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Abstract

The increasing occurrence of harmful algal blooms, mostly of the 

dinoflagellate Alexandrium catenella in Canada, profoundly disrupts 

mussel aquaculture. These filter-feeding shellfish feed on A. catenella and 

accumulate paralytic shellfish toxins, such as saxitoxin, in tissues, making 

them unsafe for human consumption. Algal toxins also have detrimental 

effects upon several physiological functions in mussels, but particularly on

the activity of hemocytes – the mussel immune cells. The objective of this 

work was to determine the effects of experimental exposure to A. 

catenella upon hemocyte metabolism and activity in the blue mussel, 

Mytilus edulis. To do so, mussels were exposed to cultures of the toxic 

dinoflagellate A. catenella for 120 hours. The resulting mussel saxitoxin 

load had measurable effects upon survival of hemocytes and induced a 

stress response measured as increased ROS production. The neutral lipid 

fraction of mussel hemocytes decreased two-fold, suggesting a differential

use of lipids. Metabolomic 1H nuclear magnetic resonance (NMR) analysis 

showed that A. catenella modified the energy metabolism of hemocytes 

as well as hemocyte osmolyte composition. The modified energy 

metabolism was reenforced by contrasting plasma metabolomes between 

control and exposed mussels, suggesting that the blue mussel may 

reduce feed assimilation when exposed to A. catenella.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45



3

Keywords

Paralytic Shellfish Poisoning ; Harmful Algal Bloom ; Mussel immune cells ;

Activity assays ; NMR-based metabolomics ; Lipid composition

46

47

48



4

1. INTRODUCTION

Aquaculture production is increasing worldwide in response to strong 

demand for seafood coupled with flat wild fishery landings (FAO, 2020). 

The blue mussel, including two species Mytilus edulis and Mytilus 

trossulus (Tremblay and Landry, 2016), is an important source of income for 

Canadian aquaculture as its production volume and value are the largest 

of all harvested molluscs (Statistics-Canada, 2019). Mussel farming occurs in

the natural environment, thus exposing mussels to various environmental 

risks, including the presence of toxin-producing microalgae or other 

bioactive compounds during harmful algal blooms (HAB) (Lassudrie et al., 

2020), that are expected to increase with climate change (Boivin-Rioux et 

al., 2021). As filter-feeding organisms, mussels ingest, assimilate, and 

accumulate HAB toxins in their tissues (Galimany et al., 2008a). These 

toxins can be harmful to mussels by disrupting several physiological 

functions, such as feeding activity, sodium-channel mutation, and valve 

microclosures, in some cases leading to tissue damage, paralysis, altered 

behavior, and loss of homeostasis (Lavaud et al., 2021; Bianchi et al., 2019; 

Comeau et al., 2019; Pousse et al., 2019; Tran et al., 2010; Hegaret et al., 2007; 

Bricelj et al., 2005). Microalgal biotoxins can also affect specific cellular 

immune-function activities, such as the apoptosis of immune cells or 

changes in hematology (Galimany et al., 2008a; Hegaret et al., 2007). 

The dinoflagellate Alexandrium catenella, is recognized as one of the

main, recurring HAB species in Canada (Boivin-Rioux et al., 2021; Starr et al.,

2017;  John  et  al.,  2014;  Blasco  et  al.,  2003).   Dinoflagellate  species
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responsible for HAB produce a complex mixture of toxins from the family

of paralytic shellfish toxins (PSTs), including saxitoxin (STX), neosaxitoxin

(nSTX), gonyautoxin (GTX) and other variants of these molecules  (Cusick

and Sayler, 2013). 

Saxitoxin is recognized as a threat to human health when ingested,

resulting in potentially fatal illnesses (Wang et al., 2003). The toxicity limit

of STX for safe human consumption of bivalve shellfish is 80 µg equivalent

of STX per 100 g of  tissue. Distribution and sale of the blue mussel is

forbidden above this threshold (Bates et al., 2020). Previous cultures of A.

catenella  produced  at  the  UQAR aquaculture  research  station  reached

toxin cell quotas ranging between 3 and 60 pg STXeq·cell−1 (Lavaud et al.,

2021). Among the bivalve responses to HAB toxins, those in hemocytes,

responsible for innate-immune defense, are the consequence of both the

mechanism of  HAB effect  and the protective  response of  the mussels.

