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Qualitative Decision under Uncertainty: Back to Expected Utility

 qualitative criteria based on possibility theory have been proposed, that are appealing but inefficient in the above sense. The question is whether it is possible to reconcile possibilistic criteria and efficiency. The present paper shows that the answer is yes, and that it leads to special kinds of expected utilities. It is also shown that although numerical, these expected utilities remain qualitative: they lead to two different decision procedures based on min, max and reverse operators only, generalizing the leximin and leximax orderings of vectors.

Introduction and motivation

A decision-making problem under uncertainty is a 4-tuple (S, X, A, ), where S is a set of states of nature, X a set of consequences, A = X S the set of possible acts (in decision under uncertainty, an act is a function f : S → X) and is a preference relation on A, usually complete and transitive (i.e. is a complete preorder).

A numerical approach is classically advocated (see e.g. [Savage, 1954]) for encoding both the information pertaining to the states of nature and the preferences on X: uncertainty is represented by a probability distribution p and preference is encoded by a utility function u : X → [0, 1]1 . The pair < p, u > will be called a probabilistic utility model, PU-model for short. Acts are then ranked according to their expected utility EU p,u (written here in the finite setting):

f EU,p,u g ⇔ EU p,u (f ) ≥ EU p,u (g)

where, ∀h ∈ A EU p,u (h) = s∈S p(s) • u(h(s)).

Information about preference and uncertainty in decision problems cannot always be quantified in a simple way, but only qualitative evaluations can sometimes be attained. As a consequence, the topic of qualitative decision theory is a natural one to consider [Pearl, 1993;Dubois and Prade, 1995;[START_REF] Brafman | [END_REF]Dubois et al., 1998b;Doyle and Thomason, 1999;[START_REF] Giang | [END_REF][START_REF] Dubois | [END_REF]. Giving up the quantification of utility and uncertainty has led to give up the expected utility (EU) criterion as well: the principle of most theories of qualitative decision making is to model uncertainty by an ordinal plausibility relation on events and preference by a complete preordering on consequences. In [Dubois and Prade, 1995;Dubois et al., 1998b] two qualitative criteria based on possibility theory, an optimistic and a pessimistic one, are proposed and axiomatized whose definitions only require a finite ordinal scale L = {0 L ≤ • • • ≤ 1 L } for evaluating both utility and plausibility:

• f OP T,π,µ g ⇔ U OP T,π,µ (f ) ≥ U OP T,π,µ (g) where ∀h, U OP T,π,µ (h) = max s∈S min(π(s), µ(h(s)))

• f P ES,π,µ g ⇔ U P ES,π,µ (f ) ≥ U P ES,π,µ (g) where ∀h, U P ES,π,µ (h) = min s∈S max(n(π(s)), µ(h(s))),

where n : L → L is the order reversing function of L, π : S → L is a normalized possibility distribution and µ : X → L is a utility function on X. In the following, < S, X, L, π, µ > will be called a qualitative possibisitic utility model (QPU-model) and we will assume S, X and L to be finite, as is generally the case in qualitative decision making. The value U P ES,π,µ (f ) is high only if f gives good consequences in every "rather plausible" state. This criterion generalizes the Wald criterion, which estimates the utility of an act by that of its worst possible consequence. U P ES,π,µ is thus "pessimistic" or "cautious", the pessimism being moderated by taking relative possibilities of states into account. On the other hand, U OP T,π,µ is a mild version of the maximax criterion which is "optimistic", or "adventurous".

Although appealing from a qualitative point of view, possibilistic utilities suffer from a lack of decisiveness called the "drowning effect": when two acts give an identical and extreme (either good or bad) consequence in some plausible state, they may be undistinguished by these criteria, although they may give significantly different consequences in the other states. As a consequence the principle of Pareto dominance is not satisfied. That is it may be the case that ∀s, µ(f (s)) ≥ µ(g(s)) and that ∃s * , π(s * ) > 0 and µ(f (s * )) > µ(g(s * )) but g f .

