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AB-cell epitope is the three-dimensional structure within an antigen that can be bound to the variable region
of an antibody. The prediction of B-cell epitopes is highly desirable for various immunological applications,
but has presented a set of unique challenges to the bioinformatics and immunology communities. Improving
the accuracy of B-cell epitope prediction methods depends on a community consensus on the data
and metrics utilized to develop and evaluate such tools. A workshop, sponsored by the National Institute
of Allergy and Infectious Disease (NIAID), was recently held in Washington, DC to discuss the current state
of the B-cell epitope prediction field. Many of the currently available tools were surveyed and a set of
recommendations was devised to facilitate improvements in the currently existing tools and to expedite
future tool development. An underlying theme of the recommendations put forth by the panel is increased
collaboration among research groups. By developing common datasets, standardized data formats, and the
means with which to consolidate information, we hope to greatly enhance the development of B-cell epitope
prediction tools. Copyright # 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Antibodies are proteins produced by B-cells in response to
immunogenic substances such as viruses, allergens, and
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vaccines. B-cell, or antibody, epitopes are the molecular
structures within an antigen that make specific contacts
with residues of soluble and membrane-bound antibody
molecules (See Figure 1 for a schematic introduction to key
terms). For various immunological applications, a compu-
tational prediction of epitopes in an antigen is highly
desirable. Many such tools exist that mainly base their
predictions on shared amino acid characteristics of known
B-cell epitopes in protein antigens. However, in contrast to
predictions used to identify T-cell epitopes (Brusic et al.,



Figure 1. B-cell epitope mapping schematic. The figure schematically depicts an epitope
mapping experiment. In an immunization (left panel), the host species is exposed to a
substance that elicits the production of antibodies by B-cells. This substance is referred to
as the immunogen, while the substance recognized by antibodies is referred to as the antigen.
While antigen and immunogen are typically the same substance during the course of an
infection, they are often distinct in an epitope mapping experiment. Such an experiment is
depicted in the right panel, where different fragments or mutants of the immunogen are used
as antigens in order to identify the specific antibody binding sites, which are referred to as
epitopes.
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2004; De Groot, 2006), the quality of these predictions is
widely considered to be too poor to be employed as a reliable
tool by immunologists (Blythe and Flower, 2005). From this
point forward, the term ‘epitope’ shall refer to a B-cell
epitope, unless otherwise specified.

In a workshop sponsored by the National Institute for
Allergy and Infectious Diseases (NIAID) on 7 and 8
September 2006, a panel of immunologists and bioinfor-
maticians convened in Washington, DC to discuss the
current state and future directions for the epitope prediction
field. The specific goals of the workshop were to review
currently available epitope prediction tools, agree upon
metrics to evaluate tool performance, identify a body of
relevant training and test data, and develop recommen-
dations for advertising and implementing these suggestions
for the broader research community. This meeting report is
meant to publicize a summary of the presentations and
discussions at the workshop, and elicit community feedback,
via a web-based forum (http://www.immuneepitope.org/
jive/), on the specific proposals and recommendations.
B-cell epitope terminology

Dr Marc H. V. van Regenmortel opened the workshop with
an overview of epitope terminology issues. It was noted that
researchers classify epitopes as either continuous or
discontinuous (Figure 2), but many so-called discontinuous
epitopes consist of stretches of several consecutive amino
acids that could, in some cases, be considered continuous
epitopes in their own right (van Regenmortel, 2006).
Further, the distinction between linear and conformational
epitopes is problematic, since linear peptides necessarily
adopt a particular three-dimensional conformation that is
recognized by their cognate antibody. Dr van Regenmortel
also emphasized the need to clarify the purpose of making a
Copyright # 2007 John Wiley & Sons, Ltd.
specific epitope prediction, and how this clarification could
direct selection of the most appropriate prediction tool or
development of a new tool, as needed. For instance, if the
purpose is to predict epitopes as vaccine candidates, then
the predicted epitopes should elicit antibodies that recognize
the vaccine target and could possibly provide protection
from infection (van Regenmortel, 2001). However, if the
purpose is to predict epitopes that could be used to replace
complete infectious antigens in diagnostic immunoassays,
the predicted epitopes should be able to react with antibodies
found in hosts infected with the pathogenic agent. Since any
given purpose may apply only to a subset of epitopes, the
main goal of the prediction should be taken into account in
selecting an appropriate dataset for tool training and
evaluation.

