
HAL Id: hal-04268454
https://hal.science/hal-04268454

Preprint submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision-Focused Data Pooling for Contextual
Stochastic Optimization

Akylas Stratigakos, Juan Miguel Morales, Salvador Pineda, Georges
Kariniotakis

To cite this version:
Akylas Stratigakos, Juan Miguel Morales, Salvador Pineda, Georges Kariniotakis. Decision-Focused
Data Pooling for Contextual Stochastic Optimization. 2023. �hal-04268454�

https://hal.science/hal-04268454
https://hal.archives-ouvertes.fr


Decision-Focused Data Pooling for Contextual Stochastic
Optimization

Akylas Stratigakosa,1,∗, Juan Miguel Moralesb, Salvador Pinedab, Georges
Kariniotakisa

aCenter PERSEE, Mines Paris, PSL University, Sophia Antipolis, 06904, France
bOASYS Research Group, University of Málaga, Málaga, 29010, Spain

Abstract

Data scarcity poses a significant risk that hinders the deployment of advanced data-

driven methods. In many cases of practical interest, decision-makers have access to

data from similar, potentially unrelated, problem instances. Maximizing the benefits of

data-driven methods thus necessitates novel methods to utilize all available data. In this

work, we propose two methods to pool data when dealing with multiple contextually-

dependent stochastic optimization problems. The first involves naively pooling data

and training a global model to derive decisions across all problems, while the second

leverages optimal transport for model aggregation. An essential contribution is the

development of a decision-focused data pooling algorithm to determine when and how

much data to pool. The proposed algorithm leverages tools from ensemble learning to

estimate the expected out-of-sample decision cost without sacrificing training data, and

effectively interpolates between a local and an anchor distribution. For validation, we

examine the problem of stochastic renewable energy sources participating in electricity

markets, which is pivotal for their integration into modern power systems. The results

demonstrate that data pooling improves overall decision-making when data are scarce.

Notably, the proposed decision-focused data pooling algorithm consistently outperforms

both local and pooled methods.
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1. Introduction

Data are becoming increasingly important when dealing with challenges that arise

in many areas such as supply chains, healthcare, and power systems. Data-driven

methods leverage tools across optimization, machine learning, and statistics and enable

significant improvements in decision-making under uncertainty (Baardman et al., 2022).

In real-world systems, decision-makers deal with a large number of uncertainties,

which are also associated with some contextual information. In turn, these uncertain-

ties can create thousands of potentially unrelated stochastic optimization problems. A

prominent example is power systems where power producers manage portfolios of thou-

sands of renewable energy sources, such as wind and solar power plants, whose produc-

tion depends on the weather at each geographical location. Future power systems and

smart grids that integrate a large number of heterogeneous assets, such as small-scale

renewable energy sources, flexible loads, storage systems, and electric vehicles, further

exacerbate this issue.

In this context, decision-makers often encounter a “large-scale, small-data” regime.

That is, while the aggregate volume of data across all problems is large, data at an

individual (local) problem level might be scarce or even contaminated, which hinders

the deployment of data-driven methods. To fully utilize the benefits of available data-

driven methods, it is critical to develop effective methods for pooling the available data

from different problems, thus enabling improved decision-making.

1.1. Aim and Contribution

In this work, we first propose two methods for data pooling to improve decision

performance when dealing with multiple contextually-dependent stochastic optimiza-

tion problems. The first involves naively pooling all data and training a global model

to estimate a conditional distribution of uncertainty as a function of contextual infor-

mation, which is subsequently used to derive decisions across all problems. The second
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approach implicitly performs data pooling through model aggregation using optimal

transport (OT) (Peyré and Cuturi, 2019), a mathematical framework that studies sim-

ilarities of probability distributions, by aggregating a number of models trained locally

to solve each separate problem. To determine when and how much data to pool, we

further develop a decision-focused data pooling algorithm that interpolates between a

local and an anchor distribution. The proposed algorithm leverages techniques from en-

semble learning, namely the Out-of-Bag (OOB) method (Hastie et al., 2009), to provide

an estimation of the expected out-of-sample decision cost without sacrificing training

data and avoiding model retraining, which can be computationally costly. We evaluate

the effectiveness of the proposed methods in a critical application related to the inte-

gration of renewable energy sources in power systems, namely trading in a day-ahead

electricity market. Our results show that data pooling leads to better decisions when

data are scarce and that the proposed decision-focused algorithm consistently leads to

improved performance, even as the number of local training observations increases.