Example 1 Let S = {s 1 , s 2 }, L = {0, 1, 2, 3, 4, 5}. Let f and g be two acts whose utilities in states s 1 and s 2 are listed below, as well as the possibility degrees of the states. One can check that U OP T,π,µ (f ) = U OP T,π,µ (g) = 3 and U P ES,π,µ (f ) = U P ES,π,µ (g) = 3 although f strictly dominates g (µ(f (s 1 )) = µ(g(s 1 )) and f has a better consequence in s 2 ).
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Most of the qualitative approaches [Pearl, 1993;Dubois and Prade, 1995;[START_REF] Brafman | [END_REF][START_REF] Giang | [END_REF], fail to satisfy Pareto dominance. But this is not the case within expected utility theory, since this model obeys the following Sure-Thing Principle (STP) that insures that identical consequences do not influence the relative preference between two acts:

STP :∀f, g, h, h , f Ah gAh ⇔ f Ah gAh ,
where f Ah denotes the act identical to f on A ⊆ S and to h on S \ A. When is complete and transitive, the principle of Pareto dominance is a direct consequence of the STP. So, is it possible to benefit from the STP in the possibilistic framework in order to satisfy the Pareto principle ? Unfortunately, it can been shown that this is generally not possible: Proposition 1 Let < S, X, L, π, µ > be a QPU model.

OP T,π,µ (or

P ES,π,µ ) satisfies the STP ⇔ ∃!s * : π(s * ) = 1 L and ∀s = s * , π(s) = 0 L .
This means that possibilistic decision criteria cannot obey the STP, except in a very particular case: when the actual state of the world is known, i.e. when there is no uncertainty at all! So, we cannot stay in the pure QPU framework and escape the drowning effect altogether. The idea is then to cope with the difficulty by proposing refinements of the possibilistic criteria that obey the Sure Thing Principle2 .

This paper shows (Section 2) that any possibilistic model can be refined by an expected utility. The kind of expected utility that is at work, and the very special probability measure that underlies it, are studied in Section 3 under the light of related work. It is also shown (Section 4) that although numerical, these expected utility criteria remain qualitative, since they lead to a decision procedure based solely on min, max and reverse operators -these new procedures generalize well known leximin and leximax decision procedures .

Expected utility refinements of qualitative possibilistic utilities

Recall that a refinement of a relation is a relation perfectly compatible with (it agrees with when provides a strict preference), but can break ties by setting f g for some f, g that are indifferent w.r.t. . Formally:

Definition 1 (Refinement) refines ⇔ ∀f, g ∈ A, f g ⇒ f g.
Since we are looking for complete and transitive relations it is natural to think of refinements based on expected utility. Savage [1954] has indeed shown that, as soon as a complete preorder is desired that satisfies the STP and some very natural axioms, the EU criterion is almost unavoidable. So, the question is: are there any expected utility criteria that refine the possibilistic criteria ?

Let < S, X, L, π, µ > be a QPU model. When considering the optimistic (resp. pessimistic) criterion, we are looking for a probability distribution p and a utility function u such that EU,p,u refines OP T,π,µ (resp. P ES,π,µ ). The idea is to build the EU criteria by means of a transformation χ: L → [0, 1] that maps π to a probability distribution:

Definition 2 (Probabilistic transformation of a scale) Let < S, X, L, π, µ > be a QPU model. A probabilistic trans- formation of L w.r.t. π is a mapping χ : L → [0, 1] such that χ(0 L ) = 0 and p = χ • π is a probability distribution.
Notice the presence of the condition χ(0 L ) = 0 that expresses the fact that the impossibility of an event (represented by a degree of 0 L in possibility theory) is expressed by a null probability. But the most plausible events (possibility degrees of 1 L ), obviously do not receive a probability degree of 1, since they may be mutually exclusive. Notice also that we are looking for a unique function χ for transforming Lboth p and u will be built upon this transformation. This is due to the fact that we assume that preference and uncertainty levels are commensurate and belong to the same scale : it is thus natural to transform the degrees regardless whether they model uncertainty or preference.

Moreover, π and µ originally represent all the information available to the user, both in terms of uncertainty of the actual state of the world and preference over possible consequences. So, no undesirable arbitrary information should be introduced in the refined decision model and p and u must be as close as possible to the original information: we are looking for "unbiased" transformations of L. Formally: Definition 3 (Unbiased transformation of a scale) Let < S, X, L, π, µ > be a QPU model and χ a probabilistic transformation of L.