The influence of antibody structure on its function was
described in the context of responses to rotavirus infections
by Dr James Crowe (Crowe et al., 2001). Central to the
notion of an epitope is the understanding that epitopes are
context dependent. That is, they are dependent entities and
therefore cannot exist without a corresponding antibody. At
the same time, genes encoding antibodies undergo a rapid
process of somatic hypermutation during germinal center
reactions resulting in variations of their binding site. It may
therefore be useful to think of a protein surface as a
continuous landscape of epitopic regions without well-
defined borders. Under a given set of circumstances, any
region of this landscape can behave as an epitope. By this
definition, a very large ensemble of epitopes exists on any
given protein surface. To complicate matters further, a
portion of a protein surface that acts as an epitope under one
set of circumstances (e.g., assay type, antibody concen-
tration, antibody species specificity) will not necessarily
behave as an epitope under another set. Therefore, binary
classification of antigen regions into epitopes or
non-epitopes may not accurately reflect biological reality.
J. Mol. Recognit. 2007; 20: 75–82
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Figure 2. Continuous versus discontinuous epitopes. This figure contrasts the difference
between a continuous and discontinuous epitope in Hemaglutinin precursor protein (Swiss-
Prot ID: P03435, PDB code: 1HA0) of Influenza A virus. In each rendering, the residues that are
part of the epitope are colored in cyan, while the remaining residues are gray. (a) Continuous
epitope (Churchill et al., 1994) represented as ribbons. Here, the epitope sequence lies in one
region of the protein. This is the minimal sequence required for recognition by the antibody.
(b) Surface rendering of epitope shown in (a). (c) Discontinuous epitope (Underwood, 1984)
represented as ribbons. In this case, the epitope consists of residues that are distant in the
primary sequence, but close when the protein is folded into its native three-dimensional
structure. All of the residues are required for recognition by the antibody and thus are not
epitopes on their own. (d) Surface rendering of epitope shown in (c). This rendering elucidates
how residues that are distant in the primary sequence can be part of the same epitope.
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B-cell epitope datasets currently available and under
development

Defining the requirements for assembling relevant datasets
was a recurring theme at the workshop. Martin Blythe
described the data collected in the AntiJen database (Toseland
et al., 2005) (Table 1), which consists of 3541 datapoints
and is one of the largest available resources of linear and
conformational epitope information. A dataset consisting of
50 linear epitope-mapped protein sequences was derived from
the database (Blythe and Flower, 2005). Several other groups
have utilized these information resources for tool development
and testing purposes. Other public data sources that were used
for tool development and evaluation include: the comparably
small, but high-quality, dataset of Dr Jean-Luc Pellequer
(Pellequer et al., 1993), consisting of 82 well-defined
continuous epitopes across 14 proteins that have been studied
extensively; the HIV Molecular Immunology Database,
hosted at Los Alamos National Labs (Korber et al., 2005);
and the Bcipep database by Dr G. P. S. Raghava’s group (Saha
et al., 2005), containing 3031 epitopes.

The approach towards assembling epitope datasets from
Immune Epitope Database (IEDB) (Peters et al., 2005) was
presented by Dr Alessandro Sette. The IEDB contains highly
annotated T- and B-cell epitopes, from which users can select
Copyright # 2007 John Wiley & Sons, Ltd.
datasets relevant to their particular purpose. For example,
epitopes identified by immunization with the native antigen
and assayed with peptides can be considered separately from
those immunized with peptides and assayed with native
antigen. Along with epitopes identified using functional
assays, the IEDB includes curated data on epitopes inferred
from three-dimensional structures of antigen–antibody com-
plexes available in the Protein Data Bank (PDB) (Berman
et al., 2000). The database also includes a large volume of
negative data; that is, peptide and protein sequences
experimentally shown not to be recognized by antibodies in
a particular assay. It should be emphasized that these regions
may, in fact, behave as epitopes when sampled under a
different set of conditions, or with a different population of
antibodies. To provide user-friendly datasets for epitope
prediction tool development and testing, the IEDB team is in
the process of assembling all relevant, non-redundant data into
several customized datasets, which will be available to the
public by mid-2007.
B-cell epitope prediction tools

Currently available tools and their evaluations were
discussed by Dr Jean-Luc Pellequer. Specifically, the
J. Mol. Recognit. 2007; 20: 75–82
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Table 1. Tools, databases, and datasets

Name URL/email Description

ABCpred http://www.imtech.res.in/raghava/abcpred Sequence-based machine-learning tool for the
prediction of continuous epitopes