1.2. Related Work

In recent years, there has been a growing interest in solving stochastic optimization

problems where the uncertain parameters are associated with some contextual informa-

tion. The standard data-driven approach consists of two steps. The first step involves

forecasting uncertain parameters. In the second step, these forecasts are used as input

in an optimization problem. To deal with the induced suboptimality of point forecasts,

relevant work focuses on estimating the conditional distribution of uncertainty (Bert-

simas and Kallus, 2020), i.e., probabilistic forecasting; training (point or probabilistic)

forecasting models to explicitly minimize downstream decision costs (Elmachtoub and

Grigas, 2022), (Donti et al., 2017), (Muñoz et al., 2022), (Stratigakos et al., 2022); di-

rectly learning the solutions to the optimization problem (Ban and Rudin, 2019); or

directly working with the joint distribution of contextual information and uncertainty

(Esteban-Pérez and Morales, 2022). Nonetheless, the majority of relevant work focuses

on dealing with a single problem and the setting of dealing with multiple contextually-

dependent optimization problems simultaneously remains largely unexplored. Gupta
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and Kallus (2022) examine data pooling for multiple stochastic optimization problems

without contextual information and show that it leads to better decisions owing to the

so-called instability versus suboptimality trade-off. Intuitively, data pooling is most use-

ful when data are scarce and the respective local solution, i.e., the solution that leverages

only local problem data, is unstable. To determine when and how much data to pool

across problems, Gupta and Kallus (2022) further develop an algorithm based on cross-

validation that exploits the structure of the optimization problem, which, nonetheless,

does not account for contextual information.

Conversely, in the area of time series forecasting, there is a growing interest in de-

veloping global forecasting models. The term global forecasting model refers to a single

univariate model trained by pooling data across a large number of time series, while

local forecasting model refers to a univariate model trained for a specific time series.

Global forecasting models are considered an effective method of simultaneously reduc-

ing modeling effort and enabling cross-learning across tasks. For instance, Salinas et al.

(2020) propose a global deep learning model for probabilistic demand forecasting, while

Montero-Manso and Hyndman (2021) show that global models can perform on par with

local models for time series forecasting, but may have a lower representational capac-

ity for regression tasks. Global forecasting is gaining interest in areas where multiple

sources of uncertainty appear, such as power systems. Kazmi et al. (2021) propose

global models to forecast the uncertain renewable production of multiple plants or the

individual consumption at a household level. Balint et al. (2023) examine centralized

(i.e., global) and federated learning to forecast the temperature of thermostatically con-

trolled loads using domain-informed data augmentation. Grabner et al. (2022) propose

a global model for load forecasting in the distribution grid and a clustering-based lo-

calization method to improve performance under data heterogeneity. To cold-start the

forecasting problem for a residential solar panel without historical data, Bottieau et al.

(2022) train a generic cross-learning model across several series. However, moving from

a local to a global model as a function of the volume of available data or the quality of

individual models has not received much attention.
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In this work, we focus on the case of multiple stochastic problems where, for each

problem, the decision-maker uses contextual data to approximate the conditional marginal

distribution of uncertainty via probabilistic forecasting. By viewing each model as an

expert and aggregating their output leveraging OT (Peyré and Cuturi, 2019), our ap-

proach is closely related to model aggregation and forecast combination. Namely, the

works by Papayiannis and Yannacopoulos (2015, 2018) are the ones most closely related

to ours. Papayiannis and Yannacopoulos (2015) and Papayiannis and Yannacopoulos

(2018) leverage OT to combine experts’ opinions (i.e., forecasts) of a reference proba-

bility distribution, via means of a weighted Wasserstein barycenter (Agueh and Carlier,

2011) and show that, for the univariate case, this is equivalent to quantile averaging

(Lichtendahl Jr et al., 2013). Papayiannis et al. (2018) further extend this approach to

the linear aggregation of point predictions for wind speed by aggregating forecasts in

adjacent spatial locations.

Our work differs in several key aspects. First, we motivate our approach through

the lens of stochastic optimization and decision-making. That is, our goal is to combine

forecasts (or, equivalently, aggregate models) in a decision-focused way that leads to

lower downstream decision costs. While some previous works have considered forecast

combinations to minimize decision costs by minimizing the newsvendor loss (Trapero

et al., 2019), our setting is more general. Second, we explicitly focus on the case of scarce

training data and leverage tools from bootstrapping and cross-validation to estimate

the out-of-sample decision performance. Third, we assume that individual models are

trained on data from different sources, each one modeling the association between a

different pair of uncertain parameters and contextual information. This differs from

the typical setting of forecast combination which assumes a different set of forecasts

modeling the same distribution.

1.3. Paper Outline

The remainder of this paper is organized as follows. Section 2 presents a short

background on OT. Section 3 introduces the main problem. Section 4 develops two data

pooling methods and Section 5 formulates the proposed decision-focused algorithm that
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determines when and how much data to pool. Section 6 discusses the numerical results,

and Section 7 concludes and provides directions for future work.

Notation. Boldfaced lowercase letters, e.g., x, denote vectors, and boldfaced uppercase

letters, e.g., X, denote matrices. Sets are denoted with calligraphic font, e.g., S, and

|S| denotes the cardinality (number of elements) of a set S. Scalars are denoted with

ordinary letters, either lowercase or uppercase, e.g., n or N , and 1n denotes an n-size

vector of ones.

2. Preliminaries on Optimal Transport

This section provides preliminaries on OT, namely, introduces the OT problem (in

Section 2.1) and the Wasserstein barycenter (in Section 2.2).

2.1. Optimal Transport Problem

We consider a histogram a ∈ Σn of n values, where

Σn = {a ∈ Rn
+ |a⊤1n = 1}

is the standard (n − 1)-dimensional probability simplex. The terms histogram and

probability vector are used interchangeably throughout.