χ

is unbiased iff ∀α, α ∈ L, α ≤ α ⇔ χ(α) ≤ χ(α )
As a consequence, using an unbiased χ ensures that π and

p = χ • π (resp. µ and u = χ • µ) are ordinally equivalent: -∀s, s ∈ S, p(s) ≥ p(s ) ⇔ π(s) ≥ π(s ), -∀x, y ∈ X, u(x) ≥ u(y) ⇔ µ(x) ≥ µ(y).

Expected utility refinements of optimistic QPU

Let us first provide a tractable sufficient condition for a probabilistic transformation to generate an expected utility that refines OP T,π,µ : Proposition 2 Let < S, X, L, π, µ > be a QPU model and χ be a probabilistic transformation of L w.r.t. π. Also let H be the condition :

H:∀α, α , β ∈ L s.t. β ≥ α > α , χ(α) • χ(β) > χ(α ) • χ(β) + (|S| -1) • χ(1 L ) • χ(α ).
Then EU,χ•π,χ•µ refines OP T,π,µ whenever χ satisfies H.

H is a sufficient condition to generate an EU-refinement of the optimistic QPU (it is also a necessary one when every degree in L is attained by both π and µ). Importantly, there always exists a probabilistic transformation of L satisfying H.

Let n i = |{s ∈ S, π(s) = α i }| and N =| S | +1.

Proposition 3

The function χ :

L = {α 0 < . . . < α k } → [0, 1] such that χ(α 0 ) = 0 and χ(α i ) = v N 2 k-i , i = 1, k satisfies H ∀v > 0. χ • π is a probability distribution iff v = ( i=1,k ni N 2 k-i ) -1 . In the sequel, χ * will denote the function χ * (α i ) = v N 2 k-i obtained with v = ( i=1,k n i N 2 k-i ) -1 . Example 2 Let us take the QPU model of Example 1, where N = 2, L = {0, 1, 2, 3, 4, 5}. χ * (L) is the series (0, v N 16 , v N 8 , v N 4 , v N 2 , v N ) where v = ( 1 N + 1 N 8 ) -1 . So: EU (f ) = χ * (5) • χ * (3) + χ * (4) • χ * (2) = v 2 N 5 + v 2 N 10 , EU (g) = χ * (5) • χ * (3) + χ * (2) • χ * (1) = v 2 N 5 + v 2 N 24 , f is thus preferred to g.
χ * is in fact sufficient to generate every unbiased EUrefinement of OP T,π,µ , since all such refinements are equivalent.

Definition 4 Two relations and

are said to be equivalent (

≡ ) iff ∀f, g ∈ A, f g ⇔ f g. Proposition 4 Let < S, X, L, π, µ > be a QPU model, χ 1 , χ 2 two unbiased probabilistic transformations of L w.r.t. π. EU,χ 1 •π,χ 1 •µ and EU,χ 2 •π,χ 2 •µ both refine OP T,π,µ =⇒ EU,χ1•π,χ1•µ ≡ EU,χ2•π,χ2•µ
Notice that Proposition 4 does not mean that the numbers attached to the states by p 1 = χ 1 • π and p 2 = χ 2 • π, nor the ones attached to the consequences by u 1 = χ 1 • µ and u 2 = χ 2 • µ are the same -it only means that the two models are ordinally equivalent, that they make the same decisions and order the events and the consequences in the same way. It also implies that the refinements that does not belong to this class (they may exist, e.g. those which introduce a total order in S or in X) cannot be unbiased : they must either introduce a strict preference between equivalent consequences or order equi-plausible states.

So, we get the following result for optimistic QPU models:

Theorem 1 For any QPU model < S, X, L, π, µ >:

• There exists an unbiased probabilistic transformation

χ * of L w.r.t. π such that EU,χ * •π,χ * •µ refines OP T,π,µ . • If χ and χ are two unbiased transformations of L s.t. both EU,χ•π,χ•µ and EU,χ •π,χ •µ refine OP T,π,µ , then EU,χ•π,χ•µ ≡ EU,χ •π,χ •µ .
We have hence obtained what we were looking for: for any QPU model we are able to propose an EU model that refines OP T,π,µ . As a refinement, it is perfectly compatible with but more decisive than the optimistic utility. Moreover, it does not use other information than the original one -it is unbiased. Since based on expected utility, it obviously satisfies the Sure Thing Principle as well as Pareto Dominance.