Several  studies  have  revealed  biotoxins  effects  on  specific  cellular

immune-function activities, such as apoptosis of immune cells or changes

in hematology (Galimany et al., 2008b).

Hemocytes are specialized bivalve cells involved in digestion, 

nutrient transport, excretion, detoxification, shell mineralization, tissue 

repair, and, most importantly, immunity (Gosling, 2008). The immune 

system of bivalves is exclusively innate and relies upon the circulating 

hemocytes to act by phagocytosis or encapsulation of infective agents, 

and subsequent elimination of bacteria, cell debris, protozoa, and 

potential toxic algae (Cheng, 1996). Blue mussels have been classified as 
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rapid detoxifiers, eliminating toxins within weeks (Lavaud et al., 2021; 

Nielsen et al., 2016). PSTs at low doses increase the phagocytic activity of 

hemocytes in mussels, with a moderate incidence of lysosomal damage 

(Bianchi et al., 2021). This phagocytic activity is thought to modify the 

hemocyte lipidome and membrane organization (Leroux et al., 2022). 

Hemocyte membrane changes may affect the immune response of 

mussels, because the cell membrane is an important participant in 

hemocyte immune responses. Specifically, arachidonic acid (20:4n6) 

seems to be vital to maintain cellular activities (le Grand et al., 2011, 2013, 

2014; Delaporte et al., 2006), but can be targeted by the production of 

reactive oxygen species (ROS), another defense mechanism active in 

hemocytes (Winston et al., 1996) and arising from mitochondria (Donaghy et 

al., 2012). ROS contain one or more unpaired electrons that have high 

oxidizing power and rapidly react with compounds having pairs of 

electrons, such as double bonds in mono- or poly-unsaturated fatty acids 

(MUFA and PUFA) (Turrens, 2003).

Knowledge of the biochemical pathways in mussel immune cells 

during HAB exposure is limited. Biochemical studies of immune response 

to foreign bodies have mostly focused on the hemolymph,  the circulatory 

fluid of bivalves distributing throughout the body containing nutrients, 

respiratory gases, enzymes, metabolic wastes, and toxicants, as well as 

hemocytes  (Frizzo et al., 2021; Campos et al., 2015). The central role of 

hemocytes in the immune system makes them ideal to detect biochemical

responses of mollusks to HAB or other particles; therefore, we 
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investigated the effect of a conspecific HAB upon mussel immune cells 

though the application of metabolomics to the hemocytes. 

Metabolomics provides high-throughput qualitative and quantitative 

analyses of metabolites within cells, tissues, or biofluids. Techniques 

based upon mass spectrometry (MS) or nuclear magnetic resonance 

spectroscopy (NMR) data have been used extensively in biomedical 

science, and more recently in the fields of aquaculture and marine 

ecology (Bayona et al., 2022; Nguyen and Alfaro, 2020; Young and Alfaro, 

2018). Most of these studies have been conducted using MS, and fewer 

studies were conducted by NMR spectroscopy, despite its ease of 

implementation (Frizzo et al., 2021; Digilio et al., 2016). Proton (1H) NMR-

based metabolomics was chosen to characterize any biochemical changes

in M. edulis hemocytes exposed to A. catenella. Furthermore, hemocyte 

membrane lipid composition was investigated for its importance in the 

phagocytic process. Finally, the effects of a HAB upon M. edulis general 

metabolism were characterized through NMR analysis of the plasma 

separated from the hemocytes. To the best of our knowledge, this study is

the first to apply metabolomics profiling to bivalve hemocytes.

2. MATERIALS AND METHODS

2.1 Experimental mussel collection

Mytilus edulis mussels [length 57.8 (3.7) mm] were sampled in two 

batches of 120 individuals each, from aquaculture farm long lines in 

Malpeque Bay (Prince Edward Island, Canada, 46.54024N, −63.80926W), 

and transported to the wet laboratory research facilities of the Université 
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du Québec à Rimouski (Pointe-au-Père, QC, Canada). Mussels were 

scrubbed, rinsed with UV-treated, filtered (1 μm) seawater and acclimated

for 30 days in two 100 L open-flow tanks with a gradual increase in 

temperature for the first 10 days of ~1°C per day until reaching 20°C. 

