstates and between the second and third eigenstates as
a function of the hopping ratio Jy

Jx
. The energy is measured in units

of U . Bottom panel: Particle entanglement spectrum of the twofold-
degenerate ground state obtained by tracing out NB = 2 particles.
The colors indicate the number of states expected from Eqs. (20)
and (21) for the FCI and CDW phases.

Finally, we show data for the anisotropic KM model with
φ = 1

2 , p = 4 particles, a system size of Nx = 4, Ny = 4 sites,
and hard-core interaction in Fig. 7. Our ED results are ob-
tained without projecting the interaction to the lowest band,
since the closing of the band gap makes the projection a
poor approximation. The top and bottom panels show the
energy gaps and the PES, respectively, as a function of the
anisotropy parameter α2, which is proportional to the effec-
tive physical aspect ratio of the system. Around α � 1, the
twofold-degenerate ground state is a FCI, with a finite exci-
tation gap. Upon decreasing α to approach the TT limit, the
excitation gap closes around α � 0.15. This value of α is too
large (too far from the TT limit) to permit the emergence of
a CDW ground state, as shown by our numerical data. This is
consistent with our analytical analysis presented in Sec. III D.

V. SUMMARY AND OUTLOOK

We have demonstrated how an effective TT limit of various
(semi)discrete FCI models can be achieved through a strong
anisotropy in the kinetic energy that is practically realized by
a tuning of hopping amplitudes. In particular, both for the
coupled wire model and for the HH model, we find that the
Wannier functions of the lowest Chern band localize so as
to decrease their overlap with increasing hopping anisotropy.
That way, the projection of a local interaction term to the low-
est band continuously reduces to a density-density interaction
of an effective one-dimensional system. In this effective TT

FIG. 7. ED data for the anisotropic KM model at half filling as
described in Sec. III D with φ = 1

2 , p = 4 particles, a system size of
Nx = 4, Ny = 4 sites, and hard-core interaction. The anisotropy pa-
rameter α2 is proportional to the geometric aspect ratio, such that the
TT limit (α � 1) appears on the left-hand side of the figure while the
isotropic limit (α = 1) appears on the right-hand side of the figure.
Top panel: Ground-state degeneracy lifting �1,2 and excitation gap
�2,3. The energy is measured in units of t [cf. Eq. (16)]. Bottom
panel: Particle entanglement spectrum of the twofold-degenerate
ground state obtained by tracing out NB = 2 particles. The colors
indicate the number of states expected from Eqs. (20) and (21) for
the FCI and CDW phases.

limit, the projected problem becomes exactly solvable, and its
ground state at fractional filling is a CDW, analogous to the
TT limit of the continuum FQH effect achieved by changing
the geometry of the system. The formation of the CDW in
the effective TT limit happens adiabatically for all system
sizes amenable to numerical study, and we expect it to re-
main adiabatic for arbitrary system sizes based on a finite-size
scaling analysis. This situation is different for the KM model,
which we extend by introducing a parameter α that modifies
the hoppings such that Laughlin’s wave function remains the
exact GS while the effective aspect ratio is tuned as α2. There,
we do not find room for adiabatic state preparation, as the
single-particle gap above the lowest band closes quickly for
anisotropic aspect ratios such that competing GSs form in the
other bands.

In contrast to the conventional TT limit, where the system
size Lx is changed in a gedanken experiment, our present
analysis of an effective TT limit leaves the physical geometry
of the system unchanged and instead relies on the practical
knob of tuning a hopping anisotropy. This comes at the price
that the hopping anisotropy required to reach the trivial CDW
regime scales with the physical size Lx of the system. Very
generally speaking, the effective TT limit may thus be seen as
a physical mechanism to systematically amplify the finite-size
gap of a topological quantum phase transition that would nec-
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essarily occur in the two-dimensional thermodynamic limit
(Lx = Ly → ∞) for any finite hopping parameters. In this
sense, our results reveal a path for the adiabatic preparation
of FCI states from trivial CDW states, where the main exper-
imental challenge limiting the accessible system sizes lies in
the realization of a wide range of hopping amplitudes.