AntiJen� http://www.jenner.ac.uk/AntiJen/ Database of binding data for various types of
proteins, including B-cell epitopes and
antibodies

Bcipep� http://www.imtech.res.in/raghava/bcipep/ Database of B-cell epitopes of varying
immunogenicity

Bepipred http://www.cbs.dtu.dk/services/BepiPred Sequence-based tool for the prediction of
continuous epitopes

BEPITOPE jlpellequer@cea.fr Sequence-based tool for the prediction of
continuous epitopes

CEP http://bioinfo.ernet.in/cep.htm Structure-based tool for the prediction of
continuous and discontinuous epitopes

DiscoTope http://www.cbs.dtu.dk/services/DiscoTope Sequence/structure-based tool for the
prediction of discontinuous epitopes

EMT elro@novozymes.com Phage-display based tool for the prediction of
continuous and discontinuous epitopes

EPIMAP mumey@cs.montana.edu Phage-display based tool for the identification
of discontinuous epitopes

Epitome http://www.rostlab.org/services/epitome Database of antigenic residues and interacting
antibodies including detailed descriptions and
visualization capabilities

HIV database� http://hiv-web.lanl.gov/content/immunology/ Database of HIV-specific immune epitopes

IEDB�� http://www.immuneepitope.org Database of T- and B-cell epitopes and
non-epitopes

IEDB B-cell epitope tools http://www.immuneepitope.org/tools/bcell/iedb_input Sequence-based tool for the prediction of
continuous epitopes

Pellequer dataset jlpellequer@cea.fr Dataset consisting of 82 epitopes in 14 protein
sequences

SPA johannes.soellner@emergentec.com Program for the parametrization of peptide
sequences. Intended for use with
machine-learning algorithms

This table summarizes the available B-cell epitope datasets, databases, and prediction tools. Where URLs are not available, author’s email addresses
are supplied.
� A dataset for tool training and testing has been assembled from this database and is available at the listed URL.
�� A dataset for tool training and testing is being assembled from this database and will be available by mid-2007.
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distinction between a database and a datasetwas elucidated.
The former serves as the data warehouse and contains all
potentially relevant data, while the latter is a smaller subset
of data intended for tool development purposes. Following
this general introduction, various currently available tools
for epitope prediction were presented and are briefly
summarized and loosely categorized here: sequence-based
tools—tools that take only amino acid sequence information
as input; structure-based tools—tools that require some
form of three-dimensional structure information; and tools
incorporating data from phage-display experiments.

SEQUENCE-BASED PREDICTION
TOOLS

The ‘classical’ approach to epitope prediction is to utilize
amino acid propensity scales such as hydrophilicity or chain
Copyright # 2007 John Wiley & Sons, Ltd.
flexibility to identify regions in antigens that are likely to
contain epitopes. One such approach is performed by the
BEPITOPE tool (Odorico and Pellequer, 2003), presented
by Dr Pellequer, which makes use of the predictive power of
a consensus voting method based on the prediction of turns
in proteins. A consensus method that combines several
different prediction methods is also available in BEPITOPE.
Additionally, several scale-based epitope prediction tools
have been made available on the IEDB website. Evaluation
of these tools, using datasets from Pellequer (Pellequer et al.,
1993) and the AntiJen (Toseland et al., 2005) and HIV
databases, gave area under the receiver operating charac-
teristic curve (AROC) (Swets, 1988) values around 0.60,
similar to those reported by other groups for amino acid
scales. Briefly, AROC scores range from 0 to 1, with a score of
0.5 equal to random discrimination, and 1 equal to perfect
performance (Lund et al., 2005). The most detailed
evaluation of such scales was presented by Martin Blythe
J. Mol. Recognit. 2007; 20: 75–82
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(Blythe and Flower, 2005), who tested 484 amino acid scales
from the AAindex database (Kawashima et al., 1999). The
combination of scales and experimentation with several
machine-learning algorithms showed little improvement
over single scale-based methods, which were considered to
perform inadequately.

