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We show that pressure applied to twisted WSe2 can enhance the many-body gap and region of stability of
a fractional Chern insulator at filling ν = 1/3. Our results are based on exact diagonalization of a continuum
model, whose pressure dependence is obtained through ab initio methods. We interpret our results in terms of
a magic line in the pressure-vs-twist angle phase diagram: along the magic line, the bandwidth of the topmost
moiré valence band is minimized while simultaneously its quantum geometry resembles that of an ideal Chern
band. We expect our results to generalize to other twisted transition metal dichalcogenide homobilayers.

DOI: 10.1103/PhysRevResearch.5.L032022

Introduction. Moiré materials provide a highly tunable
platform where many quantum phases of matter can be pre-
dicted, simulated, and explored. Of particular interest is the
potential to realize a fractional Chern insulator (FCI), the zero
field analog of the fractional quantum Hall (FQH) effect [1].
FCIs appear in a number of lattice models with fractionally
filled flat Chern bands [2–9]. While these early models lacked
a clear electronic realization, the unique interplay between
topology and interactions in moiré materials brings the exper-
imental realization of FCIs within reach: recently FQH-like
states in magic angle twisted bilayer graphene (TBG) have
been observed under reasonably small magnetic fields (B ∼
5T) [10]. But as the field is reduced, the finite-field ground
state becomes unstable to a charge density wave (CDW),
consistent with the close competition between the FCI and
CDW phases found in theoretical studies [11–16].

Thus, an experimental realization of the long-sought
fractional quantum Hall physics at zero field remains to
be found. Twisted transition metal dichalcogenides (TMDs)
offer a promising alternative platform, as we will now explain.
Chern bands were predicted in certain TMD homo- [17] and
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heterobilayers [18] and experimentally confirmed in
MoTe2/WSe2 [19–21]. Regarding homobilayers, while Chern
bands were not observed in twisted WSe2 in the range 4–5◦
[22,23], subsequent numerical studies predicted FCI ground
states at filling ν = 1/3 of the topmost moiré band at smaller
twist angles (∼1.5◦) in twisted MoTe2 [24] and WSe2 [25].

In this work, we show that pressure applied to twisted
WSe2 provides a new tuning knob to enhance the stabil-
ity of the FCI phase. Specifically, we introduce a region
in the pressure-vs-twist angle phase diagram where the FCI
indicators [14,26–33]—namely bandwidth, Berry curvature
fluctuations, and trace of the quantum metric—are near si-
multaneously optimized. We then use exact diagonalization to
demonstrate an FCI ground state at ν = 1/3 stabilized in the
region of near-ideal band geometry, whose many-body gap
increases with pressure. We further address the competition
between this FCI state and a CDW. Though our calculations
are specific to twisted WSe2, we expect similar features to
appear in other twisted TMDs, such as MoTe2, where flat
topological bands emerge.

Moiré TMD topological bands under pressure. The low-
energy physics of twisted homobilayers such as WSe2 or
MoTe2 can be accurately described by a continuum model.
The most general valley-projected Hamiltonian is given, in
layer space, by [17,34]

HK =
(

hb(k) T (r)
T †(r) ht (k) − Eoff

)
. (1)

Due to spin-valley locking, carriers have only one pseudospin
degree of freedom. The Hamiltonian describing the other
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valley is related by time-reversal symmetry. The diagonal
terms of Eq. (1) describe carriers populating the topmost
valence band of either the bottom (b) or top (t) layer. They
consist of the quadratic dispersion of a single TMD layer
folded into the moiré Brillouin zone, plus the moiré potential
�b/t (r) due to the presence of the other layer, i.e.,

hb/t (k) = − h̄2

2m∗ (k − kb/t )
2 + �b/t (r), (2)

�b/t (r) = 2Vm

∑
j=1,3,5

cos(b j · r ± ψ ), (3)

where kb/t = 4π/
√

3aM (−1/2,±1/2
√

3) are momentum
shifts, the vectors b j = 4π/

√
3aM (cos(π j/3), sin(π j/3)) be-

long to the first shell of reciprocal lattice vectors, with aM the
moiré length, m∗ is the effective carrier mass, and Vm and ψ

are parameters that determine the strength and spatial pattern
of the moiré potential, respectively. The interlayer tunneling
in Eq. (1) is given by

T (r) = ω
(
1 + ei 2π

3 αeib2·r + ei 2π
3 2αeib3·r), (4)

where ω is the tunneling amplitude, α = 0 for AA stacking
(0◦ rotation between layers, as considered in this paper) and
α = 1 for AB stacking (180◦ rotation between layers) [35].
Finally, Eoff describes the offset between the two topmost
bands from each layer, which vanishes for homobilayers in
the absence of a displacement field, i.e., an interlayer potential
difference. The effect of displacement field has been studied
[25,36] and tends to make bands more dispersive, disfavoring
FCI stabilization [19,20]; henceforth we set Eoff = 0.

