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Abstract

Recent results have shown the interest of trees-of-
BDDs [Subbarayan et al., 2007] as a suitable tar-
get language for propositional knowledge compi-
lation from the practical side. In the present pa-
per, the concept of tree-of-BDDs is extended to ad-
ditional classes of data structures C thus leading
to trees-of-C representations (ToC). We provide a
number of generic results enabling one to deter-
mine the queries/transformations satisfied by ToC
depending on those satisfied by C. We also present
some results about the spatial efficiency of the ToC
languages. Focusing on the ToOBDD< language
(and other related languages), we address a num-
ber of issues that remained open in [Subbarayan et
al., 2007]. We show that beyond CO and VA, the
ToOBDD< fragment satisfies IM and ME but sat-
isfies neither CD nor any query among CE, SE un-
less P = NP. Among other results, we prove that
ToOBDD< is not comparable w.r.t. succinctness
with any of CNF, DNF, DNNF unless the polyno-
mial hierarchy collapses. This contributes to the
explanation of some empirical results reported in
[Subbarayan et al., 2007].

1 Introduction

This paper is concerned with “knowledge compilation” (KC),
a family of approaches proposed so far for addressing the
intractability of a number of AI problems of various kinds
(reasoning, decision making, etc.). The key idea underlying
KC is to pre-process parts of the available information (i.e.,
turning them into a compiled form) for improving on-line
computational efficiency (see among others [Darwiche, 2001;
Cadoli and Donini, 1998; Selman and Kautz, 1996; del Val,
1994]).

A important research line in KC [Gogic et al., 1995;
Darwiche and Marquis, 2002] addresses the following issue:
How to choose a target language for knowledge compila-
tion? In [Darwiche and Marquis, 2002], the authors argue
that the choice of a target language must be based both on

∗The authors have been partly supported by the ANR project
PHAC (ANR-05-BLAN-0384).

the set of queries and transformations which can be achieved
in polynomial time when the data are represented in the lan-
guage, as well as the spatial efficiency of the language. They
pointed out a KC map which can be viewed as a multi-
criteria evaluation of a number of propositional fragments,
including DNNF, d-DNNF, CNF, DNF, OBDD<, OBDD (the
union of all OBDD< when < varies), etc. (see [Darwiche
and Marquis, 2002] for details). From there, other propo-
sitional fragments have been considered so far and put in
the KC map, see for instance [Wachter and Haenni, 2006;
Fargier and Marquis, 2006; Subbarayan et al., 2007; Pipat-
srisawat and Darwiche, 2008; Fargier and Marquis, 2008a;
2008b].

Recent experimental results have shown the practical inter-
est of trees-of-BDDs [Subbarayan et al., 2007] as a target lan-
guage for propositional knowledge compilation: it turns out
that the tree-of-BDDs language renders feasible the compila-
tion of a number of benchmarks which cannot be compiled
into d-DNNF due to space limitations.

In the present paper, we elaborate on the tree-of-BDDs
language. After some formal preliminaries (Section 2), we
generalize the tree-of-BDDs language to the family of ToC
representations where C is any complete propositional lan-
guage (Section 3). We provide a number of generic results
enabling one to determine the queries/transformations satis-
fied by ToC depending on the queries/transformations satis-
fied by C. We also present some results about the spatial ef-
ficiency of the ToC languages. Focusing on ToOBDD<and
some related languages, we then address a number of is-
sues that remained open in [Subbarayan et al., 2007] (Sec-
tion 4): beyond CO and VA, the ToOBDD< language sat-
isfies IM and ME but does not satisfy any query among
CE, SE unless P = NP. Under similar assumptions from
complexity theory, we demonstrate that ToOBDD< does not
satisfy any transformation among CD, FO, ∧ BC, ∨C or
¬C. Among other succinctness results, we prove that the
ToOBDD< language is not comparable w.r.t. succinctness
with any of CNF, DNF or DNNF unless the polynomial hi-
erarchy PH collapses. This contributes to the explanation of
some empirical results reported in [Subbarayan et al., 2007].
We conclude the paper by a discussion of the results and some
perspectives (Section 5). Proofs are omitted for space rea-
sons but are available at http://www.fr/˜marquis/
fargier-marquis-ijcai09.pdf.
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2 Representations and the KC Map