We note that the possibility of inducing a CDW regime in
an FCI system through the hopping amplitude t⊥ between the
chains of a two-dimensional flux ladder has been considered
in an earlier work [27]. There, the case of a thin cylinder of
few chains is studied, where already small values of t⊥ can
induce a CDW. Subsequently, t⊥ is used as a perturbative
parameter to show that the CDW amplitude decreases with
increasing number of chains at fixed t⊥, which is in qualitative
agreement with our findings. The main goal of Ref. [27] is to
study the fractionally charged pretopological excitations that
emerge at the domain walls between different CDW configu-
rations on a thin cylinder of two coupled chains.

While we have focused on models with contact interactions
and half filling of the lowest Chern band, we expect that our
results for the coupled wire model and the HH model could be
directly generalized to FCI states at different filling fractions
that would require longer-ranged interactions. This is because
the formation of the CDW in the TT limit seems to rely mainly
on the localization of the single-particle orbitals, which is
independent of the filling fraction within the lowest band.
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APPENDIX A: SCALING THE ASPECT RATIO

We may interpret the Hofstadter model as the lattice dis-
cretization of a continuum kinetic energy term with an added
magnetic field represented by the Peierls phase. To justify the

aspect ratio scaling Ly

Lx
∝

√
Jx
Jy

claimed in the main text, we

consider the lattice discretization of a kinetic energy term in a
continuous 2D model in the second quantization:

H = −t
∫

dx
∫

dyφ†(x, y)

[
d2

dx2
+ d2

dy2

]
φ(x, y). (A1)

Assuming system lengths of Lx, Ly in the x, y directions, we
perform a discretization using Nx, Ny sites in the respective
directions. The integrals become sums, and we obtain

H = −t
∑
xi,y j

�x�yφ
†(xi, y j )

([
d2

dx2
+ d2

dy2

]
φ

)
(xi, y j ),

(A2)

with �x = Lx

Nx
, �y = Ly

Ny
.

We use the finite-difference version of the second derivative

d2

dx2
f (x) = f (x − �x ) − 2 f (x) + f (x + �x )

�2
x

to treat the �φ = ( d2

dx2 + d2

dy2 )φ term in Eq. (A2), leading to

H =
∑
xi,y j

2t

(
�x

�y
+ �y

�x

)
φ†(xi, y j )φ(xi, y j )

−
∑
xi,y j

t
�y

�x︸︷︷︸
Jx

[φ†(xi, y j )φ(xi − �x, y j )

+ φ†(xi, y j )φ(xi + �x, y j )]

−
∑
xi,y j

t
�x

�y︸︷︷︸
Jy

[φ†(xi, y j )φ(xi, y j − �y)

+ φ†(xi, y j )φ(xi, y j + �y)].

Assuming periodic boundary conditions or considering the
fact that there is no xi − �x for xi = 0 and open boundaries
(the same goes for all other boundary terms), we may shift the
sums by one �x, �y, respectively, and arrive at

H = −
∑
xi,y j

(Jx[φ†(xi + �x, y j )φ(xi, y j ) + H.c.]

+ Jy[φ†(xi, y j + �y)φ(xi, y j ) + H.c.]), (A3)

where we dropped the constant potential term as its purpose is
to shift the energy minimum to zero. The ratio of the hopping
is now

Jx

Jy
= �2

y

�2
x

= L2
y N2

x

L2
x N2

y

.

Assuming a fixed number of discretization steps Nx, Ny, corre-
sponding to a fixed number of atoms in our Hofstadter model,
the physical aspect ratio should scale as

√
Jx/Jy as we claimed.