During this period, mussels were fed a diet composed of mass-cultured 

Tetraselmis suecica CCMP 904, Tisochrysis lutea CCMP 1324, Chaetoceros

muelleri, CCMP 1316, and Diacronema lutheri CCMP 1325 (1:1:1) at a rate 

of 4107 cells·indiv–1day–1 (equivalent to 1% of dry weight per day). Algal 

strains were obtained from the Provasoli-Guillard National Center for 

Marine Algae and Microbiota (NCMA, Maine, USA) and cultured in 

autoclaved 20 L bottles with F/2-Si nutrient enrichment, daylight 24/0 

(D/N) at light intensity of 100 μm·m–2s–1 PAR at 20°C. 

An Alexandrium catenella isolate (clone named AC6, Lavaud et al. 2021)

was obtained from the St. Lawrence Estuary (Canada) during a bloom 

monitored in 2008 (Starr et al., 2017) and grown under the same axenic 

conditions as the non-toxic microalgae, generating toxin cell quotas 

between 3 and 60 pg STXeq·cell–1 (Lavaud et al., 2021).

2.2 Exposure of mussels to cultured Alexandrium catenella

Mussels from each batch were brushed with diluted hypochloric acid 

(<1%), rinsed with UV-treated, filtered (1 μm) seawater, and distributed 

into eight 30 L conical-bottom tanks (15 mussels per tank) filled with UV-

treated, 0.1 µm-filtered seawater at 20°C with food addition similar to that

of the acclimation period. A volume representing 50% of the seawater in 

each tank was changed daily. During the 120 h of the experiment, 
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mussels in four tanks were fed A. catenella daily by peristaltic pumps at a 

concentration of 182 cells·mL−1 (equivalent to 3.6105 cells·ind−1d−1 or 1%

of their dry weight) in addition to the acclimation diet. In the control 

treatment, mussels in four other tanks were supplemented with 520 

cells·mL−1 per day of cultured Tetraselmis suecica (in addition to the 

acclimation diet), to obtain similar microalgal biomass in both treatments. 

During the experimental period, no mussel mortality or spawning event 

was observed. 

2.3Hemocyte sampling

After 120 h of exposure to toxic algae, mussels were sampled in each 

tank. The hemolymph (0.5 to 1 mL) was collected from the pericardial 

cavity/adductor muscle sinus with a sterile, 21G gauge needle using a 1 

mL syringe. Hemolymph samples were filtered through an 80 µm mesh 

and stored in Eppendorf microcentrifuge tubes held on ice, for cell activity

analyses and hemocyte morphology of individual mussels with the first 

batch, and for solution NMR-based metabolomics with the second batch. 

No intermediate sampling of hemolymph was perform to be able to collect

enough hemocyte for the NMR measurements after the 120 h of exposure 

to A. catenella.  

For solution NMR analysis, the hemolymph was combined into six pools 

from 10 mussels randomly collected among the 60 mussels in the four 

tanks for each treatment, in 15 mL conical-bottom centrifuge tubes kept 

on ice, and immediately centrifuged at 800×g at 4°C for 15 min to 

separate the hemocytes from the plasma (Frizzo et al., 2021). Hemocyte 
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recovery was 100 to 200 mg from the hemolymph in each pool. The 

pelleted hemocytes and plasma fractions were transferred into new 15 

mL, conical-bottom centrifuge tubes and frozen immediately at −80°C 

until metabolite extraction.

For lipid composition analysis of the first batch, the remaining 

hemolymph and hemocytes were randomly pooled together into three 

samples (20 mussels/sample) per treatment, centrifuged (8,000×g, for 5 

min at 4°C), and the supernatant was partially removed. The hemocytes 

were rinsed 5 times with 0.2 µm-filtered seawater and centrifuged under 

the same conditions for 2 min. The 6 samples of purified hemocytes were 

then placed in 2 mL amber glass vials with Teflon-lined caps. 