A discrete measure with weights a and locations ξ1, . . . , ξn ∈ Ξ reads

α =

n∑
i=1

aiδξi , (1)

where δξi is the Dirac delta distribution at position ξi, intuitively a unit of mass that

is concentrated at location ξi. Such a measure is a probability measure if, additionally,

a ∈ Σn.

The OT problem seeks to find the best way to transport a given number of goods

from a set of sources to a set of destinations, where the cost of transporting each unit

of goods from each source to each destination is known. Formally, consider two discrete

measures α, β of the form (1) with corresponding histograms a ∈ Σn, b ∈ Σm and

respective support locations ξi, i = 1, . . . , n, and ξ′j , j = 1, . . . ,m. Let C ∈ Rn×m
+ be a

6



known cost matrix, where ci,j stores the cost of transporting a unit of goods from ξi to

ξ′j . Further, let the polytope of admissible couplings between a,b be

U(a,b)
def
= {Γ ∈ Rn×m

+ |Γ1m = a,Γ⊤1n = b}. (2)

The OT problem between a,b is given by

W (a,b)
def
= min

Γ∈U(a,b)
< Γ,C > . (3)

where < Γ,C >=
∑n

i=1

∑m
j=1 γi,jci,j . The decision matrix Γ is the so-called trans-

portation plan, with γi,j representing the probability mass transported from the i-th

source to the j-th destination, with (2) ensuring that the total amount of mass moved

satisfies both each source supply and each demand destination and the non-negativity

constraints.

If we further assume that ci,j = ∥ξi−ξ′j∥r, for some r ≥ 1, where ∥ ·∥ is an arbitrary

norm, then the optimal value of (3) is equal to the r-Wasserstein distance between

measures α, β, raised to the r-th power. The Wasserstein distance is a distance met-

ric between probability distributions that measures the minimum cost of transforming

one distribution into the other and has many applications in different fields, such as

computer vision, machine learning, and stochastic programming.

The OT problem (3) is a Linear Programming (LP) problem, which can be solved

using off-the-shelf solvers. If α, β are defined on the real line, then a closed-form solution

also exists, in the form of averaging quantile functions (Papayiannis and Yannacopoulos,

2018). To deal with the computational challenges associated with large-scale problems

that arise in machine learning applications, several specialized algorithms have also been

developed, such as entropic regularization schemes (Cuturi, 2013; Cuturi and Peyré,

2016). A comprehensive overview of OT with a focus on numerical methods is given by

Peyré and Cuturi (2019).

2.2. Wasserstein Barycenter

We further consider S histograms {bs}Ss=1, where bs ∈ Σns , and our goal is to

estimate an “average histogram” over a grid of n fixed support locations. The Wasser-

stein barycenter (Agueh and Carlier, 2011), i.e., the generalized mean, is the histogram
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a ∈ Σn that minimizes the weighted sum of the Wasserstein distances from {bs}Ss=1.

The Wasserstein barycenter q∗ is given by

q∗ = argmin
q∈Σn

S∑
s=1

λsW (q,ps), (4)

and is parameterized by a probability vector of λ ∈ ΣS of known weights, termed

barycentric coordinates. Note that each Wasserstein distance itself denotes a minimiza-

tion problem. Evidently, problem (4) is also an LP problem, although its size is much

larger than the OT problem (3). The Wasserstein barycenter is a generalization of the

Euclidean mean in higher dimensions and computes a representative distribution for a

set of distributions, and has found many applications in clustering, classification, model

aggregation (Papayiannis and Yannacopoulos, 2018), and variational data assimilation

problems (Feyeux et al., 2018). For measures defined on the real line, the Wasserstein

barycenter can also be estimated efficiently with a closed-form solution.

3. Problem Formulation

In this section, we introduce the problem of contextual stochastic optimization (in

Section 3.1). Then, we consider a scenario of multiple problems each associated with

some contextual information (in Section 3.2), and describe the standard solution ap-

proach (in Section 3.3).

3.1. Preliminaries on Contextual Stochastic Optimization

We consider a contextual stochastic optimization problem given by

min
z∈Z

Ey[c(z;y)|x = x0], (5)

where y ∈ Y denotes the uncertain problem parameters (e.g., uncertain demand or

prices), x ∈ X denotes some associated contextual features (e.g., weather or market

conditions), x0 denotes a realization of x, z denotes the decision variables, Z denotes

the set of feasible solutions, c denotes a convex cost function, and the expectation is

taken with respect to (w.r.t.) the conditional distribution of y given x = x0.
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We assume that the uncertain parameter y is a discrete random variable with finite

support denoted by Y def
= {ỹ1, . . . , ỹK}, whereK is the number of support locations. For

any x ∈ X , the true conditional distribution of y is given by a probability vector p(x) ∈

ΣK , where ΣK is the (K − 1)-dimensional probability simplex. The k-th component of

p(x) is defined as pk(x) = P(y = ỹk|x), i.e., the probability of y = ỹk conditioned on

contextual information x. Thus, (5) can be equivalently written as

min
z∈Z

Ey[c(z;y)|x = x0] = min
z∈Z

K∑
k=1

pk(x0)c(z; ỹk). (6)

In practice, instead of the true probability vector p(x0), we have access to a training

data set D = {(yi,xi)}Ni=1 of N observations, which can be used to approximate (6).