APPENDIX B: ANALYTICAL ANALYSIS OF THE
COUPLED WIRE MODEL

Following the main text, we can approximate the
lowest band eigenfunctions of HCW

0 from Eq. (3) as

ϕn,kx = q
1
4

√
Nxπ

1
4

eikxxe
− q

2φ2 (φ(y−yn )−kxa)2

with yn = (2n − 1)π
φ

,

n = 1, 2, . . . , Ny and q = √
J/ERφ2. Writing the pro-

jections of the field operators to the lowest band as
�̃†

x,y = ∑
n,kx

ϕn,kx (x, y)c†
n,kx

using these eigenfunctions,
we can project the interaction term HCW

I from Eq. (5) as

H̃I = Uq

N2
x π

∑
x

∫ NylB

0
dy

∑
kx1 ,...,kx,4

×
Ny∑

n1,...,n4=1

e−i(kx,1+kx,2−kx,3−kx,4 )xe− q
2 ((y−yn1 )−kx1

a
φ

)2

× e− q
2 [((y−yn2 )−kx2

a
φ

)2+((y−yn3 )−kx3
a
φ

)2+((y−yn4 )−kx4
a
φ

)2]

× c†
n1,kx,1

c†
n2,kx,2

cn3,kx,3 cn4,kx,4 .
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This Hamiltonian contains pair hoppings between orbitals
centered around position [(2ni − 1) + kx,i

a
π

] lB
2 in the y direc-

tion. In total there are NxNy such orbitals with even spacing
�y = lB

Nx
, and we can assign them the integer index li = ni ∗

Nx + nkx,i , where kx,i = nkx,i
2π
Nxa and nkx,i ∈ Z ∩ [−Nx

2 , Nx
2 − 1]

for even Nx or nkx,i ∈ Z ∩ [−Nx−1
2 , Nx−1

2 ] for odd Nx. The
position of orbital number li is then li�y − lB

2 . We use the
orthogonality relation

∑
x eixkx = Nxδkx,0 and extend the limits

of the integration to ±∞ (which is a negligible error since
we work with PBCs and assume J big enough to localize the
orbitals much tighter than lB) to obtain

H̃I = Uq

Nxπ

∫ ∞

−∞
dy

∑
l1,...,l4

δkx,4,kx,1+kx,2−kx,3 e− q
2

× ((y − l1�y)2 + (y − l2�y)2 + (y − l3�y)2

+ (y − l4�y)2)c†
l1

c†
l2

cl3 cl4 .

The orbitals being localized much tighter than lB implies that
we only need to keep the terms where |li − l j | � Nx, such that
δkx,4,kx,1+kx,2−kx,3 can be taken as δl4,l1+l2−l3 . This is incorporated
by setting l1 → i, l2 → j, l3 → j + m, and l4 → i − m (with
PBCs on the indices). The integral can be calculated explicitly
by completing the square and using

∫ ∞
−∞ e−α(x+β )2 = √

π
α

to
arrive at the expression from the main text.

APPENDIX C: ANALYTICAL ANALYSIS OF THE
HOFSTADTER MODEL

1. Flatness of the lowest band in the TT limit

In the TT limit Jy → 0, the noninteracting part of the
Hofstadter model

HHH
0 = −

∑
m,n

[Jxein2πφc†
m+1,ncm,n + Jyc†

m,n+1cm,n + H.c.]

(C1)

reduces to a set of decoupled wires along the x direction with
dispersion −2Jx cos(kx − n2πφ). We can gauge the flatness of
the lowest band in this limit by looking at the spacing of the kx

values. Each individual wire dispersion will have a minimum
at kx = n2πφ, such that for a system length of Nx = 1

φ
sites in

the x direction all kx will fall precisely in one of the minima
with energy −2Jx. These states will then form the lowest band,
followed by the next band of states living on the neighboring

wire for each kx and separated by an energy gap of

�band = 2Jx(1 − cos(2πφ)) = 4Jx sin(πφ)2.

This argument works for any number Ny of unit cells in the y
direction, but only if the number of sites in the x direction
is Nx = 1

φ
or any divisor of 1

φ
. All other values of Nx will

inevitably introduce some dispersion in the lowest band and
narrow the band gap, especially for Nx > 1

φ
.

