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Abstract—Proof-of-Stake blockchain protocols rely on a dis-
tributed random beacon to select the next miner that is allowed
to add a block to the chain. Each party’s likelihood to be selected
is in proportion to their stake in the cryptocurrency. Current
random beacons used in PoS protocols have two fundamental
limitations: either (i) they rely on pseudo-randomness, e.g.
assuming that the output of a hash function is uniform, which is
an unproven assumption, or (ii) they generate their randomness
using a distributed protocol in which several participants are
required to submit random numbers which are then used in
the generation of a final random result. However, in this case,
there is no guarantee that the numbers provided by the parties
are truly random and there is no incentive for the parties to
honestly generate uniform randomness.

In this work, we provide a protocol that generates trustless
and unbiased randomness for PoS and overcomes the above
limitations. We provide a game-theoretic guarantee showing that
it is in everyone’s best interest to submit truly uniform random
numbers. Hence, our approach is the first to provably incentivize
honest and reliable behavior instead of simply assuming it.

I. INTRODUCTION

Proof-of-work is quite inefficient and uses huge amounts of
energy. Thus, many alternatives are designed in the literature to
ameliorate this problem [1]–[5]. The most prominent alternative
is proof-of-stake (PoS). In PoS blockchain protocols, miners are
chosen randomly and each miner’s chance of being allowed to
add the next block should be proportional to their stake in the
currency. The security claims of proof-of-stake protocols rely on
the assumption that a majority, or a high percentage, of the stake
is owned by honest participants. Despite their differences, all
proof-of-stake protocols require a random beacon to randomly
select the next miners. As an example, Ouroboros [3] uses a
publicly verifiable secret sharing scheme (PVSS [6]) to generate
a random seed for each epoch. However, in this scheme the
participants have no incentive to submit a uniform random
value. Ouroboros Praos [2] and Algorand [7] update the random
seed by applying verifiable random functions (VRF [8], [9])
to blockchain data in previous rounds. A major drawback of
this randomness beacon is that the generated numbers are not
guaranteed to be uniform.

Besides the PoS protocols, smart contracts also use decen-
tralized randomness in DeFi. For example, RANDAO [10] is a
family of smart contracts that produce random numbers. Anyone
can participate and submit a random value to contribute to
the output. It uses a commitment scheme where participants

submit a cryptographically hashed commitment in the first phase
and then reveal the value in the second phase. Participants are
incentivized to be honest, which means following the protocol
and sending valid messages in time, because they will lose
their deposits otherwise. However, a malicious party can bias
the output by choosing to not reveal their value. Moreover,
RANDAO also fails to incentivize participants to be reliable,
meaning submitting uniformly random values. Incentivizing
reliability is essential to guarantee uniform randomness of the
output.

In this work, we design a novel game-theoretic approach for
randomness generation, which builds upon game-theoretic ideas
in [11]–[14]. We call this an RIG (Random Integer Generation)
game. RIG efficiently produces a uniform random integer from
an arbitrarily large interval. Moreover, the only equilibrium in
an RIG is for all participants to choose their values uniformly
at random. Finally, RIG can be plugged into common proof-of-
stake blockchains with minor changes and negligible overhead.

Our protocols are the first to incentivize participants to be
reliable and submit truly uniform random numbers. In com-
parison, previous distributed randomness protocols [15]–[18]
using commitment schemes and PVSS assume that there is at
least one reliable participant without incentivizing reliability.
In other words, they only reward honesty but assume both
honesty and reliability. The reliability assumption is unfounded.
Several other randomness protocols, including Algorand and
Ouroboros Praos, do not depend on random inputs from par-
ticipants at all, but instead use real-time data on blockchains
and cryptographic hash functions to generate pseudo-random
numbers. This pseudo-randomness is not guaranteed to be
uniform. Hence, there is no guarantee that miners get elected
with probabilities proportional to their stake.

II. RANDOM INTEGER GENERATION GAME (RIG)

(n,m)−RIG. Suppose that we have n players and n is even.
A Random Integer Generation game (RIG) with n players and
m ≥ 3 strategies is a game G in which:

• For every player i ∈ {1, . . . , n}, we have m pure strategies
Si = {0, 1, . . . ,m− 1};

• We pair the players such that every even player is paired
with the previous odd player and every odd player is paired
with the next even player. In other words, pair(2 · k) =
2 · k − 1 and pair(2 · k − 1) = 2 · k.



• At an outcome s = (s1, s2, . . . , sn) of the game, the payoff
of player i is defined as ui(s) := f(si, sj) where j =
pair(i), and

f(si, sj) :=


1 if si − sj ≡ 1 (mod m)

−1 if si − sj ≡ −1 (mod m)

0 otherwise

Essentially, we assume that any adjacent pair of even player and
odd player play a zero-sum symmetric one-shot game with each
other. Their payoffs are independent of other n−2 players. For
each pair (2 · k− 1, 2 · k) of players, this is a zero-sum matrix
game with the following payoff matrix:

A =


0 −1 0 · · · 0
1 0 −1 · · · 0
0 1 0 · · · 0
...