EU refinements of pessimistic QPU

When considering the pessimistic qualitative model, the same kind of result can be obtained, noticing that P ES,π,µ and OP T,π,µ are dual relations: Proposition 5 Let < S, X, L, π, µ > be a QPU model. Then: ∀f, g ∈ A, f P ES,π,µ g ⇔ g OP T,π,n•µ f . Proposition 6 Let < S, X, L, π, µ > be a QPU model and χ be a probabilistic transformation of L w.r.t. π.

Let p = χ • π, u = χ • µ, u = χ(1 L ) -χ • n • µ. It holds that:
EU,p,u refines OP T,π,µ iff EU,p,u refines P ES,π,µ . Consequently, it is always possible to build a probabilistic transformation χ * using Theorem 1, a probability p = χ * • π and a utility function u = χ * (1 L ) -χ * • n • µ that define an unbiased EU-refinement of P ES,π,µ . This provides the following pessimistic counterpart of Theorem 1:

Theorem 2 For any QPU model < S, X, L, π, µ >:

• There exist at least one unbiased transformation χ * of L w.r.t. π, a probability distribution p = χ * • π and a utility function

u = χ * (1 L ) -χ * • n • µ such that EU,p,u refines P ES,π,µ . • Let χ and χ be two unbiased probabilistic trans- formations of L. If both EU,χ•π,χ(1 L )-χ•n•µ and EU,χ •π,χ (1 L )-χ •n•µ refine P ES,π,µ , then they are equivalent.
At this point in the paper we have proved an important result for bridging qualitative possibilistic decision theory and expected utility theory: we have shown than any optimistic or pessimistic QPU model can be refined by a EU model. Thus, we may conclude that (i) possibilistic decision criteria are compatible with the classical expected utility criterion and (ii) choosing a EU model is advantageous, since it leads to a EU-refinement of the original rule (thus overcomes the lack of decisiveness of the possibilisitic criteria), it satisfies the STP and the principle of Pareto. But this does not mean that qualitativeness and ordinality are given up. In Section 4, we will show that, although probabilistic and based on additive manipulations of numbers, these criteria remain ordinal. This is very natural: since we start with an ordinal model and do not accept any bias, we produce another (probabilistic but) ordinal model, in which the numbers only encode orders of magnitude -this is the topic of the next Section.

EU refinements and big-stepped probabilities : related work

Both EU refinements of Section 2 are based on the same transformation of the possibility π into a probability distribution p = χ • π3 . The corresponding measure P is actually a "big-stepped probability" that is, it satisfies:

Definition 5 A probability measure P is said to be big stepped iff: ∀s ∈ S, P ({s}) > P ({s s.t. P ({s }) < P ({s})})

In other terms, for any s, p(s) > s s.t. p(s )<p(s) p(s ). Such measures are often encountered in the AI literature. First, they have much in common with [Spohn, 1990]'s κf unctions: these disbelief degrees can indeed be interpreted as the order of magnitude of a probability [Pearl, 1993;[START_REF] Giang | [END_REF], which is obviously a big stepped probability. Moreover, big stepped probabilities also form a special class of lexicographic probabilities in the sense of [Blume et al., 1991;Lehmann, 1998] -we add the restriction that here all the states within a single cluster are equiprobable. Indeed each cluster corresponds to a class of equipossible states and since we are looking for unbiased transformations, equipossibility leads to equiprobability. Finally, Definition 5 generalizes the notion of big-stepped probability of [Snow, 1999;Benferhat et al., 1999] -which is recovered when each cluster is a singleton. Big stepped probabilities have also been proposed by [Dubois et al., 1998a] as a way to refine any possibility/necessity measure4 .

This reasoning on the order of magnitude also applies to utility: in a discrete setting, big-stepped utilities can be defined in the same way: Definition 6 A utility measure u is said to be big stepped iff:

∀x, x ∈ X, u(x) > u(x ) =⇒ u(x) > (|S| -1) • u(x )
The utility functions χ * • µ and χ * (1 L ) -χ * • n • µ are big stepped utilities. It is also the case of the utilities that underly κ-utility functions [Pearl, 1993;Wilson, 1995;Bonet and Geffner, 1996;[START_REF] Giang | [END_REF]]. These works have advocated an approach to decision under uncertainty based on κ-functions, but without taking the STP into account (decision is made on the order of magnitude only, with a criterion comparable to optimistic utility). The present work makes a step further: in order to satisfy Pareto optimality, we go back to the underlying utilities and probabilities, using double exponents for epsilons instead of simple ones -we remain "big stepped" on the join scale. The other contribution of our approach is that it can be followed to encode pessimistic utilities as well.