2. Projection of the interaction

For a generic tight-binding model, we may express the real-
space annihilation operator c j,α for site α in the unit cell at
j = ( jx, jy) in terms of Bloch state annihilators by

c j,α = 1√
NxNy

∑
k

eik jck,α = 1√
NxNy

∑
k

eik j
∑

β

uα,β (k)γk,β ,

where uα,β is the unitary matrix that contains the eigenvec-
tors of the Bloch Hamiltonian H(k). After rearranging the
interaction term in a normal ordered form and inserting the
expansion, we can project the term to the lowest band in a
straightforward manner by dropping all strings of operators
that contain creators or annihilators from bands other than the
lowest band

H̃HH
I = P̂

⎛
⎝U

2

∑
j,α

c†
j,αc†

j,αc j,αc j,α

⎞
⎠P̂ = U

2

NO∑
α=1

∑
j

1

N2
x N2

y

×
∑

k1,k2,kx,3,k4

e−i(k1+k2−k3−k4 )· ju∗
α,1(k1)u∗

α,1(k2)uα,1

× (k3)uα,1(k4)γ †
k1,1

γ
†
k2,1

γk3,1γk4,1,

where NO is the number of orbitals per unit cell. After carrying
out the sum

∑
j , which gives NxNyδk1+k2−k3,k4 , we arrive at

Eq. (11) of the main text, where NO = 1
φ

and the indices 1 for
the lowest band have been dropped.

3. Perturbation theory on the Bloch vectors

We consider a system similar to Eq. (C1) of 1
φ

× 1
φ

sites

(i.e., Nx = 1
φ

unit cells along x and Ny = 1 unit cells along
y) and perform a Fourier transform in the x direction. The
resulting Bloch Hamiltonian reads

H (kx )=−Jy

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 0 1 0
1 0 1

0 . . .
. . .

. . .

0 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Dy

−2Jx diag

[
cos(kx ), cos(kx − 2πφ), cos(kx − 4πφ), cos

(
kx − 2

(
1

φ
− 1

)
πφ

)]
︸ ︷︷ ︸

Dx

.

(C2)

Due to the finite energy gap above the lowest band for Jy = 0, we may employ nondegenerate perturbation theory and use λ = Jy

Jx

as a perturbative parameter to expand the lowest eigenvector in a power series in λ. For a nondegenerate system H0 + λV , the
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first-order correction to an eigenstate |n0〉 of H0 is given by

|n1〉 = ∑
l �=n |l0〉 〈l0|V |n0〉

E0
n −E0

l
,

where |l0〉 and E0
l are the eigenvectors and eigenenergies of H0. By setting V = Dy and considering that the components of

the lowest eigenvector of Dx are simply uα (kx, λ = 0) = δα,nx with nx = kx
2πφ

and the eigenenergies are E0
n = −2Jx cos(2|n −

nx|πφ), it follows immediately that

uα (k, λ) = A1(λ)[δα,nx − λA2(δα,nx+1 + δα,nx−1)],

where A1(λ) = (1 + 2λ2(A2)2)−
1
2 is a normalization factor and A2 = (2[1 − cos(2πφ)])−1 = (4 sin(πφ)2)−1. With this result,

we can expand Eq. (11) up to second order in λ to arrive at Eq. (13).

4. Expanding the interaction term

We use uα (kx, λ) = A(λ)[u0(α, n) − xu1(α, n)] with x = λA2, n = kx
2πφ

, u0(α, n) = δα,n, and u1(α, n) = (δα,n+1 + δα,n−1) to

expand Eq. (11) of the main text up to O(x2). Ignoring the prefactors and dropping the subscript x from the momentum kx, we
want to evaluate the sum