Trees-of-BDDs and their forthcoming generalization are not
stricto sensu formulae. Hence we need to extend the no-
tions of queries, transformations and succinctness at work
in the KC map to such representations. Roughly speaking,
a propositional representation language is a way to repre-
sent Boolean functions. Such a representation language often
takes the form of a standard propositional language but other
data structures can be used as well (e.g. Karnaugh maps,
truth tables, various graphs including those binary decision
diagrams, ... and of course trees-of-BDDs) for the represen-
tation purpose.

Formally, given a finite set of propositional variables PS,
we consider Boolean functions from {0, 1}X to {0, 1}, where
X ⊆ PS. V ar(f) = X is called the scope of f . The sup-
port Ω(f) of f is the set of all assignments ω of V ar(f) to
Boolean values such that f(ω) = 1. For any X ⊆ PS, we
note by X the set PS \ X . The set of Boolean functions is
equipped with the three standard internal laws, ∧, ∨ and ¬.
Given X ⊆ PS we note by ∃X.f the Boolean function with
scope V ar(f)\X that maps 1 to an assignment ωV ar(f)\X of
V ar(f) \ X iff there exists an assignment ω of V ar(f) such
that the restriction of ω over V ar(f) \ X and ωV ar(f)\X co-
incide and f(ω) = 1.

Definition 1 (representation language) (inspired from
[Gogic et al., 1995]) A (propositional) representation lan-
guage over a finite set of propositional variables PS is a set
C of data structures α (also referred to as C representations)
together with a scope function V ar : C→ 2X with X ⊆ PS
and an interpretation function I which associates to each C
representation α a Boolean function I(α) the scope of which
is V ar(α). C is also equipped with a size function from C to
IN that provides the size |α| of any C representation α.1

Definition 2 (complete language) A propositional repre-
sentation language C is said to be complete iff for any
Boolean function f with V ar(f) ⊆ PS, there exists a C rep-
resentation α such that I(α) = f .

Clearly enough, formulae from a standard propositional
language are representations of Boolean functions. The size
of such a formula is the number of symbols in it. Slightly
abusing words, when Σ is a propositional formula represent-
ing a Boolean function g one often says that a representation
α of g is a representation of Σ instead of α is a representation
of the semantics of Σ.

The DAG-NNF language [Darwiche and Marquis, 2002]
is also a complete graph-based representation language of
Boolean functions. Distinguished formulae from DAG-NNF
are the literals over PS, the clauses (a clause is a finite dis-
junction of literals or the Boolean constant ⊥) and the terms
(a term is a finite conjunction of literals or the Boolean con-
stant 	). We assume the reader to be familiar with the

1I refers to the interpretation function associated to the C lan-
guage, so that IC would be a more correct notation for it; neverthe-
less, in order to keep the notations light and since no ambiguity is
possible, we refrained from indexing the functions I (as well as V ar
and the size function) by the associated representation language.

DAG-NNF fragments DNNF, d-DNNF, CNF, DNF, FBDD,
OBDD<, OBDD, MODS, etc.

Obviously, all the logical notions pertaining to formulae
viewed up to logical equivalence can be easily extended to
any representation language C of Boolean functions. For in-
stance, an asssignment ω of V ar(α) to Boolean values is
said to be a model of a C representation α over V ar(α) iff
I(α)(ω) = 1. Similarly, two representations α and β (pos-
sibly from different representation formalisms) are said to
be equivalent, noted α ≡ β, when they represent the same
Boolean function. A C representation α is consistent (resp.
valid) iff α does not represent the Boolean function 0 (resp.
represents the Boolean function 1). α is a logical conse-
quence of β, noted β |= α, iff Ω(I(β)) ⊆ Ω(I(α)).