Machine-learning tools attempt to extract characteristics
of an epitope from a set of learning examples, and generalize
them in a classification algorithm. One such approach using
an artificial neural network (ANN) was applied by Saha and
Raghava (2006) in the ANN-Based B-cell Epitope Predic-
tion (ABCpred) algorithm. The system was trained on 700
epitopes from the Bcipep database and 700 randomly
selected peptides represented by amino acid sequences of
lengths varying between 10 and 20 amino acids. Employing
fivefold cross-validation on this dataset, the method
achieved a maximum accuracy of �66%. Bepipred (Larsen
et al., 2006), an algorithm that combines scores from the
Parker hydrophilicity scale (Parker et al., 1986) and a hidden
Markov model (HMM) trained on linear epitopes, was
presented by Dr Ole Lund. The method shows a small,
but significant, increase in AROC over earlier scale-based
methods. The sequence parametrizer (SPA) algorithm
(Sollner, 2006; Sollner and Mayer, 2006), along with its
associated machine-learning methods, was presented by Dr
Johannes Sollner. In addition to using the common single
amino acid propensity scales, this method also incorporates
neighborhood parameters reflecting the probability that a
given stretch of amino acids exists within a predefined
proximity of a specific amino acid residue. Training and
testing on epitope sequences pulled from a high-quality
proprietary database, as well as several publicly accessible
databases, yields a degree of accuracy that is greatly
increased over single-parameter methods.
STRUCTURE-BASED PREDICTION
TOOLS

Several groups presented novel tool development efforts
taking advantage of three-dimensional structures of anti-
gen–antibody complexes available in the PDB. The
DiscoTope algorithm (Haste Andersen et al., 2006),
presented by Pernille Haste Andersen, is a sequen-
ce-structure hybrid method. A log-odds probability matrix
of each amino acid residue taking part in an antigenic
interaction was calculated based on data compiled from
antigen–antibody complexes. This innovative algorithm
combines scores from this matrix with a measure of the
surface area to predict the location of discontinuous epitope
residues and does sowith a fair degree of accuracy. Using the
AROC as an indicator, the algorithm achieves a score of
0.711.

Another method employing the three-dimensional struc-
ture of the antigen for prediction of epitopic regions was
presented by Dr A. S. Kolaskar. The conformational epitope
prediction (CEP) (Kulkarni-Kale et al., 2005) server
calculates the relative accessible surface area (RSA) for
each residue in the structure and determines which regions
of the protein molecule are sufficiently exposed to act as
antigenic determinants. Additionally, regions distant in
Copyright # 2007 John Wiley & Sons, Ltd.
the primary sequence, but close in three-dimensional space
are condensed into one epitope. To test the tool, in a dataset
consisting of 63 antigen–antibody complexes, the algorithm
correctly identified 76% of the epitopic residues.

Antigen–antibody complexes from the PDB were
annotated and compiled into a database (Epitome) (Schles-
singer et al., 2006) by Drs Yanay Ofran and Avner
Schlessinger. Using structural alignments of antibodies
bound to different antigens, the antibody residues that
are part of the complementarity-determining region (CDR)
could be defined. Contacts to this region are thought to play
a role in the specific recognition of an epitope by an
antibody. Consolidation of data in this manner allowed the
authors to observe several interesting features at the seq-
uence level of antigens. Specifically, compared to standard
protein–protein interactions, the antigenic residues involved
in antigen–antibody interactions exhibit a lower degree of
conservation than residues involved in other protein–protein
interactions. This finding, coupled with several other
sequence factors, could help to predict antigenic sites
through sequence analysis.

Non-redundant datasets of representative three-
dimensional structures of protein antigens and antige-
n–antibody complexes from the PDB were assembled by
Dr Julia Ponomarenko. These datasets were used to
determine the sensitivity of antibody binding site prediction
of several tools developed for various purposes. Established
tools for epitope prediction (CEP), protein–protein inter-
action prediction [PPI-PRED (Bradford and Westhead,
2005), ProMate (Neuvirth et al., 2004)], and protein–protein
docking [ClusPro (Comeau et al., 2004), PatchDock
(Duhovny et al., 2002)] were included in the study. While
in this comparison, varying evaluation metrics showed that
none of the tested methods demonstrated a very high degree
of accuracy, the protein–protein docking algorithms yielded
the highest sensitivity (56%). This underperformance can
most likely be attributed to the fact that most of these
methods were not designed for the purpose of epitope
predictions. Consistent with the findings of the DiscoTope
and Epitome studies, the comparison of sequence charac-
teristics within epitopes to other surface residues, revealed a
significantly lower degree of conservation, as well as
significant differences in the frequency of individual
residues and secondary structural elements.
TOOLS INCORPORATING
PHAGE-DISPLAY DATA