∑
n1,n2,n3

1/φ∑
α=1

u∗
α (k1)u∗

α (k2)uα (k3)uα (k1 + k2 − k3)γ †
k1
γ

†
k2
γk3γk1+k2−k3

up to second order in x. We find that it is equal to

∑
n1

γ
†
k1
γ

†
k1
γk1γk1 + x2

∑
n1,n2,n3

1/φ∑
α=1

u0(α, n1)[u0(α, n2)u1(α, n3)u1(α, n1 + n2 − n3) + u1(α, n2)u0(α, n3)u1(α, n1 + n2 − n3)

+ u1(α, n2)u1(α, n3)u0(α, n1 + n2 − n3)]γ †
k1
γ

†
k2
γk3γk1+k2−k3 + x2

∑
n1,n2,n3

1/φ∑
α=1

u1(α, n1)[u0(α, n2)u0(α, n3)u1(α, n1+n2−n3)

+ u0(α, n2)u1(α, n3)u0(α, n1 + n2 − n3) + u1(α, n2)u1(α, n3)u0(α, n1 + n2 − n3)]γ †
k1
γ

†
k2
γk3γk1+k2−k3 + O(x3).

All terms linear in x vanish. We can now carry out the sum over α and obtain for the x2 terms

x2
∑

n1,n2,n3

[u0(n1, n2)u1(n1, n3)u1(n1, n1 + n2 − n3) + u1(n1, n2)u0(n1, n3)u1(n1, n1 + n2 − n3)

+ u1(n1, n2)u1(n1, n3)u0(n1, n1 + n2 − n3)] + x2
∑

n1,n2,n3

[u0(n1 + 1, n2)u0(n1 + 1, n3)u1(n1 + 1, n1 + n2 − n3)

+ u0(n1 + 1, n2)u1(n1 + 1, n3)u0(n1 + 1, n1 + n2 − n3) + u1(n1 + 1, n2)u1(n1 + 1, n3)u0(n1 + 1, n1 + n2 − n3)]

× γ
†
k1
γ

†
k2
γk3γk1+k2−k3γ

†
k1
γ

†
k2
γk3γk1+k2−k3 + x2

∑
n1,n2,n3

[u0(n1 − 1, n2)u0(n1 − 1, n3)u1(n1 − 1, n1 + n2 − n3)

+ u0(n1 − 1, n2)u1(n1 − 1, n3)u0(n1 − 1, n1 + n2 − n3)

+ u1(n1 − 1, n2)u1(n1 − 1, n3)u0(n1 − 1, n1 + n2 − n3)]γ †
k1
γ

†
k2
γk3γk1+k2−k3

= x2
∑

n1

[γ †
k1
γ

†
k1
γk1+�k γk1−�k + γ

†
k1
γ

†
k1
γk1−�k γk1+�k + γ

†
k1
γ

†
k1+�k

γk1γk1+�k + γ
†
k1
γ

†
k1−�k

γk1γk1−�k

+ γ
†
k1
γ

†
k1+�k

γk1+�k γk1 + γ
†
k1
γ

†
k1−�k

γk1−�k γk1 + γ
†
k1
γ

†
k1+�k

γk1+�k γk1 + γ
†
k1
γ

†
k1+�k

γk1γk1+�k

+ γ
†
k1
γ

†
k1+2�k

γk1+�k γk1+�k + γ
†
k1
γ

†
k1−�k

γk1−�k γk1 + γ
†
k1
γ

†
k1−�k

γk1γk1−�k + γ
†
k1
γ

†
k1+2�k

γk1+�k γk1+�k ].

After rearranging and shifting some terms by �k , this yields the result from Eq. (13) of the main text

.
APPENDIX D: SCALING THE KAPIT-MUELLER MODEL

For an infinite system, the LLL wave function in the symmetric gauge takes the form �n(z) = (z j )ne
−πφ

2 |z|2 . For a finite
system of dimension Lx × Ly with MPBCs and Nφ ∈ N flux quanta, it is possible to construct Nφ linearly independent LLL
wave functions of the general form