...
. . .

...
0 0 0 · · · 0


Theorem 1: (Alliance-Resistant Nash Equilibrium of an RIG.)

Let G be an RIG game with n players and m strategies, where n
is an even number and m ≥ 3. Let σ̄ be a mixed strategy profile
defined by σ̄i = (1/m, 1/m, . . . , 1/m) for all i, i.e. the mixed
strategy profile in which each player i chooses a strategy in Si

uniformly at random. Then, σ̄ is the only Nash equilibrium of
G. Further, it is also alliance-resistant, i.e. no subset of players
can collaborate to increase their overall utility.

The theorem above shows that it is in every player’s best
interest to play uniformly at random, i.e. choose each pure
strategy in Si with probability exactly 1/m. Moreover, this
equilibrium is self-enforcing even in the presence of alliances.
Hence, we can plug this game into a distributed random number
generation protocol and give participants rewards that are based
on their payoffs in this game. This ensures that every participant
is incentivized to provide a uniformly random si. As mentioned
before, even if only one participant is reliable and submits a uni-
formly random si, then the entire result s =

∑n
i=1 si (mod m)

of the random number generation protocol is guaranteed to be
unbiased. Hence, instead of assuming that a reliable party exists,
we incentivize every party to be reliable.

III. DESIGNING A RANDOM BEACON BASED ON RIG

We assume a synchronous communication model, where
every message is delivered after an at most constant delay.
We also consider rational players. We discuss two schemes to
execute the RIG game in a PoS protocol: (1) using commitment
schemes and verifiable delay functions (VDF [19]), and (2)
using PVSS [6].

The first scheme includes a commit phase and a reveal phase
as usual. There is an additional VDF phase, to ensure that
malicious participants cannot bias the output by choosing to not
reveal the values. However, VDFs are not proved to preserve
uniformity of randomness. Even if the sum s =

∑n
i=1 si

(mod m) is uniformly random, the result VDF(s) might not
be uniformly random. Therefore, we propose to use s′ =
s1 + VDF(s2) as the final random output, where s1 and s2
are lower and higher bits of s, respectively. s′ is not only
unpredictable at the reveal phase but also uniformly random.

The second scheme consists of a share distribution phase and
a reconstruction phase. PVSS ensures that malicious participants
cannot bias by not revealing without VDFs. Instead, PVSS can
force the opening of each value by reconstructing from its secret
shares as long as more than half of the participants are honest
to decrypt secret shares.

In contrast to RANDAO and many other random number gen-
erators, our RIG game is sensitive to the order of participants.
The result of the RIG game is not only the output value, but
also the payoffs. We can use the random seed in the previous
epoch to randomly sort the participants.

Honest participants should have positive expected payoffs
that at least cover the communication cost on chain, to be
incentivized to participate the RIG game. Dishonest participants
are excluded from the game output and lose their deposits.

IV. RIG IN PROOF OF STAKE PROTOCOLS

We now show how our RIG random beacon can supplant
standard PoS protocols. In general, the RIG random beacon,
be it implemented by the commitment scheme approach or the
PVSS approach, is applicable to any PoS protocol that requires
an evolving random seed to select miners.
In Ouroboros Praos. Ouroboros Praos is the underlying proto-
col of Cardano cryptocurrency. We can substitute the random
beacon of Ouroboros Praos with our RIG. In Cardano, 1 epoch
lasts for 5 days, and the transaction confirmation time is 20
minutes. When using the commitment scheme, we require more
time (≈ 3× transaction confirmation time) within an epoch for
the extra reveal phase and VDF computation time to reach a
consensus on the result of RIG, which is negligible.
In Algorand. We can use RIG based on PVSS as the random
beacon of Algorand. Algorand reaches consensus within 1
round, and updates the random seed once every 1000 rounds,
which is sufficient for a PVSS execution. Moreover, assuming
that 100 participants join the RIG game, using RIG decreases
the transaction-per-second by less than 1%.

V. CONCLUSION

In this work, we presented a game-theoretic beacon for
distributed random number generation. We showed that our
approach is bias-resistant, unpredictable, available, and verifi-
able. Moreover, it incentivizes every participant to be reliable,
i.e. provide a truly uniform random input. Even if only one
of the participants is rational and therefore reliable, the output
number is guaranteed to be sampled from the uniform distribu-
tion and to be unbiased. Additionally, our approach does not
use pseudo-randomness at any point and instead only relies
on well-incentivized game-theoretic randomness. Finally, even
though the approach is general and not limited to blockchain use
cases, we showed that one can easily augment common proof-
of-stake protocols to include our randomness beacon for the
task of selecting their miners. This ensures that proof-of-stake
protocols choose the miners fairly, i.e. exactly in proportion to
their stake.
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