We focus on twisted AA-stacked WSe2. Using ab initio
calculations [37], we obtain an effective mass m∗ = 0.337 m0

and compute the continuum model parameters Vm, ψ, ω over
a range of experimentally achievable pressures P or equiv-
alently, sample compression percentages. The behaviors of
Vm and ω as a function of sample compression and pressure
are shown in Fig. 1(a), while the corresponding evolution
of the phase ψ is shown in Fig. 1(b). Both the tunneling
amplitude ω and moiré strength Vm increase quadratically with
compression percentage, supporting the intuition that applied
pressure pushes the layers closer together, increasing both
the interlayer tunneling and the moiré potential. A similar
trend was predicted in TBG [38], followed by experimental
realization [39,40]. Thus, we expect the same tendency to
hold for other twisted TMD homobilayers like MoTe2 [37].
Figure 1(c) shows an example of the obtained bandstructure at
P = 2 GPa. For the parameter range considered in this work,
the topmost moiré valence band is always topological with
Chern number CK/K ′ = ±1, consistent with previous calcula-
tions at P = 0 [17,35]. Time-reversal symmetry enforces that
the Chern numbers at valley K and K ′ are opposite.

FCI indicators. Comparing a Chern band to the lowest
Landau level (LLL) yields single-particle indicators of the
stability of a putative FCI phase when the Chern band is
partially filled [7,8]. Specifically, the LLL has vanishing band-
width, homogeneous Berry curvature, and an ideal quantum
geometry [9,14,26–28,41–43]. Though the quantum geometry
has been an intense subject of recent study, particularly in
relation to TBG, it has not been studied in moiré TMDs.

FIG. 1. [(a)-(b)] Evolution of continuum model parameters Vm,
ω, and ψ for WSe2 as a function of compression percentage (bot-
tom axis) and applied pressure (top axis). (c) K-valley-projected
bandstructure, corresponding to P = 2 GPa and for θ = 1.8◦. The
topmost moiré valence band from valley K (K ′) has Chern number
CK = +1 (CK ′ = −1).

Figure 2(a) shows the bandwidth of the topmost moiré
valence band as a function of twist angle and pressure. At
vanishing pressure, the bandwidth is a nonmonotonic function
of twist angle, exhibiting a minimum at a “magic angle”

FIG. 2. FCI single-particle indicators of the topmost moiré va-
lence band of WSe2, plotted as a function of twist angle and pressure:
(a) bandwidth W , (b) deviation from the trace condition T , and
(c) Berry curvature fluctuations F . The white line in each plot cor-
responds to the magic line where bandwidth is minimized. Dashed
red lines in [(b)-(c)] trace the minimum value of the quantity being
plotted. There is a region of the phase diagram where the three
indicators are simultaneously close to zero.
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[17,35]. Figure 2(a) shows that the minimum extends over the
full range of pressures considered, resulting in the appearance
of a magic line, indicated in white and new to this work.

The stability of the FCI phase will also be impacted by the
geometric properties of the Bloch wavefunctions, as contained
in the quantum geometric tensor

Qab
k = 〈

Da
kuk

∣∣Db
kuk

〉 = gab
k + i

2
εab
k, (5)

where Da
k ≡ ∂a

k − iAa
k is the covariant derivative, Aa

k =
−i〈uk|∂a

k uk〉 is the Berry connection and uk is the periodic
part of the Bloch function. The right-hand side of Eq. (5)
expresses the quantum geometric tensor in terms of the
Fubini-Study metric gab

k and the Berry curvature 
k, which
satisfy the inequality ωk,ab gab

k � |
k| [26], for each momen-
tum k and unit-determinant matrix ωk,ab. A band for which
a k–independent matrix ωab exists that saturates the previous
inequality, i.e., ωab gab

k = 
k, is said to satisfy the generalized
trace condition; a dispersionless band satisfying this condition
is called an ideal flat band [28]. The Bloch functions of
an ideal flat band admit a universal analytical form closely
related to the LLL wave functions [28,44–47]. As a conse-
quence, FQH–like ground states are stable under short-ranged
interactions in ideal flat bands.