�LLL
Lx,Ly

(z) = PLx,Ly (z)e
−πφ

2 |z|2 , (D1)
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where Pn,Lx,Ly (z) is a combination of Jacobi theta functions and Gaussians that ensure magnetoperiodicity [39]. We now consider
the state

|�α
Lx,Ly

〉 =
∑
j∈lat

�α
Lx,Ly

(z j )c
†
j |0〉,

where z j = x j + iy j , “lat” is the set of all lattice sites, and �α
Lx,Ly

(z) is a rescaled LLL wave function as per Eq. (19). We show
that it is an eigenstate of the anisotropic Kapit-Mueller Hamiltonian Hα

KM with magnetoperiodic extension and rescaled Wα as
we define it in the main text. To this end, consider the matrix element

〈 j|Hα
KM|�α

Lx,Ly
〉 =

∑
k∈lat
j �=k

Jα
Lx,Ly

(z j, zk )�α
Lx,Ly

(zk ) =
∑
k∈lat
j �=k

∑
R=(nLx+imLy )

Jα (z j, zk + R) exp[iπφ(y jnL − x jmL)]�α
Lx,Ly

(zk )︸ ︷︷ ︸
�α

Lx ,Ly
(zk+R)

=
∑

z
z �=R

J (z j, z + z j )�
α
Lx,Ly

(z + z j ).

The last sum runs over all z ∈ Z × iZ which are not equal to any R = (nLx + imLy) for n, m ∈ Z. This is just the concatenation of
the two sums over zk and R from the line above, since xk = 0, 1, . . . , Lx − 1 and yk = 0, 1, . . . , Ly − 1. Introducing the notation
zα = αx + iy/α, we may further write

〈 j|Hα
KM

∣∣�α
Lx,Ly

〉 =
∑

z
z �=R

G(z)e
−π
2 (1−φ)(|zα |2 )e

π
2 (z j z∗−z∗

j z)φPαL,L/α

(
zα + zα

j

)
e

−πφ

2 |zα+zα
j |2︸ ︷︷ ︸

e
−πφ

2 [|zα |2+(zα )∗zαj +zα (zαj )∗+|zαj |2]

=

⎡
⎢⎣∑

z
z �=R

G(z)e
−π
2 |zα |2 e

π
2 (z j z∗−z∗

j z)φe
−πφ

2 [(zα )∗zα
j +zα (zα

j )∗]PαL,L/α

(
zα + zα

j

)⎤
⎥⎦e

−πφ

2 |zα
j |2 . (D2)

In the following, we will use the the singlet sum rule∑
z

eczG(z)e
−π
2 |z|2 = 0 ∀c,

which can be generalized to ∑
z

f (z)G(z)e
−π
2 |z|2 = 0 (D3)

for any entire function f (z) that does not diverge faster than e
π
2 |z|2

z2 by taking derivatives with respect to c [33,54,55]. In order
to create the entire power series for f , a reordering of limits is required which will only work if the sum converges absolutely,
hence the divergence limit on f .

With e
−π
2 |zα |2 = e

−π
2 (|αx|2+| y

α
|2 ) = e

−π
2 (|x|2+|y|)2

e
π
2 ((1−α2 )|x|2+(1−1/α2 )|y|2 ), we bring the matrix element to the form

〈 j|Hα
KM

∣∣�α
Lx,Ly

〉 =

⎡
⎢⎣∑

z
z �=R

G(z)e
−π
2 |z|2 f (z)

⎤
⎥⎦e

−πφ

2 |zα
j |2

with f (z) = e
π
2 (z j z∗−z∗

j z)φe
−πφ

2 [(zα )∗zα
j +zα (zα

j )∗]e
π
2 ((1−α2 )|x|2+(1−1/α2 )|y|2 )PαL,L/α

(
zα + zα

j

)
, (D4)

where PαL,L/α (zα + zα
j ) should diverge as e

πφ

2 (|α(x+x j )|2+| y+y j
α

|2 ) (or, equally good, e
πφ

2 (|αx|2+| y
α
|2 ) for fixed z j and z → ∞), because

the wave function from Eq. (D1) obeys MPBCs. In conclusion, the product PαL,L/α (zα + zα
j )e