In this work, we focus on using a probabilistic forecasting model to estimate the true

conditional distribution p(x). Assume a hypothesis class H of functions f : X → ΣK

that map contextual information x to the conditional distribution of uncertainty y.

Note that since f(x) ∈ ΣK , the output of the learning model needs to satisfy a set of

constraints. To keep the notation consistent, we refer to p̂ : X → ΣK as the model

trained on available data, and to p̂(x) ∈ ΣK as the estimated probability vector for any

x ∈ X .

To measure the decision quality of a model p̂(x) : X → ΣK , we further define a

function that measures the excess cost incurred by using p̂ to approximate a problem of

the form of (6) compared to the perfect foresight solution. To streamline the notation,

given any q ∈ ΣK , we define z(q) = argminz∈Z
∑K

k=1 qkc(z; ỹk). Let

D(p̂(x0),y0 | c,Z) = c(z(p̂(x0));y0)− c(z∗;y0), (7)

denote the excess cost incurred using p̂ estimated with respect to the cost function c

and the feasible set Z, where z∗ = argminz∈Z c(z;y0). Evidently, the cost estimated

from D is always non-negative.

Remark 1. In the special case where c(z;y) = y⊤z, i.e., we deal with a linear objective
function with unknown cost coefficients, then, for any x ∈ X , (6) becomes

min
z∈Z

K∑
k=1

pk(x0)z
⊤ỹk = min

z∈Z
z⊤E[y|x = x0].
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Thus, we can replace p(x0) with the conditional expectation of y given x using a point
forecasting model.

A variety of methods can be employed to generate probabilistic forecasts, including

parametric models, non-parametric models (Bertsimas and Kallus, 2020), conformal

prediction (Angelopoulos and Bates, 2022), or multi-label classification. In this work,

we focus on non-parametric estimation methods, specifically on tree-based ensembles

like random forests (Breiman, 2001), as they achieve state-of-the-art performance in

contextual stochastic optimization problems (Bertsimas and Kallus, 2020) with minimal

tuning effort. A number of extensions that embed the downstream optimization problem

within tree-based methods also exist—see, e.g., (Kallus and Mao, 2022; Stratigakos

et al., 2022; Elmachtoub et al., 2020).

Specifically, non-parametric machine learning models learn a function that assigns

weights ω(x) ∈ ΣN to training observations yi based on contextual information x.

Then, (6) is approximated by

min
z∈Z

N∑
i=1

ωi(x0)c(z;yi). (8)

Further consider an ensemble of T decision trees {τ1, . . . , τT } grown with the random

forest method (Breiman, 2001), where τj : X → {1, . . . , Lj} is a map that corresponds

to a disjoint partition of X into Lj tree leaves and τj(x) is the leaf identity. In this case,

the respective weights are given by

ωi(x0) =
1

T

T∑
j=1

I [τj(xi) = τj(x0)]∑N
i′=1 I [τj(xi′) = τj(x0)]

, (9)

where is I [·] is the indicator function. Evidently, as y has finite support, we can count

the number of times ỹk appears in D and aggregate the respective weights ωi(x0) to

equivalently write (8) with a probability vector that weighs each support location. That

is, the estimated probability of y = ỹk conditioned on x = x0 is given by p̂k(x) =∑N
i=1 I [yi = ỹk]ωi(x).
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3.2. Dealing with Multiple, Contextually-Dependent Problems

We next discuss the main problem of interest, which is solving a collection of S

potentially independent stochastic optimization problems, where each uncertainty is

associated with some contextual information, specified by

1

S

S∑
s=1

min
zs∈Zs

Eys [cs(zs;ys)|xs = xs,0] =
1

S

S∑
s=1

min
zs∈Zs

Ks∑
k=1

ps,k(xs,0)cs(zs; ỹs,k), (10)

where ys represents the uncertain parameters, Zs is the set of feasible solutions, xs,0 is a

realization of the context xs, and ps(xs) ∈ ΣKs denotes the true conditional distribution

of ys given xs. Throughout, subscript s is used to indicate that we are referring to the

s-th subproblem2.

We are particularly interested in the case where the uncertainty ys and the contex-

tual information xs represent the same variables across all problems, which is a common

setting; for instance, ys could be the uncertain renewable energy production and xs as-

sociated weather forecasts, with s indicating a specific geographical location. Thus, we

assume that ỹs,k = ỹk, Ks = K, and Xs = X . To further simplify the notation, we

assume, without loss of generality, that cs(z;y) = c(z;y) and Zs = Z. Problem (10)

can be equivalently written as

1

S

S∑
s=1

min
zs∈Z

K∑
k=1

ps,k(xs,0)c(zs; ỹk). (11)

Note that the true conditional distributions ps(x) may differ across problems and

are, naturally, unknown. Instead, for each subproblem, we have access to a local training

data set Ds = {(ys,i,xs,i)}Ns
i=1 of Ns observations, with subscript s highlighting that

training observations differ across problems; the same also holds true for the out-of-

sample realizations xs,0. Similar to the case of the single problem, our goal is to use the

available data sets to approximate (11).