We are now ready to extend the notions of queries, trans-
formations and succinctness considered in the KC map to any
propositional representation language. Their importance is
discussed in depth in [Darwiche and Marquis, 2002], so we
refrain from recalling it here.

Definition 3 (queries) Let C denote a propositional repre-
sentation language.

• C satisfies CO (resp. VA) iff there exists a polytime al-
gorithm that maps every C representation α to 1 if α is
consistent (resp. valid), and to 0 otherwise.

• C satisfies CE iff there exists a polytime algorithm that
maps every C representation α and every clause δ to 1 if
α |= δ holds, and to 0 otherwise.

• C satisfies EQ (resp. SE) iff there exists a polytime al-
gorithm that maps every pair of C representations α, β
to 1 if α ≡ β (resp. α |= β) holds, and to 0 otherwise.

• C satisfies IM iff there exists a polytime algorithm that
maps every C representation α and every term γ to 1 if
γ |= α holds, and to 0 otherwise.

• C satisfies CT iff there exists a polytime algorithm that
maps every C representation α to a nonnegative integer
that represents the number of models of α over V ar(α)
(in binary notation).

• C satisfies ME iff there exists a polynomial p(., .) and an
algorithm that outputs all models of an arbitrary C rep-
resentation α in time p(|α|, m), where m is the number
of its models (over V ar(α)).

Definition 4 (transformations) Let C denote a proposi-
tional representation language.

• C satisfies CD iff there exists a polytime algorithm that
maps every C representation α and every consistent term
γ to a C representation β of the restriction of I(α) to
I(γ), i.e., V ar(β) = V ar(α) \ V ar(γ) and I(β) =
∃V ar(γ).(I(α) ∧ I(γ)).

• C satisfies FO iff there exists a polytime algorithm that
maps every C representation α and every subset X of
variables from PS to a C representation of ∃X.I(α). If
the property holds for each singleton X , we say that C
satisfies SFO.

• C satisfies ∧C (resp. ∨C) iff there exists a polytime al-
gorithm that maps every finite set of C representations
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α1, . . . , αn to a C representation of I(α1)∧ · · · ∧ I(αn)
(resp. I(α1) ∨ · · · ∨ I(αn)).

• C satisfies ∧BC (resp. ∨BC) iff there exists a polytime
algorithm that maps every pair of C representations α
and β to a C representation of I(α)∧I(β) (resp. I(α)∨
I(β) ).

• C satisfies ¬C iff there exists a polytime algorithm that
maps every C representation α to a C representation of
¬I(α).

Definition 5 (succinctness) Let C1 and C2 be two represen-
tation languages. C1 is at least as succinct as C2, noted C1

≤s C2, iff there exists a polynomial p such that for every C2

representation α there exists an equivalent C1 representation
β where |β| ≤ p(|α|).
∼s is the symmetric part of ≤s defined by C1 ∼s C2 iff C1

≤s C2 and C2 ≤s C1. <s is the asymmetric part of ≤s defined
by C1 <s C2 iff C1 ≤s C2 and C2 ≤s C1. Finally, C1 ≤∗

s C2

(resp. C1 <∗
s C2) means that C1 ≤s C2 (resp. C1 <s C2) unless

the polynomial hierarchy PH collapses (which is considered
very unlikely in complexity theory).

We also consider the following restriction of the succinct-
ness relation:

Definition 6 (polynomial translation) Let C1 and C2 be two
representation languages. C1 is polynomially translatable
into C2, noted C1 ≥P C2, iff there exists a polytime algo-
rithm A such that for every C1 representation α A(α) is a C2

representation such that A(α) ≡ α.