2.4 Cell activity analyses

Procedures for characterization of the hemocytes, granular/agranular 

subpopulations, hemocyte mortality, state of apoptosis of dead or living 

cells, percentage of apoptotic cells, and unstimulated hemocyte 

production of ROS were adapted from previous studies (Donaghy et al., 

2012; Galimany et al., 2008b; Soudant et al., 2004; Hegaret et al., 2003). The 

hemocytes and plasmas were extracted from the six pools of hemolymph 

for each treatment, as described above. Hemocyte counting was carried 

out using a BD Accuri™ C6 flow cytometer (BD Biosciences, San Jose, CA, 

USA). The detection method used for the hemocytes involved staining one

subsample with SYBR Green (a DNA-binding probe which spontaneously 

penetrates both viable and dead cells) to detect all hemocytes, and 

propidium iodide (PI) to detect dead cells. To differentiate cells 
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undergoing apoptosis, another subsample was stained with both PI and 

AnnexinV, which is a membrane inversion marker, an early step in 

programmed cell death (PCD). This method allows the detection of four 

cell types in a single assay: non-apoptotic living cells, apoptotic living cells

(the membrane has inverted as an early step in PCD but the membrane 

remains impermeable to PI), apoptotic dead cells (permeable to PI and 

membrane has inverted), and non-apoptotic dead cells (permeable to PI 

and membrane has not inverted, cells have died by necrosis). 

M. edulis hemocytes are composed of two subpopulations, 

agranulocytes and granulocytes, whose morphology was determined 

based upon flow-cytometric parameters, Forward Scatter (FSC) and Side 

Scatter (SSC), as described in Donaghy et al. (2012). FSC and SSC 

commonly measure particle size and internal complexity in arbitrary units 

(AU), respectively.

Determination of ROS production was performed using 2′7′-

dichlorofluorescein diacetate (DCFH-DA; Molecular Probes, Invitrogen), at 

a final concentration of 10 µM, a membrane permeable and non-

fluorescent probe as described in Donaghy et al. (2012). Inside 

hemocytes, the -DA radical is hydrolyzed by esterase enzymes. DCFH is 

oxidized by intracellular hydrogen peroxide (H2O2) and superoxide ion to 

the fluorescent DCF molecule. DCF green fluorescence was detected on 

the FL1 detector (530/30 nm band pass) of the flow cytometer, and it is 

proportional to cellular ROS production. Relative ROS production is 

expressed as DCF fluorescence in arbitrary units (FAU).
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2.5 Lipid composition

Hemocytes were pooled into three samples per treatment, as described

above, and lipids were extracted by grinding the hemocyte samples in 

dichloromethane–methanol using a modified Folch procedure as described

in Parrish (1999). The lipid content and class composition were determined 

using a flame-ionization detection system (Parrish, 1987), with silica-gel-

coated chromarods (S-V Chromarods; Shell-USA). Each lipid extract was 

scanned by an Iatroscan (Mark-VI, Iatron Laboratories) to separate 

aliphatic wax esters, ketones, triacylglycerols, alcohols, sterols, acetone 

mobile polar lipids, and phospholipids. For each lipid class, standards were

used (Sigma Aldrich, Oakville, Canada). Chromatograms were analyzed 

using the integration software Peak Simple version 3.2 (SRI). Total lipids 

(expressed as μg·mg−1) are the sum of all classes, and each class is 

expressed as relative concentration (% of total lipids).

Lipid extracts were separated into neutral and polar fractions by column

chromatography on silica-gel micro-columns (30×5 mm i.d., packed with 

Kieselgel 60, 70–230 μm mesh; Merck, Darmstadt, Germany) using 

chloroform:methanol (98:2, v/v) to elute neutral lipids, followed by 

methanol to elute polar lipids (Marty et al., 1992). Fatty-acid profiles of 

polar lipids were determined on fatty-acid methyl esters (FAMEs) using 

sulfuric acid:methanol (2:98, v:v) and toluene. FAMEs of neutral and polar 

fractions were concentrated in hexane, and the neutral fraction was 

purified on an activated silica gel with 1 mL of hexane:ethyl acetate (v/v) 

to eliminate free sterols. FAMEs were analysed in the full scan mode (ionic
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range: 50–650 m/z) on a Polaris Q ion-trap-coupled multichannel gas 

chromatograph “Trace GC ultra” (Thermo Scientific, MA, USA) equipped 

with an autosampler model Triplus, a PTV injector, and a mass detector 

model ITQ900 (Thermo Scientific, MA, USA). The separation was 

performed with an Omegawax 250 (Supelco) capillary column with high 

purity helium as the carrier gas. Data were treated using Xcalibur v.2.1 

software (Thermo Scientific, MA, USA). Tricosanoic acid (23:0) was 

employed as an internal standard. FAMEs were identified and quantified 

using known standards (Supelco 37 Component FAME Mix and menhaden 

oil; Supleco), and were further confirmed by MS.