2For simplicity, we assume that all problems are weighted equally in the objective.
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3.3. The Standard Local Solution Approach

In the absence of coupling constraints or variables across the S problems in (11),

the standard approach is to decouple them and solve them separately using the local

data sets. Specifically, consider a probabilistic forecasting model p̂s : X → ΣK trained

on the local data set Ds. The decoupled solution of (11) is then given by{
min
z∈Z

K∑
k=1

p̂s,k(xs,0)c(z; ỹk)

}
s=1,...,S

, (12)

where p̂s(xs,0) ∈ ΣK is an estimated probability vector. We consider (12) to be the

standard benchmark of solving (10) and refer to it as the local approach, as it relies

solely on the local data set Ds when solving the s-th subproblem.

However, if the local training data sets are scarce, the learned models may incur a

high degree of misspecification and lead to poor out-of-sample performance. Therefore,

we investigate whether pooling data across the S problems can be beneficial.

4. Data Pooling Methods

In this section, we describe different approaches to leverage data across problems to

improve decision performance across a number of problems, namely, a method based on

naive data pooling (in Section 4.1) and a method based on OT (in Section 4.2).

4.1. Global Model with Naive Data Pooling

A straightforward approach for data pooling is to combine all local data sets {Ds}Ss=1

and train a single, centralized probabilistic forecasting model. Let Dpool = (D1, . . . ,DS)

be the concatenation of all data sets, and let p̂pool : X → ΣK be a global probabilistic

forecasting model. Then, problem (10) can be approximated by solving S decoupled

problems given by {
min
z∈Z

K∑
k=1

p̂
pool
k (xs,0)c(z; ỹk)

}
s=1,...,S

, (13)

i.e., the decoupled problems are solved using a common forecasting model. For a non-

parametric machine learning model (8), we first train a single model using data set

Dpool and then estimate weights ωpool(x) ∈ ΣNpool , where Npool = |Dpool|.

12



Following the forecasting terminology (Salinas et al., 2020), we refer to this approach

as a global model with naive data pooling. In practice, this requires a centralized entity

that collects all the data and trains the global model, which may create issues regarding

data leakage and raise privacy concerns. Considering a federated learning framework

where the global model is trained without sharing data across the S subproblems can

ameliorate privacy concerns.

4.2. Optimal Transport-based Data Pooling

In this section, we propose implicit data pooling via means of model aggregation

based on OT that does not rely on centralized data collection. Following the standard

local approach described in Section 3.2, we assume S local models p̂s : X → ΣK

that map contextual information to probability vectors p̂s(x) ∈ ΣK . Our goal is, for

each x ∈ X , to combine knowledge across the S problems by estimating representative

conditional distributions. Let g : X → ΣK be defined as

g(x) = argmin
q

S∑
s=1

λsW (q,ps(x)). (14)

In words, g is a function that aggregates the S models by estimating the Wasserstein

barycenter of their output for a realization of contextual information x, parameterized

by coordinates λ ∈ ΣS . Equivalently, we can view this as aggregating S probabilistic

forecasting models by minimizing the Wasserstein distance of their outputs. Problem

(10) can now be approximated by solving S decoupled problems given by{
min
z∈Z

K∑
k=1

gk(xs,0)c(z; ỹk)

}
s=1,...,S

. (15)

As in the previous case, all problems leverage the same function to derive conditional

distributions. However, unlike the naive data pooling approach for learning a global

model, we do not require centralized access to the local training data sets. Rather, we

only require access to the conditional marginal distributions, i.e., the outputs of p̂s.

Hence, the model training phase remains the same as the local approach, and only the

inference phase is affected. Also, note that the Wasserstein barycenter can be estimated

in a decentralized way to further minimize data leakage across the subproblems.
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5. Decision-Focused Data Pooling

We previously presented two approaches for pooling data across multiple subprob-

lems: naive data pooling and OT-based model aggregation. A potential shortcoming

associated with both approaches is model misspecification due to data heterogeneity.

For instance, concept drift, i.e., the case when the true joint distribution between y

and x differs across the subproblems, poses a major challenge. A global model may not

generalize well to all subproblems, while OT-based model aggregation assumes that all

local models are equally informative. To address this issue, we develop a decision-focused

data pooling algorithm that interpolates between the local and the global approaches

based on the expected out-of-sample cost of the downstream optimization problem.

First, we introduce a procedure to estimate the expected decision cost using the

OOB method, which sets the foundation for our method (in Subsection 5.1). Next, we

present our decision-focused data pooling algorithm (in Subsection 5.2).

5.1. OOB Estimation of the Decision Cost

This section describes how to estimate the out-of-sample decision cost of a trained

model building on the OOB error method, which is a technique used in ensemble learning

to estimate model performance without the need for a separate validation set. The

reason for building our proposed approach on the OOB method is twofold. First, it

allows us to jointly train and test a model, which is considerably less computationally

costly than cross-validation. Second, it leverages the full training data set and does not

require a separate validation set, making it advantageous when training data are scarce.