Like ≥s, ≥P is a preorder (i.e., a reflexive and transitive
relation) over propositional representation languages. It re-
fines the spatial efficiency preorder ≥s in the sense that for
any C1 and C2, if C1 ≥P C2, then C1 ≥s C2 (but the converse
does not hold in general). We note by ∼P the symmetric part
of ≤P .

3 The ToC Languages

We start with the definition of trees-of-BDDs as given in
[Subbarayan et al., 2007] (modulo the notations used):

Definition 7 (tree-of-BDDs)

• A decomposition tree of a CNF formula Σ is a (finite) la-
belled tree T whose set of nodes is N . Each node n ∈ N
is labelled with V ar(n), a subset of V ar(Σ). For each
n ∈ N , let clauses(n) = {clause δ of Σ s.t V ar(δ) ⊆
V ar(n)}; T satisfies two conditions: for every clause δ
of Σ there exists n ∈ N such that δ ∈ clauses(n), and
for every x ∈ V ar(Σ), {n ∈ N | x ∈ V ar(n)} forms a
connected subtree of T .

• Let < be a total strict ordering over PS. A tree-of-
BDDs of a CNF formula Σ given < consists of a decom-
position tree T of Σ equipped with a further labelling
function B such that for every n ∈ N , B(n) is the
OBDD< representation of ∃V ar(n).I(Σ).
We have V ar(T ) =

⋃
n∈N V ar(n) and I(T ) =∧

n∈N I(B(n)). ToB denotes the set of all trees-of-
BDDs given <.

Clearly, ToB is a complete representation language: for
every Boolean function there is a CNF formula Σ representing
it, and thus a tree-of-BDDs T of Σ such that I(T ) = I(Σ).

The above definition can be simplified and extended, al-
lowing the representation of other formulae than CNF ones,
and taking advantage of other target languages than OBDD<

for compiling the labels B(n):

Definition 8 (ToC) Let C be any complete propositional rep-
resentation language. A ToC representation is a finite, la-
belled tree T , whose set of nodes is N . Each node n ∈ N is
labelled with V ar(n), a subset of PS and with a C represen-
tation B(n).

T must satisfy:

• the running intersection property: for each x ∈⋃
n∈N V ar(n), {n ∈ N | x ∈ V ar(n)} forms a con-

nected subtree of T , and

• the global consistency property: for each n ∈ N ,
I(B(n)) ≡ ∃V ar(n).

∧
n∈N I(B(n)).

We have V ar(T ) =
⋃

n∈N V ar(n) and I(T ) =∧
n∈N I(B(n)). The size of a ToC representation T is the

size of this tree, plus the sizes of the labels of the nodes of T
(numbers of variables in V ar(n) and sizes of B(n)).
ToC denotes the set of all ToC representations.

Taking C = OBDD<, we get the ToOBDD< language.
Clearly, this definition of ToOBDD< is close to the previ-
ous one ToB from [Subbarayan et al., 2007], except that
a ToOBDD< representation T is defined per se, i.e., inde-
pendently from a given CNF formula Σ. Within this lan-
guage, unlike with the OBDD< one, a Boolean function may
have several equivalent representations. For instance, let
Σ = (¬a ∧ ¬b) ∨ (¬a ∧ c) ∨ (b ∧ c). Whatever <, I(Σ)
can be represented by the ToOBDD< representation T such
that T has a single node n0, such that V ar(n0) = V ar(Σ)
and B(n0) is the OBDD< representation equivalent to Σ; ob-
serving that Σ ≡ (¬a ∨ b) ∧ (¬b ∨ c), I(Σ) can also be rep-
resented by the ToOBDD< representation T such that T has
two nodes n0 and n1, the root of T is n0, V ar(n0) = {a, b},
V ar(n1) = {b, c}, B(n0) is the OBDD< formula equivalent
to (¬a ∨ b), and B(n1) is the OBDD< formula equivalent to
(¬b ∨ c). In short, ToOBDD< does not offer the property of
canonical representation.