[La [START_REF] Valle | State-independent subjective expected lexicographic utility[END_REF]Hammond, 1998;Lehmann, 1998] have studied decision models of lexicographic probabilities or lexicographic utilities, but in these models, the lexicographic characteristic is used only on one of the two dimensions (either the likelihood level, or the utility level). We operate on both dimensions simultaneously using a join transformation.

QPU refinements are qualitative

Although probabilistic and based on additive manipulations of utilities, our EU criteria remain ordinal, as paradoxical as it may seem at first sight. To establish this claim, this Section relates the previous EU criteria to the ordinal comparison of vectors. When S is finite, the comparison of acts can indeed be seen as a comparison of vectors of pairs of elements of L: Definition 7 The representative vector of any act f ∈ A is the vector f = ((π 1 , µ 1 ), . . . , (π i , µ i ), . . . (π N , µ N )) where π i stands for π(s i ) and µ i for µ(f (s i )).

Comparing acts thus amounts to comparing elements of (L 2 ) N . For instance, OP T,π,µ is a restriction to the case M = 2 of the general M axmin relation on

(L M ) N . Definition 8 (Maxmin relation) Let u, v ∈ (L M ) N . Then u M axmin v ⇔ max i=1,N min j=1,M u i,j ≥ max i=1,N min j=1,M v i,j
where w i,j is the j th element of the i th vector of w ∈ (L M ) N If u and v are representative of some acts, M = 2 and it is obvious that f OP T,π,µ g ⇔ f M axmin g. In this Section we will propose a refinement of M axmin , based only on the ordinal comparison of degrees and we will show the equivalence between this purely syntactical decision rule and the above EU models.

Case of total ignorance

Let us first consider the degenerate case of total ignorance, where ∀s ∈ S, π(s) = 1 L . In this case, the comparison of acts comes down to the comparison of utility degrees:

f = ((1 L , µ 1 ), . . . , (1 L , µ N )) becomes f = (µ 1 , . . . , µ N ). So, f OP T,π,µ g iff f M ax g and f P ES,π,µ g iff f M in g.
In decision making, the comparison of vectors by the max and min operators is well known, as it is known that it suffers from a lack of decisive power. That is why refinements of min and max have been proposed [Moulin, 1988]:

Definition 9 (Leximax, Leximin) Let u, v ∈ L N . Then • u lmax v ⇔ (∀j, u (j) = v (j) or ∃i, ∀j < i, u (j) = v (j) and u (i) > v (i) ) • u lmin v ⇔ (∀j, u (j) = v (j) or ∃i, ∀j > i, u (j) = v (j) and u (i) > v (i) )
where, for any w ∈ L N , w (k) is the k-th biggest element of w (i.e. w (1) ≥ . . . ≥ w (N ) ).

In practice, the leximin (resp. leximax) comparison consists in ordering both vectors in increasing (resp. decreasing) order and then lexicographically comparing them. Example 3 Let u = (3, 2, 4) and v = (2, 2, 4):

u lmax v since u (1) = v (1) = 4 and u (2) = 3 > v (2) = 2; u lmin v since u (3) = v (3) = 2 and u (2) = 3 > v (2) = 2.
It is obvious that lmax refines max and lmin refines min . Moreover, both relations escape the drowning effect and are very efficient: the only pairs of ties are vectors that are identical up to a permutation of their elements.

General Case

Since the leximax and leximin comparisons are good candidates in a particular case, we have imagined an extension of these procedures to the case of 2 dimensions ( (L M ) N instead of L N ). The only thing that we need is to use any complete preorder ¤ on vectors of L M instead of the classical relation ≥ on L. It is then possible to order the sub-vectors of any w according to ¤ and to apply any of the previous procedures: 

of ¤. Let u, v ∈ (L M ) N . Then • u lmax(¤) v ⇔ (∀j, u (¤,j) ∼ = v (¤,j) or ∃i s.t. ∀j < i, u (¤,j) ∼ = v (¤,j) and u (¤,i) £ v (¤,i) ). • u lmin(¤) v ⇔ (∀j, u (¤,j) ∼ = v (¤,j) or ∃i s.t. ∀j > i, u (¤,j) ∼ = v (¤,j) and u (¤,i) £ v (¤,i) ).
where, for any w ∈ (L M ) N , w (¤,i) is the i th biggest subvector of w according to ¤.