Beyond the LLL, models satisfying the ideal band con-
dition include the chiral model of TBG [14,48–51], Dirac
fermions in a nonuniform magnetic field [16], the Kapit-
Mueller model [52,53], and periodically strained quadratic
band materials [54]. Engineering realistic systems with bands
close to the ideal limit [55–58] is a promising direction in
the search for FCIs. We now show that moiré TMDs host
near-ideal flat bands.

We quantify the deviation of moiré TMD bands from the
generalized trace condition by [14,15,26–28,41–43]

T =
∫

BZ

d2k
ABZ

(
ωab gab

k − 
k
)
, (6)

where ABZ is the area of the Brillouin zone and ω ab =
ωaω

∗
b + ω∗

aωb is obtained from the eigenvector ωa of Q
ab

with the smallest eigenvalue; Q
ab

indicates the Brillouin-zone
averaged quantum geometric tensor. The behavior of T with
pressure and twist angle is shown in Fig. 2(b), which reveals
that the line of minimum T nearly coincides with the magic
line defined by minimum bandwidth.

Finally, the LLL also exhibits k-independent Berry curva-
ture. Figure 2(c) shows the Berry curvature fluctuations

F =
[∫

BZ

d2k
ABZ

(

k

2π
− C

)2
]1/2

, (7)

where C is the Chern number, as a function of twist angle
and pressure. Notably, while the lines of minimum bandwidth
and trace deviations almost coincide, the line of minimum
Berry curvature fluctuations is distinct. In an ideal band,
such as those of chiral TBG, W , T , and F all vanish
simultaneously.

Pressure-twist angle phase diagram. Motivated by the
existence of the region in Fig. 2 where W , T , and F are
simultaneously small, we proceed to study many-body ground
states in the pressure-vs-twist angle phase space at fractional

band filling. Our approach is to write the fully interacting
Hamiltonian in momentum space, where the single-particle
term comes from the band energies of the continuum model
and interactions are projected onto the topmost moiré band.
This projection reduces the Hilbert space, allowing for exact
diagonalization to obtain the ground state and excited states.
Labeling the single-particle energies and eigenstates from the
topmost moiré band of Eq. (1) as εk and |uk〉, respectively, the
interacting Hamiltonian reads

H =
∑

k

εkc†
kσ

ckσ + 1

2

∑
k,k′q
σ,σ ′

V σ,σ ′

k,k′,qc†
k,σ

c†
k′,σ ′ck′−q,σ ′ck+q,σ . (8)

Here σ/σ ′ are valley indices and c†
k,σ

creates a hole with mo-
mentum k in valley σ . The gate-screened Coulomb interaction
elements projected to the topmost band are

V σ,σ ′

k,k′,q = 1

A

∑
G


q+G
k,σ


−q−G
k′,σ ′

2πe2

ε q̃
tanh (q̃ d ), (9)

where q̃ = |q + G| is the momentum transfer, A is the sys-
tem area, 

q+G
k,σ

= 〈uk,σ |uk+q+G,σ 〉 are the form factors, ε is
the dielectric constant, and d denotes the distance from the
sample to metallic gates; to be concrete, we fix d = 10 nm.
The projection to the topmost band is justified as long as the
interaction scale is smaller than the gap to remote bands. To
ensure this condition is met, we fix ε = 30, well within the
validity of our band projection. In the Supplemental Material
[37], we show results for ε = 10, which we expect is closer
to the experimental value. While the phase diagram displays
the same qualitative features, the single band projection is not
as well justified in that case: a more reliable result requires
projecting to the top two bands, which we do not consider in
this work.

We diagonalize the Hamiltonian in Eq. (8) at band filling
factor ν = N/Ns = 1/3, where N is the number of holes and
Ns the number of moiré unit cells, for different finite sys-
tem sizes Ns. The resulting phase diagram as a function of
twist angle and pressure is shown in Fig. 3(a). The colored
area between the solid black lines indicates the region where
Coulomb interactions induce a fully valley-polarized ground
state.

Within the valley-polarized regime, the blue region indi-
cates a ground state in the same universality class as the
Laughlin state, i.e., an FCI, which extends over approximately
half a degree. The FCI is identified by the many-body spec-
trum in Fig. 3(b), showing a threefold-degenerate ground
state with a clear gap to excited states. Upon flux insertion,
the three degenerate ground states evolve into each other
and remain separated from all excited states [37]. Figure 3
reveals two important insights: First, applied pressure both
extends the range of angles over which the FCI phase can
be realized and increases the many-body gap. Second, the
magic line where W and T are minimized lies within the FCI
region. This highlights the limits of Berry curvature as an FCI
indicator [53].