Compiling a CNF formula Σ into a ToC representation T
basically consists in computing first a decomposition tree of
Σ, then taking advantage of any CNF-to-C compiler so as to
turn the CNF clauses(n) formulae (for each node n of the
tree) into equivalent C representations, and finally to use the
well-known message-passing propagation algorithm (see the
Propagate function in [Subbarayan et al., 2007], which ap-
plies also to ToC representations) from the leaves of the tree
to its root then from the root to the leaves so as to ensure the
global consistency property.This approach can be easily ex-
tended to deal with the compilation of any conjunctive repre-
sentation into a ToC representation when compilers to C are
available. The running intersection property enables one to
replace a global computation on the resulting ToC represen-
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tation T by a number of possibly easier, local computations
on the corresponding B(n).

Let us now present some generic properties about ToC
fragments; such properties are about queries, transformations
and succinctness, and are related to similar properties satis-
fied by the corresponding C languages. We first need the fol-
lowing definition:

Definition 9 (TE, CL) Let C be any propositional represen-
tation language.

• C satisfies TE (the term condition) iff for every term γ
over PS, a C representation equivalent to γ can be com-
puted in time polynomial in |γ|.

• C satisfies CL (the clause condition) iff for every clause
δ over PS, a C representation equivalent to δ can be
computed in time polynomial in |δ|.

Clearly enough, those conditions are not very demand-
ing and are satisfied by all complete languages considered in
[Darwiche and Marquis, 2002], but MODS.

Proposition 1 Let C be any complete propositional represen-
tation language.

1. C satisfies CO iff ToC satisfies CO.

2. C satisfies VA iff ToC satisfies VA.

3. C satisfies IM iff ToC satisfies IM.

4. If C satisfies CD,
then C satisfies ME iff ToC satisfies ME.

5. If C satisfies CL,
then ToC does not satisfy CE unless P = NP.

6. If C satisfies CL,
then ToC does not satisfy SE unless P = NP.

Points 1. to 4. show that the ToC languages typically sat-
isfy all the queries CO, VA, IMand ME (just because the
corresponding C languages typically satisfy them and CD).
Similarly, points 5. and 6. show that the ToC languages typi-
cally do not satisfy any of CE or SE unless P = NP (because t
because the corresponding C languages typically satisfy CL).
Finally, since every propositional language satisfying CO and
CD also satisfies CE (a straightforward extension of Lemma
1.4 from [Darwiche and Marquis, 2002] to any propositional
representation language), we get as a corollary to points 1.
and 5. that:

Corollary 1 If C satisfies CO and CL, then ToC does not
satisfy CD unless P = NP.

Considering other transformations, we obtained the follow-
ing results which hold for any propositional representation
language (hence specifically for the ToC ones):

Proposition 2 Let C be any propositional representation lan-
guage.

1. If C satisfies CO and TE and C does not satisfy CE un-
less P = NP, then C does not satisfy ∧BC unless P =
NP.

2. If C satisfies VA and TE,
then C does not satisfy ∨C unless P = NP.

3. If C satisfies IM and does not satisfy CE unless P = NP,
then C does not satisfy ¬C unless P = NP.

These results show that the ToC languages typically satisfy
only few transformations among CD, ∧BC, ∨C and ¬C.
The conditions on C listed in Corollary 1 and Proposition 2
are indeed not very demanding.

It is interesting to note that the algorithms Conditioning,
Project, IsCE, IsEQ reported in [Subbarayan et al., 2007]
(Figure 3), for respectively computing the conditioning of a
ToOBDD< representation by a consistent term, computing the
projection of a ToOBDD< representation T on a given set V
of variables (or equivalently, forgetting all variables in T ex-
cept those of V ), deciding whether a clause is entailed by a
ToOBDD< representation, deciding whether two ToOBDD<

representations are equivalent, apply to ToC representations
as well (the fact that each B(n) of T is an OBDD< represen-
tation is not mandatory for ensuring the correctness of these
algorithms). While these algorithms do not run in polyno-
mial time in the general case, imposing further restrictions on
C can be a way to achieve tractability. Thus, it is easy to show
that if C has a linear-time algorithm for FO and a linear-time
algorithm for ∧BC, then Project is a polytime FO algorithm
for the ToC languages. If C has a linear-time algorithm for
FO, a linear-time algorithm for ∧BC, and a polytime algo-
rithm for CD, then Conditioning is a polytime CD algorithm
for the ToC languages.