One important and pervasive experimental technique to map
epitopes is the use of phage-display libraries (Smith and
Petrenko, 1997). By selecting phages from a library for their
ability to bind antibodies specific for a known antigen, linear
peptide sequences that cross-react with these antibodies,
commonly referred to as mimotopes (Meloen et al., 2000),
can be discovered. The exact linear sequence identified will
generally not exist as a linear sequence in the antigenic
protein. The identification of the region of the antigen
mimicked by one of these peptides therefore requires special
tools that, in turn, provide insight into antigen–antibody
binding interactions.
J. Mol. Recognit. 2007; 20: 75–82
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Dr Erwin L. Roggen presented work on his Epitope
Mapping Tool (EMT) (Batori et al., 2006) that scrutinizes an
antigen for the presence or absence of amino acid motifs
commonly found in epitopes. Epitopic motifs were compiled
by the alignment of sequences captured by the competitive
immunoscreening of phage-display libraries. Combining
the detection of these epitopic motifs with evaluations of
the relative surface accessibility of residues in an antigen
yielded predictions of the antigenicity of residues in food (e.g.,
lysozyme, Ara h 1, Ara h 2, Ara h 3), environmental (Der p 1,
Bet v 1), and technical (industrial proteases) allergens that
were in close agreement with experimental data.

The EPIMAP (Mumey et al., 2003, 2006) method was
presented by Dr Brendan Mumey. In this method,
mimotopes discovered by phage display are individually
aligned against their parent antigen via a dynamic
programming algorithm. Resultant plots of the frequency
of alignment for each residue of the parent protein can reveal
segments that are close in three-dimensional space in the
native fold. Application of this technique to IL-10 mimetic
peptides has yielded residue classifications consistent with
an experimentally mapped epitope.

Peptide sequences collected from the biopanning of phage
libraries were mapped to three-dimensional structures by
Dr Raul E. Cachau (Cachau et al., 2003). This was
accomplished by applying feedback restrained molecular
dynamics (FRMD) to the peptide pool, under the assumption
that all the mimotopes should be able to adopt a similar
conformation. Validation was performed on an erythropoie-
tin analog and the model was shown to be in good agreement
with available structural data.
WORKSHOP RECOMMENDATIONS

Following formal presentations, workshop participants were
asked to provide recommendations on the following topics:
� A
Co
ssembly of ideal datasets, including detailed infor-
mation regarding dataset characteristics.
� M
ethods and metrics for tool evaluation.

� R
esource needs and action items.
Characteristics of an ideal dataset

On a number of discussed issues, a broad but not necessarily
unanimous consensus could be reached. One such issue
was the assembly of a high-quality dataset for the training
and testing of current and novel prediction algorithms. The
quality of the underlying dataset is intrinsically linked to
the predictive ability of the tools. In turn, the accessibility
to a database of well-curated epitope data is essential to
the development of a reliable dataset. This distinction
between the database, which includes all possible infor-
mation, and the dataset, which is a subset of relevant data
from the database, is subtle, but critical to comprehend.
Ideally, a database should include the following information:
sequence information characterizing the epitope and anti-
gen, the relationship between recognition of epitope and
antigen (i.e., does immunization with the epitope produce
pyright # 2007 John Wiley & Sons, Ltd.
antibodies capable of recognizing the native antigen and,
conversely, does immunization with the antigen produce
antibodies that can recognize epitopes contained within the
antigen); the conformation in which the antigen is tested
(i.e., native vs. non-native); the location of the epitope within
the three-dimensional structure of the source antigen (if
available); the host species producing the antibody, a
classification of the antibody as functional (i.e., neutralizing
or protective); and quantitative data on the interaction
between epitope and antibody (e.g., binding affinity,
frequency of recognition, etc.). Importantly, a database
should also capture negative data, (i.e., regions of antigens
that were experimentally tested and shown not to be
recognized by antibodies). It should be stressed that
incorporation of negative data in the training and testing
datasets is as vital as the inclusion of epitope data, and
should therefore be adequately represented. This type of
database allows for the assembly of several training and
testing datasets, one for use with each particular type of
application. As alluded to earlier, the purpose of any specific
prediction algorithm will dictate the proper dataset upon
which it should be trained and evaluated.