Adjacent to the FCI phase and within the valley-polarized
region is a competing CDW ground state, which domi-
nates when bandwidth and trace deviations become large
enough. The many-body spectrum of the CDW phase, shown
in Fig. 3(c), has a characteristic threefold ground state
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FIG. 3. (a) Phase diagram of twisted bilayer WSe2 at filling
ν = 1/3 as a function of twist angle and pressure. Gray indicates
that the ground state is not valley polarized (NVP). Blue and red
indicate valley polarization and correspond to an FCI and a CDW,
respectively. Blue color scale indicates the many-body gap �MB in
the FCI phase for Ns = 27. The solid line with dots is the magic
line and the dashed line indicates the minimum of F . (b) Many-
body spectrum for a representative FCI as a function of linearized
many-body momentum, displaying a threefold-degenerate ground
state at γ . (c) Many-body spectrum for a CDW state, exhibiting three
nearly-degenerate ground states with momenta γ , k, k′.

degeneracy consisting of states with many-body momentum
γ , k, and k′.

To further characterize the FCI and CDW phases, Fig. 4
shows the occupation n(q), static structure factor S (q), and
Berry curvature 
(q) for representative points within each
phase. In the FCI phase, the charge occupation and structure
factor are nearly constant, characteristic of a Laughlin-like

FIG. 4. Ground state occupation n(q), static structure factor S(q)
and Berry curvature 
(q) for (a) the FCI (θ = 1.6◦, P = 1 GPa)
and (b) the CDW (θ = 2.1◦, P = 1 GPa). Results for occupations
and structure factors were calculated using Ns = 36. The peak in the
structure factor at γ corresponding to the valley-polarization has been
omitted to highlight the structure at other momenta.

state. In contrast, in the CDW phase, the occupation increases
towards the edge of the Brillouin zone, while the structure
factor shows peaks at the k/k′ points, indicating moiré trans-
lation symmetry breaking to a

√
3 × √

3 state. The Berry
curvature in the CDW phase is peaked around γ , where the
ground state occupation number vanishes. Thus, the charge
carriers do not strongly feel the effective magnetic field, con-
sistent with its trivial topology. In contrast, the ground state
occupation in the FCI phase is more uniformly distributed, so
that charge carriers feel the Berry curvature throughout the
Brillouin zone, resulting in topological order. A similar trend
was found in TBG [11,14,59]. However, one difference is that
in TBG the Berry curvature is always peaked at γ , while for
TMD homobilayers the peak in Berry curvature moves as the
model parameters vary, as seen in Fig. 4.

Discussion. We have proposed semiconductor moiré mate-
rials as systems with rich quantum geometry that can be tuned
experimentally via applied pressure to stabilize topologically-
ordered phases. Specifically, in twisted WSe2 the “magic
angle” where the bandwidth is minimized at zero pressure
turns into a magic line with similarly small bandwidth at finite
pressures. The magic line extends the range of angles over
which the FCI phase is stable. Further, the quantum geometry
of the band in the region around the magic line is nearly ideal
for realizing an FCI.

We provide numerical results that support an FCI ground
state, extending previous studies [24,25] to finite pressure.
Further, the FCI phase realized at finite pressure has a larger
many-body gap than that at zero pressure. Experimentally, we
predict that at small twist angles, if an incompressible CDW
phase is measured in a moiré TMD homobilayer, applying
pressure could drive a transition into an FCI phase. The pres-
sure needed is within experimental reach. Specifically, applied
pressures of up to P ∼ 2 GPa, or equivalently 5% compres-
sion, have been realized in TBG [39,40]. In TMDs, pressures
up to P ∼ 5 GPa have been realized at room temperature, and
P ∼ 1.4 GPa [60] at cryogenic temperatures.

As in TBG, the intertwined effects of band dispersion,
quantum geometry, and long-range electronic interactions in
our model combine to ultimately determine the ground state
properties. Despite these complex factors, in TBG the chiral
model has provided powerful analytical insight [28,48]. The
proximity of our model to the ideal condition motivates a
future search for a chiral model of moiré TMDs in a suitable
limit. More generally, the question of how perturbations from
the ideal limit affect an FCI ground state and its excitations
is an open one. The near-ideal Chern band we have described
in moiré TMDs suggests that approximating the ground state
wavefunctions by modified Landau level wavefunctions is
a reasonable approximation [14,28] upon which to build a
perturbative study of nonideal Chern bands.

Note added. Soon after our original submission, two in-
dependent preprints appeared showing experimental evidence
for FCI ground states in twisted MoTe2 [61,62]. Since MoTe2

is described by the same continuum model as WSe2, i.e.,
Eq. (1), albeit with different material parameters, we expect
that pressure will also stabilize the FCI phase in MoTe2.
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