The fact that many queries/transformations are NP-hard in
the general case does not discard ToOBDD< (and beyond it
the ToC languages) as interesting target languages for KC
from the practical side.2 Indeed, if the width of a ToC rep-
resentation T , i.e., maxn∈N ({|V ar(n)| − 1}), is (upper)
bounded by a constant,3 then the time complexity of the
Propagate function becomes linear in the tree size; as a con-
sequence, many other queries and transformations may be-
come tractable as well; for instance if C satisfies CD, we get
that both conditioning and clausal entailment can be achieved
in polynomial time in the tree size.

As to succinctness, we got the following results:

Proposition 3 Let C be any complete propositional represen-
tation language.

1. ToC ≤P C.
2. Let C’ be any complete propositional fragment.

If C ≤s C’, then ToC ≤s ToC’.
3. If C satisfies CL and C’ satisfies CE

then C’ ≤∗
s ToC.

4. If C satisfies IM, then ToC ≤∗
s DNF.

Proposition 3 has many interesting consequences:
• From point 1., we directly get that ToC ≤s C, and that
ToC is complete (since C is). This result cannot be
strengthened to ToC <s C in the general case (for ev-
ery C satisfying ∧C, e.g. C = CNF, we can prove that C
∼P ToC).

2See [Marquis, 2008] for more details on this issue.
3The price to be paid by such a restriction is a lack of expres-

siveness: none of the languages of ToC representations of width
bounded by c (where c is a parameter) is complete.
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• Point 2. allows one to take advantage of previous results
describing how propositional languages C are organized
w.r.t. spatial efficiency in order to achieve similar results
for the corresponding ToC languages.

• Point 3. implies that the DNNF language, which satisfies
CE, is typically (i.e., whenever C satisfies CL) not more
succinct than the corresponding ToC language; hence
none of the languages C which are less succinct than
DNNF (e.g. C = DNF) can be more succinct than such
ToC languages; thus, we get for instance that DNF ≤∗

s
ToDNF (which together with point 1. shows that ToDNF
<∗

s DNF).

• Another consequence of point 3. is that if C satisfies
CL then DNNF ≤∗

s ToC (hence d-DNNF ≤∗
s ToC). With

point 1. this shows ToDNNF to be spatially (strictly)
more efficient than DNNF, while keeping CO and ME.

Finally, an interesting issue is to determine whether, at the
”instance level”, i.e., considering a given Boolean function
to be compiled, targeting ToC in a compilation process leads
always to save space w.r.t. targeting C. The answer is ”not
always” (even in the cases when we have ToC <∗

s C). We
showed it by considering the notion of decomposition set:

Definition 10 (decomposition) Let f be a Boolean function.
Let V1, ..., Vk be k subsets of PS. D = {V1, . . . , Vk} is a
decomposition set for f iff we have f =

∧k
i=1 ∃Vi.f .

Clearly enough, for each ToC representation T whose set
of nodes is N , {V ar(n) | n ∈ N} is a decomposition set for
I(T ). We proved that:

Lemma 1 Let f be a Boolean function. Let δ be an essential
prime implicate of f , i.e., a prime implicate of f which is not
implied by the conjunction of the other prime implicates of f .
Then for every decomposition set D for f , there exists V ∈ D
such that V ar(δ) ⊆ V .