π
2 ((1−α2 )|x|2+(1−1/α2 )|y|2 ) should

diverge as e
π
2 [(1−(1−φ)α2 )|x|2+(1−(1−φ)1/α2 )|y|2] = e

π
2 (a|x|2+b|y|2 ) with a, b < 1. For the asymptotic behavior of f (z) from Eq. (D4),

the linear terms in the exponent can be ignored, and thus f (z) should diverge slower than e
π
2 |z|2

z2 for 0 < φ < 1, such that the sum
rule can be applied [cf. Eq. (D3)]. This gives us

〈
j
∣∣Hα

KM

∣∣�α
Lx,Ly

〉 =

⎡
⎢⎢⎣−

∑
R=(nL
+imL)

G(R)e
−π
2 |Rα |2 e

π
2 (z j R∗−z∗

j R)φe
−πφ

2 [(Rα )∗zα
j +Rα (zα

j )∗]PαL,L/α

(
Rα + zα

j

)
⎤
⎥⎥⎦e

−πφ

2 |zα
j |2 .
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FIG. 8. Single-particle gap above the lowest band of the KM model for flux � = 1
2 and system sizes of (a) 4 × 4 sites and (b) 8 × 8 sites

with logarithmic scale.

Since Pn,αL,L/α (Rα + zα
j ) = e

−π
2 (z j R∗−z∗

j R)φe
πφ

2 [(Rα )∗zα
j +Rα (zα

j )∗+|Rα |2]Pn,αL,L/α (zα
j ) due to the MPBCs, we arrive at

〈 j|Hα
KM

∣∣�α
Lx,Ly

〉 =

⎡
⎢⎢⎣−

∑
R=(nL
+imL)

G(R)e
−π
2 (1−φ)|Rα |2

⎤
⎥⎥⎦Pn,αL,L/α

(
zα

j

)
e

−πφ

2 |zα
j |2 =

⎡
⎢⎢⎣−

∑
R=(nL
+imL)

G(R)e
−π
2 (1−φ)|Rα |2

⎤
⎥⎥⎦

︸ ︷︷ ︸
εα

〈 j|�α
Lx,Ly

〉. (D5)

The state |�α
Lx,Ly

〉 is apparently an eigenstate with energy εα ,
which will deviate from −1 if α is very small. Since this is the
lattice discretization of a LLL wave function on a torus with
lengths αL × L

α
, the aspect ratio should scale as α2. Note that

this works for any of the Nφ single-particle wave functions in
the LLL, such that the lowest band contains Nφ states and is
exactly flat at an energy of εα . This result is readily validated
numerically by diagonalizing the single-particle Hamiltonian
Hα

L , which also shows that the band gap to the higher bands
closes quickly with α.

Closing of the single-particle gap

In general, we observe that the single-particle gap closes
very quickly with α. A precise analytical treatment of this
is not possible due to the complicated structure of the KM
model. To gain some intuition, we note that for α → 0, the
hoppings along the y direction are switched off while the
hoppings along the x direction do not decay at all anymore.

In that sense, the KM model breaks down into a number of
isolated wires similar to the HH model (cf. Appendix C) but
this time with very long ranged and slowly decaying hoppings
which should lead to a flat dispersion. From the analysis of
the HH model in an Nx = 1

φ
geometry, we saw that the wire

dispersion is essential for the finite gap in the TT limit. Thus
we expect the gap of the KM model in the TT limit α → 0 to
close, although the precise functional dependence on α is not
clear.

Numerical calculations show that the closing happens very
quickly with decreasing α such that no sufficient change of the
aspect ratio is possible before the gap closes. As an example,
we provide data for the single-particle gap above the lowest
band of the KM model at flux � = 1

2 and system sizes of 4 ×
4 and 8 × 8 sites in Fig. 8. The reopening of the single-particle
gap to a small value for the 4 × 4 system appears to be a finite-
size effect that vanishes at larger system sizes. Other values of
the flux � yield similar results.
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