The leximax procedure can in particular be applied to the preorder ¤ = lmin . In practice, this comparison consists in first ordering the elements of each sub-vector in increasing order w.r. 

defined by f lmax( lmin) g ⇔ f lmax( lmin) g refines OP T,π,µ .
Example 4 The representative vectors of f and g in Example 1 are: f = ((5, 3), (2, 4)), g = ((5, 3), (2, 1)). ( 5, 3) ∼ =lmin (5, 3), (4, 2) lmin (2, 1)), so f lmax( lmin) g.

The same kind of reasoning can be followed to refine P ES,π,µ .

The pessimistic utility of act f is min s∈S max(n(π(s)), µ(f (s))). We need to refine a minimax procedure, and this can be done using lmin( lmax) . Since operator max does not apply to (π(s), µ(f (s))) but to (n(π(s)), µ(f (s))), we use the π-reverse vectors of acts:

Definition 11 The π-reverse vector of an act f ∈ A is n(f ) = ((n(π(s 1 )), µ(f (s 1 )), . . . (n(π(s N )), µ(f (s N ))). Proposition 9 The relation lmin( lmax,n) defined by f lmin( lmax,n) g ⇔ n(f ) lmin( lmax) n(g) refines P ES,π,µ .
So, the lexi-refinement of P ES,π,µ applies the leximin(leximax) comparison to the π-reverse vectors, while the refinement of OP T,π,µ applies the leximax(leximin) comparison directly to the representative vectors. Both procedures are purely ordinal: the degrees in L are only compared using min, max and reverse operators -only their relative orders matter. Our final result is that these refinements are equivalent to the EU-refinements identified in Section 2. Theorem 3 Let < S, X, L, π, µ > be a QPU model and χ a probabilistic transformation of L w.r.

t. π, p = χ • π, u = χ • µ, u = χ(1 L ) -χ • n • µ: i) EU,p,u refines OP T,π,µ ⇔ EU,p,u ≡ lmax( lmin) . ii) EU,p,u refines P ES,π,µ ⇔ EU,p,u ≡ lmin( lmax,n) .
So, the probabilistic refinements of possibilistic utilities are equivalent to purely comparative procedures: efficient QPU refinements are probabilistic but remain qualitative. Reciprocally, we can prove that the lmax( lmin) and lmin( lmax,n) preference relations over vectors of vectors always admit a representation by a sum (on N) of products (on M), provided that L is discrete -but this is beyond the scope of this paper, that focuses on decision under uncertainty (where M=2).

Conclusion

The topic of Qualitative Decision Theory has received much attention in the past few years and several approaches, including QPU, have been proposed. This latter model forms a convenient framework for a qualitative expression of problems of decision under uncertainty. However, it suffers from a lack of decisiveness. We have proposed EU-based refinements of QPU which proved to be perfectly compatible with the original qualitative expression of knowledge and preferences: the only difference is that lexicographic (leximax(leximin) or leximin(leximax)) comparisons are used instead of maxmin or minmax. The axiomatization of these decision procedures is out of the scope of this paper. It actually consists in the 5 basic Savagean axioms, together with "mild" versions of the pessimism or optimism axioms of possibilistic utilities (see [START_REF] Fargier | [END_REF]).

κ-utility functions have also received much attention in AI but they too suffer from a lack of decisive power. Indeed, due to the min operator in U κ (f ) = min s∈S {κ(s) + µ(f (s))}, they cannot satisfy Savage's STP. We claim that κ,µ can be EU-refined, in the same way as we did for QPU, and that the EU-refinement can be expressed syntactically by replacing the min operator by a leximin one. The proof of this conjecture, which would follow the same line as the one presented here, is left for future research.