This lemma shows that when f has an essential prime im-
plicate containing all its variables, no ToC representation of
f can be more compact than each of its C representations.
This lemma also shows that when f has an essential prime
implicate δ such that ∃V ar(δ).f has no C representation of
reasonable size, chosing ToC as the target language is not a
way to save space.

Finally, Lemma 1 also explains why imposing a fixed de-
composition tree T for defining a ToC language is not so a
good idea (despite the fact it may offer a property of canonic-
ity in some cases): either T has a node n such that V ar(n) =
{x1, . . . , xp} (all the variables of interest), and in this case the
corresponding ToC language mainly amounts to C, or T does
not contain such a node, and in this case the ToC language is
incomplete: the Boolean function which is the semantics of
the clause

∨p
i=1 xi cannot be represented in ToC.

4 Back to ToOBDD< Representations

Let us now fix C to OBDD< in order to get some further re-
sults. Beyond ToOBDD< we have investigated the properties
of U(ToOBDD<) (the union of all ToOBDD< for each total
order < over PS) and of ToOBDD, as target languages for

CE VA CO IM EQ SE CT ME

ToOBDD ◦ √ √ √
? ◦ ?

√
U(ToOBDD<) ◦ √ √ √

? ◦ ?
√

ToOBDD< ◦ √ √ √
? ◦ ?

√
OBDD

√ √ √ √ √ √ √ √
OBDD<

√ √ √ √ √ √ √ √

CD FO SFO ∧BC ∧C ∨BC ∨C ¬C

ToOBDD ◦ ◦∗ ? ◦ • ◦ ◦ ◦
U(ToOBDD<) ◦ ◦∗ ? ◦ • ◦ ◦ ◦
ToOBDD< ◦ ◦∗ ? ◦ • ? ◦ ◦
OBDD

√ • √ ◦ • ◦ • √
OBDD<

√ • √ √ • √ • √

Table 1:
√

means “satisfies”, • means “does not satisfy”,
◦ means “does not satisfy unless P = NP”, and ◦∗ means
“does not satisfy unless PH collapses.” Results for OBDD<

and OBDD are from [Darwiche and Marquis, 2002] and are
given here as a baseline.

.

propositional knowledge compilation, along the lines of the
KC map. To make the differences between these languages
clearer, observe that OBDD representations B(n), n ∈ N
where N is the set of nodes of a given ToOBDD T may rely
on different variable orders <, while all the OBDD< represen-
tations in a given U(ToOBDD<) are based on the same order.
Hence, U(ToOBDD<) is a proper subset of ToOBDD.

Proposition 4 The results in Table 1 hold.

The fact that ToOBDD, U(ToOBDD<), and ToOBDD< sat-
isfy CO, VA, IM, and ME and that none of these languages
satisfies any of CE, SE, CD, ∧BC, ∧C, ∨C or ¬C, unless
P = NP is a direct corollary of Propositions 1 and 2. Except
CO and VA, all those results concern some issues left open in
[Subbarayan et al., 2007]. Especially, there exist polytime al-
gorithms for IM and ME which are not based on the message-
passing propagation algorithm (those given in [Subbarayan et
al., 2007] do not run in polynomial time in the general case).
Furthermore, contrary to what was expected in [Subbarayan
et al., 2007], ¬C is not trivial: the negation of a conjunction
of OBDD< representations is equivalent to the disjunction of
their negations. We actually showed that the ¬C transfor-
mation on ToOBDD< cannot be achieved in polynomial time
unless P = NP.