As the datasets naturally expand, the establishment of a
central public repository is desirable for direct comparison
of tool performance, and to avoid unnecessary duplication of
work. The IEDB can provide non-exclusive online hosting
for such datasets, allowing all tool developers and
immunologists to deposit their datasets onto a central
server. At the same time, all content from the IEDB is free
for download and redistribution in any form. Several
databases and datasets, with unique and useful character-
istics, were created before the IEDB, and likely will continue
to be created and maintained. The IEDB developers
propose that the IEDB can act as a central repository to
facilitate the exchange of information by providing access to
these datasets and proper credit to their creators. This
arrangement will allow for several publicly accessible
datasets to evolve in parallel, eventually leading to a
community consensus on the best and most appropriate
datasets for tool training and evaluation.
Metrics for tool evaluation

The purpose of tool evaluations is twofold: (1) Tool
developers need a statistically sound assessment of tool
prediction quality that allows for the comparison of current
tools and aids in the development of new ones. The broad
array of metrics currently used to report tool performance
illustrates the need for a common measure. It was generally
agreed that the most appropriate metric for tool performance
evaluation is the AROC. This measure has the advantage of
being non-parametric and does not require a threshold for
determining a positive prediction. The range of values is
easily interpreted, with a score of 0.5 equal to random
performance and 1 corresponding to perfect performance.
(2) Tool users need an easily understandable assessment of
the level of accuracy that can be expected when making a
prediction using a giving tool. This need makes additional
metrics necessary, such as sensitivity, specificity, and
positive predictive value. In addition to providing metrics
that assess tool performance based upon a standard dataset, a
J. Mol. Recognit. 2007; 20: 75–82
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narrative must be presented to tool users that explains their
meaning and implications for biological applications.

The automated evaluation of tools on a regular basis using
a standard dataset and set of metrics was discussed. This
approach was generally thought to be a useful pursuit, as it
has been an asset to the protein secondary structure
prediction (Koh et al., 2003) and transmembrane helix
prediction communities (Kernytsky and Rost, 2003). To
employ an automated server of this type, it is imperative that
each tool incorporates the ability to import and export data in
a common format. This standardization would not only
facilitate the development of an evaluation server, but also
the development of a metaserver for the user community that
would act as a front end to the tool set. The ability to run
related tools from one central server has proved invaluable in
other fields [e.g., protein structure prediction (Bujnicki et al.,
2001) and protein domain prediction (Saini and Fischer,
2005)], and would greatly increase user productivity.
Citation issues have previously been a hindrance to
development of this type of server, but the unquestionable
value of such a resource ensures a resolution. It was agreed
that each tool contributor should be included as an author in
the publication describing such a server.
Data formats

As mentioned previously, standardization of data formats is
desirable for the epitope datasets as well as for the input and
output of the diverse tools. We propose to develop a format
suitable for the representation of B-cell epitope information
which is flexible enough to be easily interpreted by
computers and convertible into existing or user-specified
formats. This would allow users to import B-cell epitope
data into pre-existing programs for data analysis, as opposed
to building applications de novo. For example, converting to
a genome browser compatible format, such as General
Feature Format (GFF) would allow for the visual
comparison of multiple algorithms on a mature platform
as well as the calculation of metrics commonly used in
genome annotation such as enrichment values. This type of
interoperability can easily be achieved with, for example, a
well-developed XML schema.

Another key advantage of this format is that it is capable
of capturing both sequence and structure information,
Copyright # 2007 John Wiley & Sons, Ltd.
including interacting residues. Several different structural
definitions of what constitutes the antibody binding site in an
antigen are used by different groups. Differing opinions exist
regarding which residues in an antibody are relevant and
what intermolecular distance is used to define an interaction.
The solution for the time being is to use multiple definitions;
however, these are issues that must be resolved in the future.
CONCLUSIONS

It is clear from the presentations and discussions at this
workshop that the current state of B-cell epitope prediction
is far from ideal and that the ultimate need of the user
community is access to better prediction tools. However, in
order to develop more accurate tools, it is imperative that the
recommendations for assembling high-quality training and
testing datasets be followed. Additionally, the periodic
re-evaluation of each tool’s performance on these datasets
according to a common metric is vital. This approach will
allow tool developers to draw upon the most effective
aspects of each algorithm in order to evolve a superior one.
The implementation of the recommendations developed at
this workshop will greatly enhance the development of
epitope prediction tools. We would hope that the grounded
approach outlined here would garner the confidence of the
immunology community and would provoke experimental
researchers to employ these tools in their own work.
Ultimately, this report should be considered a call for action
and feedback from the greater community on the proposals
drafted here. As mentioned previously, we will provide a
web-based forum for this purpose (http://www.immuneepi-
tope.org/jive/) and we explicitly welcome any contributions
or collaborations as a result.
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