The other extension of our work is to refine monotonic utilities [Dubois et al., 1998c] a family of decision criteria that generalizes QPU and are based on the Sugeno integral. Monotonic Utilities admit a maxmin expression max s∈S (min(σ(F s ), µ(f (s)))), where σ : 2 S → L is a monotonic measure and F s = {s ∈ S s.t. µ(f (s )) ≥ µ(f (s))}. Again, we conjecture that replacing min and max with their lexicographical versions allows an efficient refinement and lead to Choquet-EU criteria [Gilboa, 1987].

Definition 10 (

 10 Leximax(¤), Leximin(¤)) Let ¤ be a complete preorder on L M , ∼ = the associated equivalence relation and £ is the strict part

  t , then in ordering the sub-vectors in decreasing order (w.r.t. lmin ). It is then enough to lexicographically compare the two new vectors of vectors. Proposition 7 ( lmax( lmin) order) i) lmax( lmin) is a complete preorder; ii) lmax( lmin) refines maxmin; iii) If N = 1, then lmax( lmin) ≡ lmin ; iv) If M = 1, then lmax( lmin) ≡ lmax .So, lmax( lmin) is the refinement of maxmin we desire. Let us now compare representative vectors of acts using this relation (letting M = 2) -we get a refinement of OP T,π,µ :

	Proposition 8 The relation	lmax( lmin)

Since expected utility is not sensitive to linear transformations of u, the choice of [0, 1] as the range for u is made for convenience.

The idea of refining QPU first appeared in[START_REF] Dubois | [END_REF]: the principle was to break ties thougth an extra criterion (e.g. refining the pessimistic QPU by the optimitic QPU or by another maxtnorm aggregation). The use of a max operator kept the approach in an ordinal framework, but forbade the full satisfaction of the STP

But the optimisitc utility u = χ • µ is not equal to the pessimisitic utility u = χ(1L) -χ • n • µ : u puts the emphasis on the best consequences, while the pessimistic u provides a high utility when low consequences are avoided. It is actually hopeless to look for a common refinement of OP T,π,µ and P ES,π,µ since it may happen that f OP T,π,µ g and g P ES,π,µ f altogether.

The "probabilistic likelihood relation" p = χ•π is a refinement of both the necessity (N ) and possibility (Π) relations based on π. Reciprocally, it is easy to show that, for any big stepped probability P , there exists a π such that P refines both Π and N .

Appendix

Most of the proofs are omitted for sake of brevity and can be found in [START_REF] Fargier | [END_REF] or at the following address : http://wwwbia.inra.fr/T/sabbadin/WEB/FargierSabbadin03Rap.html. We provide here the skecthes of the most interesting ones. 

It can be assumed (without loss of generality) that Lπ ⊆ Lµ = L. Consider any αi ∈ L and βj = min{βi ∈ Lπ, βi ≥ αi}. There exists a pair (s, x) where π(s) = βj, µ(x) = αi. Let us also denote x0 (resp. x1) a consequence of utility 0L (resp. 1L).

The proof of Proposition 4 is based on the observation that act f : f (s) = x, f (s ) = x0 is always strictly preferred by OP T,π,µ to act g : g(s ) = x1 when π(s ) < αi and g(s

From this, it can be shown that (i) the sub products, in the expression of the expected utility, are ranked in the same way by any χ and that (ii) the act with the biggest j-product is surely strictly preferred to the other act (whatever the values of the remaining terms). Lemma 1 Let χ 1 and χ 2 two unbiased transformation of L refining OP T,π,µ . It holds that:

Lemmas 1 and 2 together are enough to prove the equivalence of EU,χ 1 •π,χ 1 •µ and EU,χ 2 •π,χ 2 •µ, whatever χ1 and χ2: Indeed,

). But, from Lemma 1, the comparison of products are the same if we change χ 1 into χ 2 , so we get: ∃j/∀i < j, χ 2 (π

) and χ 2 (π σ f (j) )•χ 2 (µ σ f (j) ) > χ 2 (π σ g (j) )• χ 2 (µ σ g (j) ), which implies (Lemma 2) that EU,χ 2 •π,χ 2 •µ .

The same reasoning, simply swapping χ1 and χ2 implies EU,χ 2 •π,χ 2 •µ ⇒ EU,χ 1 •π,χ 1 •µ , from which we get the equivalence of EU,χ 1 •π,χ 1 •µ and EU,χ 2 •π,χ 2 •µ .
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