We consider an ensemble model of weak base learners trained using bootstrap ag-

gregation (bagging), e.g., a random forest model. That is, during the training process,

each base learner is trained on a new data set created by subsampling with replacement

(bootstrapping) from the original training data set. The predictions of the models in-

ferred from the base learners are then aggregated via, e.g., averaging— see (Hastie et al.,

2009, Ch. 8) for details. By evaluating predictions on observations not used in building

a specific base learner, bagging allows for evaluating the so-called OOB error, which
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provides an estimate of the out-of-sample prediction error. As the number of training

observations increases, the OOB error converges to the leave-one-out cross-validation

error (Breiman, 1996).

We now describe a novel approach to evaluating the expected out-of-sample decision

cost, by adapting the OOB method to a prescriptive context. For simplicity, we consider

the case of a single model and drop subscript s. Consider a problem of the form

of (6) approximated using an ensemble model p̂ : X → ΣK composed of weak base

learners, trained either to minimize prediction error or the downstream decision cost.

The decision-focused OOB method is described as follows. For i = 1, . . . , N , we find

all the models inferred from the base learners for which the i-th observation was not

used for training. These models can be considered a new ensemble model, which we use

to estimate a conditional distribution p̂OOB
i (xi). The OOB estimate of the decision cost

is then evaluated as the average difference between the incurred decision cost and the

perfect foresight solution, given by

1

N

N∑
i=1

D(p̂OOB
i (xi),yi | c,Z). (16)

Notably, the key distinction from the standard OOB error method is that the

decision-focused OOB method solves a weighted sample average approximation (Bert-

simas and Kallus, 2020) of a stochastic optimization problem for each OOB observation

and measures the incurred decision cost. In contrast, the standard OOB error method

involves averaging the base learner predictions and estimating the prediction error3. The

decision-focused OOB method also has potential applications in searching for model hy-

perparameters that lead to the smallest decision cost, similar to the method proposed

by Corredera and Ruiz (2023).

We next describe in detail how to estimate p̂OOB
i (x) for the case when p̂ is a random

forest model. Consider a random forest composed of T trees {τ1, . . . , τT } that outputs

weights ω(x) ∈ ΣN of the form (9) for any x ∈ X , where τj is trained using a boot-

strapped version of D. For the i-th observation, let T ⊆ [T ] be the subset of trees that

3For simplicity, we assume a regression setting where the target variable is continuous.
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did not use that observation for training. Further, let D′ = D\{(yi,xi)} be a surrogate

data set that excludes the i-th training observation from the original data set D. For

each observation of D′, indexed by subscript l, we estimate weights

ωOOB
l (xi) =

1

|T |
∑
j∈T

I [τj(xl) = τj(xi)]∑N−1
l′=1 I [τj(xl′) = τj(xi)]

,

which are of the form of (9) but only consider a subset of trees. Note that the i-th

observation is removed from the original data set to avoid potential bias. Finally, for

k = 1, . . . ,K, we estimate p̂OOBi,k (xi) =
∑N−1

l=1 I [yl = ỹk]ω
OOB
l (xi).

5.2. Decision-Focused Barycentric Interpolation

Algorithm 1 PrescrInterp

Input: training data sets {Ds}Ss=1, local models {p̂s}Ss=1, anchor probability vector

panch(x)

Output: hyperparameters {αs}Ss=1

1: fix a grid of values, e.g., A = {0.0, 0.1, . . . , 1.0}

2: for s = 1, . . . , S do

3: for α ∈ A, i = 1, . . . , Ns do

4: find p̂OOB
s,i (xs,i) {OOB histogram}

5: qOOBs,i,α = argmin
q

αW (q, p̂OOB
s,i,k(xs,i)) + (1− α)W (q,panch(xs,i)) {barycentric in-

terpolation}

6: end for

7: find α∗
s = argminα∈A

1
Ns

∑Ns
i=1D(qOOBs,i,α,ys,i) {minimizes the OOB prescriptive

cost}

8: end for

return {α∗
s}Ss=1

In this section, we propose a decision-focused algorithm to pool data from a collection

of S problems with contextual information. Assume access to local data sets Ds and

models p̂s, as well as an anchor distribution panch(x) estimated from a data pooling

procedure, e.g., the output of a global model with naive data pooling or aggregation of
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p̂s of the form of (14). Note that it is also possible to consider distributions that are not

data-driven, e.g., a distribution provided by a domain expert given the context. Our goal

is to determine when and how much data to pool in order to minimize the expected out-

of-sample decision cost. Effectively, this can be viewed as a problem of decision-focused

forecast combination. To achieve this, we utilize OT and the Wasserstein barycenter

once again to interpolate between a local and an anchor distribution, allowing for a

flexible combination of information from both of them.