As to succinctness, we proved the following results:

Proposition 5

1. For each <, ToOBDD< <∗
s OBDD<.

2. For each <, DNNF ≤∗
s ToOBDD<.

3. ToOBDD ≤∗
s DNF.

4. ToOBDD ≤s CNF.

Points 1. to 3. are direct consequences of Proposition 3 and
results from [Darwiche and Marquis, 2002]). A direct conse-
quence of Proposition 5 is that d-DNNF ≤∗

s ToOBDD<. This
explains in some sense the space savings which can be offered
by ToOBDD< over d-DNNF and observed empirically as re-
ported in [Subbarayan et al., 2007]. More generally, from
Proposition 3 and some results given in [Darwiche and Mar-
quis, 2002] we get that:
Corollary 2 Unless PH collapses, ToOBDD, U(ToOBDD<)
and ToOBDD< are incomparable w.r.t. succinctness with the
languages CNF, DNF, and DNNF.
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5 Conclusion

In this paper, the concept of tree-of-BDDs has been ex-
tended to any complete propositional representation language
C thus leading to the family of ToC languages. A number of
generic results are provided, which allow to determine the
queries/transformations satisfied by ToC depending on the
ones satisfied by C, as well as results about the spatial effi-
ciency of the ToC languages. Focusing on the ToOBDD< lan-
guage, we have addressed a number of issues that remained
open in [Subbarayan et al., 2007]; especially, we have shown
that beyond CO and VA, ToOBDD< satisfies IM and ME
but does not satisfy any query among CE, SE. We have also
proved that ToOBDD< does not satisfy any transformation
among CD, FO, ∧BC, ∨C or ¬C and that this fragment is
not comparable for succinctness w.r.t. any of CNF, DNF and
DNNF unless PH collapses.

From this investigation, it turns out that the ToOBDD<

language (and in general the ToC languages) satisfies only
few queries and transformations. Subsequently, in appli-
cations where some queries/transformations not satisfied by
ToOBDD< must be achieved under some guaranteed response
time, considering ToOBDD< as a target language for KC is
not always the best choice. From the practical side, as re-
ported in [Subbarayan et al., 2007] (and despite the fact that
ToOBDD< ≤s CNF), there are CNF formulae which can be
compiled into ToOBDD< using a reasonable amount of com-
putational resources, while it turned out impossible to gener-
ate d-DNNF representations for them. Such empirical results
cohere with our succinctness result d-DNNF ≤∗

s ToOBDD<.
Nevertheless, our result ToOBDD ≤∗

s DNNF shows that this
empirical evidence can be argued (this result implies that
some DNNF representations do not have ”small” ToOBDD<

equivalent representations under the standard assumptions of
complexity theory), so DNNF remains a very attractive lan-
guage for the KC purpose.

Our results also suggest a number of ToC languages
as quite promising. Consider for instance the ToFBDD
language. From our results, it comes easily that ToFBDD
satisfies CO, VA, IM, ME (hence the same queries as
ToOBDD<); since ToFBDD is at least as succinct as
ToOBDD, it appears as a challenging fragment. Fur-
thermore, a compiler to FBDD is already available (see e.g.
www.eecg.utoronto.ca/∼jzhu/fbdduser11.ps).
When none of VA or IM is expected, the ToDNNF language
looks also valuable; indeed, from our results we know
that ToDNNF satisfies CO and ME, while being quite
compact: ToDNNF <∗

s ToOBDD< and ToDNNF <∗
s DNNF

hold; beyond the spatial dimension, targeting the ToDNNF
language may also reduce the on-line computation time
needed for achieving queries/transformations based on
Propagate function (as well as the off-line CNF-to-ToC
compilation time) since DNNF satisfies FO, which is one of
the two key operations of the propagation algorithm. The
ToDNNFT language, based on DNNFT [Pipatsrisawat and
Darwiche, 2008], also looks interesting in this respect since
it satisfies both FO and ∧BC, the other key operation of the
propagation algorithm.

This is what the ”theory” says in some sense about such

languages. Going further requires to implement compilers
and perform experiments in order to determine whether, from
the practical side, representations from those languages can
be computed using a reasonable amount of resources. This
is an issue for further research. Another perspective for fur-
ther work is to complete the missing results about queries,
transformations and succinctness for the ToC languages and
to extend the KC map accordingly. Especially, it would be
interesting to characterize some families of propositional for-
mulae each of DNNF and ToOBDD are ”effective” on.
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