The decision-focused interpolation algorithm is detailed in Algorithm 1. The algo-

rithm begins by fixing a grid of values for hyperparameter α ∈ [0, 1], which controls the

amount of data pooling. For each subproblem s, the algorithm iterates over the values of

α and training observations i = 1, . . . , Ns, and estimates a conditional distribution using

the decision-focused OOB method. The algorithm then interpolates between the OOB

and anchor distributions by estimating a barycenter whose coordinates are determined

by α. For clarity, p̂OOB
s,i (xs,i) is the OOB probability vector given x = xs,i, estimated

from a subset of base learners from the ensemble model p̂s which did not use the i-th

observation for training (hence the superscript OOB). Further, qOOBs,i,α is the α-weighted

average distribution, in the sense of the Wasserstein distance, between p̂OOB
s,i (xs,i) and

panchor(xs,i). Evidently, α = 1 retrieves the local solution, while α = 0 maximizes the

amount of data pooling. Finally, the algorithm finds the value of α that minimizes the

OOB decision cost for the training data set.

For an out-of-sample realization of uncertainty, xs,0, we first estimate the α-weighted

Wasserstein barycenter of the local and the anchor models and then solve the respective

problem. A different hyperparameter α is selected for each problem. This way, problems

with high-quality local data sets and, by extension, high-quality forecasting models will

converge to the local approach faster, while the rest of the problems may still benefit

from data pooling.

Note that we can, alternatively, interpolate between the local and the anchor distri-

bution by minimizing the ℓ2 distance, instead of the Wasserstein distance, by replacing
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Step 5 of Algorithm 1 with

qOOBs,i,α = αp̂OOB
s,i,k(xs,i) + (1− α)panch(xs,i),

effectively creating a convex combination between the local and the anchor distribution.

Nonetheless, the resulting mixture of distributions does not maintain the geometric

structure and is less interpretable.

6. Numerical Experiments

In this section, we empirically validate the proposed data pooling methods on a

motivating application related to the integration of stochastic renewable energy sources

in power systems. We describe the problem (in Section 6.1), discuss our experimental

setup and input data (in Section 6.2), and present the numerical results (in Sections 6.3).

6.1. Trading Renewable Energy in Electricity Markets

We consider a set of renewable producers, namely wind power producers, partici-

pating as price-takers in a day-ahead electricity market subject to imbalance penalties,

assuming a dual-price balancing mechanism (Stratigakos et al., 2022). Prior to market

closure and for each market clearing period, producers submit an energy offer based

on contextual information regarding future production, e.g., weather conditions. Dur-

ing real-time operation, the system operator activates balancing reserves to ensure a

demand-supply equilibrium and proper operation. If the system length is positive, i.e.,

supply is greater than demand, downward regulation reserves are activated, while up-

ward regulation reserves are activated if the system length is negative. The procurement

cost of balancing reserves is retrieved ex-post; namely, producers whose real-time pro-

duction deviated from the contracted offer in the same direction as the system length

are subject to financial penalties.

The problem of minimizing a producer’s trading cost under production and price

uncertainty can be formulated as a Bernoulli newsvendor problem (Pinson, 2023). Let y

be the uncertain renewable production and h ∼ Bern(τ) be a Bernoulli random variable
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that models the system length with τ being the probability of success. Typically, y, h

are assumed to be independent. If τ is known, then the optimal solution of the Bernoulli

newsvendor problem is the τ -th quantile of the predictive density of y (Pinson, 2023,

Proposition 1); conversely, a fully robust solution when τ is unknown is offering the

expected value of y (Pinson, 2023, Corollary 2). Here, we propose a hybrid strategy

that interpolates between these two extremes by minimizing

c(z; y) = (1− r)max
( τ

1− τ
(y − z), (z − y)

)
+ r(y − z)2, (17)

where z is the energy offer that takes values in the feasible set Z = {z | 0 ≤ z ≤ 1},

and r is a user-defined parameter that controls the degree of risk-aversion against price

uncertainty. Evidently, r = 0 retrieves a standard newsvendor loss, while for r = 1 we

minimize the mean squared error.

6.2. Experimental Setup and Input Data

In the numerical experiments, we compare the following methods:

• Local: a standard approach where each subproblem is solved independently with-

out any data pooling.

• Pool-Naive: a global model with naive data pooling.

• Pool-OT: model aggregation with the Wasserstein barycenter.

• Interp: barycentric interpolation between Local and Pool-OT using the proposed

decision-focused data pooling algorithm.

To estimate the conditional distribution of the production, for each problem, we train

a random forest model with 100 trees and default hyperparameters. For Pool-Naive, we

consider the same model and hyperparameters as Local but trained on the concatenated

data sets. For Pool-OT, we use the 1-Wasserstein metric to compute the barycenters,

with the barycentric coordinates set at λs = Ns∑S
s=1 Ns

. We also considered a modified

cross-validation scheme to tune the barycentric coordinates by evaluating the in-sample

performance of each model for the subset of problems that did not use its local data
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Table 1: Average percentage (%) of task loss improvement over Local for τ = 0.20, r = 0.50. Parentheses

show the standard error.

Pool-Naive Pool-OT Interp

S = 5 1.84 (2.03) 2.83 (2.04) 4.09 (1.64)

S = 10 2.89 (2.97) 3.86 (2.80) 5.92 (2.15)

S = 20 3.26 (0.70) 3.47 (0.64) 5.33 (0.54)

S = 50 3.59 (0.70) 4.23 (0.65) 5.52 (0.55)

for training. However, we did not observe significant differences in performance, hence

these results are omitted.

For input data, we use power measurements from S = 50 wind turbines located

in mid-west France, with a total nominal capacity of 100 MW. The available data

sets span the period from January 2019 to April 2020 with an hourly resolution.

Wind production data are normalized and assumed to take values on the fixed grid

{0.00, 0.01, . . . , 0.99, 1.00}. We use the data from 2019 to sample training data sets and

the remaining 5 months for testing.

For contextual information, we use wind speed and wind direction forecasts from a

Numerical Weather Predictions (NWP) model. The NWP model forecasts are issued

daily at 00:00 UTC with a spatial resolution of 0.1o × 0.1o and a forecast horizon of 96

hours ahead. This setting complies with the requirements of participating in day-ahead

electricity markets, where the offers are typically submitted 12 to 36 hours ahead of

the actual operation period. For the s-th subproblem, xs comprises the NWP model

forecasts from the closest grid point in terms of Euclidean distance.

6.3. Results

We examined performance for different values of τ and various degrees of risk aver-

sion r. As results were similar, we focus our discussion on the case of τ = 0.20, i.e.,

the optimal risk-neutral offer equals the 20-th quantile of the wind production distri-

bution, and risk parameter r = 0.50. Additional results are provided as supplementary

material.
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Figure 1: Average task loss for τ = 0.20, r = 0.50 versus sample size Ns (same for all subproblems).

Error bars show ±1 standard error.

First, we consider a scenario where the number of training observations Ns is fixed

across all problems and investigate the performance of the different methods as a func-

tion of Ns, as well as the number of problems (i.e., number of wind turbines) S. To

obtain our results, we first sample S wind turbines and Ns training observations for each

turbine, train both the local and global models, estimate the Wasserstein barycenters

for each x, and run Algorithm 1 for the interpolation method. We then evaluate the

performance of each method on the test set. The process is repeated 10 times.

Fig. 1 presents the average task loss over the S subproblems and all the iterations.

Overall, the results suggest that data pooling is beneficial when data are scarce, but

as the amount of data increases the decisions derived from the local approach, Local,

become more reliable and the benefits of data pooling are less pronounced. This result

is intuitive and corroborates the findings of previous works — see, e.g., the results by

Gupta and Kallus (2022). The relative improvement over Local is also more pronounced

when Ns is small and S becomes larger—see, e.g., the bottom right plot of Fig. 1
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for Ns = 50. Examining the two data pooling approaches shows that Pool-Naive

outperforms Pool-OT when both the number of observations Ns and the number of

turbines S is small—see, e.g., the top plots of Fig. 1 for Ns = 50. As S increases,

Pool-OT improves considerably and for S ≥ 20 converges to better performance than

Pool-Naive. Increasing S ameliorates the instability in the barycenter estimation,

which helps explain the improved performance of Pool-OT.

Importantly, the decision-focused data pooling, Interp, performs consistently well

and outperforms both Local and Pool-OT in all cases. When Ns is moderate to small,

Interp is considerably better than Local, while when Ns is larger, Interp converges

to similar or better performance than Local. This result indicates that the decision-

focused data pooling algorithm does a very good job of identifying when and how much

data to pool in order to minimize the downstream cost, and that a small degree of data

pooling offers benefits even for larger training samples.

Next, we repeat the previous experiment but randomly sample the number of train-

ing observations, Ns, for each subproblem from a uniform distribution over the interval

[10, 200]. Table 1 summarizes the expected improvement in terms of decision cost and

the standard error of each method. All methods lead to improved performance com-

pared to Local, with Pool-Naive and Pool-OT leading to an expected improvement of

2.90% and 3.60%, respectively. For both approaches, the improvement is within statis-

tical error for smaller values of S and becomes greater as S increases, corroborating the

previous results. Interp ranks again as the best-performing method with an average

improvement of 5.22%, with results being significant for all values of S. This further

highlights the benefits of decision-focused interpolation, as it performs consistently well

even when the local sample size and, by extension, model quality varies.

7. Conclusions

In this work, we investigated data pooling methods to address data scarcity when

dealing with multiple contextually-dependent problems. Two approaches were pro-

posed, namely training a global model with naive data pooling and an OT-based
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method for combining estimated conditional distributions. We further developed a

decision-focused data pooling algorithm that interpolates between a local and an an-

chor distribution based on an estimation of the expected downstream decision cost.

For validation, we examined a pivotal application related to the integration of weather-

dependent renewable energy sources in power systems, namely trading in a day-ahead

electricity market. Our empirical results illustrated that data pooling improves overall

performance when data are scarce and, perhaps more importantly, our decision-focused

data pooling algorithm correctly identifies when and how much data to pool, leading

to consistently better performance than standalone and pooled methods. Future work

could focus on the case of both scarce and contaminated data, and developing data

pooling methods that are robust to local outliers.
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Esteban-Pérez, A., Morales, J.M., 2022. Distributionally robust stochastic programs

with side information based on trimmings. Mathematical Programming 195, 1069–

1105.

Feyeux, N., Vidard, A., Nodet, M., 2018. Optimal transport for variational data assim-

ilation. Nonlinear Processes in Geophysics 25, 55–66.
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