2.6 Hemocyte and plasma extraction for solution NMR

Metabolites were extracted from the 6 pools of hemocytes from 10 

mussels per treatment, using an adaptation of Folch’s method (Madji 

Hounoum et al., 2015). Briefly, 3 mL of ice-cold methanol followed by 3 mL 

of dichloromethane were added to the conical centrifuge tubes containing 

the hemocytes previously thawed on ice. The mixtures were vortexed for 

1 min and sonicated (Cole-Parmer Ultrasonic cleaner 08892, Vernon Hills, 

IL, USA) on ice for 10 min before addition of 2 mL cold, extra-pure water 

and 30 s agitation. Following cooling at −20°C for 40 min to precipitate 

proteins, the samples were centrifuged at 7,100×g at 4°C for 15 min to 

separate the polar and lipidic fractions. The polar fractions were collected 

in glass tubes, and the solvent was evaporated in a SpeedVac (Thermo 

Fisher Scientific, Waltham, MA, USA) at room temperature. Plasma 

samples for 1H NMR were prepared by cold methanol precipitation of lipids

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288



14

and proteins (Beauclercq et al., 2016). Briefly, 500 μL of unfrozen plasma 

samples were mixed with 1 mL of ice-cold methanol and cooled at −20°C 

for 20 min. The mixes were then centrifuged at 15,000×g at 4°C for 10 

min, and the supernatants were collected in microtubes for further solvent

evaporation in a SpeedVac at room temperature. 

2.7 Solution NMR-based metabolomics

2.7.1 NMR spectroscopy measurements

Prior to NMR analysis, hemocyte extracts and plasma samples were 

reconstituted in 500 μL of 0.2 M pH 7.4 potassium phosphate buffer in 

99.9% deuterium oxide (D2O) with 0.13 mM 3-trimethylsilylpropionic acid 

(TSP) as the internal standard. Mixtures were briefly vortexed and 

centrifuged at 2,000×g for 30 s to remove insoluble components. The 

resulting supernatants were transferred to 5 mm NMR tubes for analysis.

The 1H NMR spectra from the hemocyte extracts and plasma samples 

were obtained with a Bruker Avance III spectrometer (Billerica, MA, USA), 

operating at 600 MHz, with a broad-band inverse TXI probe. NMR 

measurements were performed at 298 K. The spectra were acquired using

a 1D NOESY pulse sequence with a repetition delay of 10 s and mixing 

time of 50 ms. Water suppression was achieved by presaturation during 

the repetition delay and mixing time. 1H spectra were collected with 1,024

or 256 scans (and eight dummy scans) for the hemocyte extracts or 

plasma, respectively, in 64k data points with a spectral width of 12 ppm. 

Spectral data were deposited under the DOI 10.5281/zenodo.7415126 in 
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the Zenodo repository (https://zenodo.org) hosted by the European 

Organization for Nuclear Research (CERN).  

2.7.2  NMR spectra post-processing

Spectra were processed using NMRProcFlow tools (Jacob et al., 2017). 

The free induction decays (FIDs) were zero-filled to 128k data points, a 

line-broadening factor of 0.3 Hz was applied prior to Fourier 

transformation, and the TSP reference signal was set to 0 ppm. NMR 

spectra were further processed for peak alignment with NMRProcFlow to 

minimize spectral peak shift caused by differences in ionic strength within 

samples. The hemocyte extracts and plasma spectra were then bucketed 

manually and integrated into 97 and 138 spectral regions (corresponding 

to one or several metabolites), respectively. The signals from water and 

methanol were excluded, and the data were normalized by the total sum 

of all the spectral features, which assumes that only small amounts of 

metabolites are regulated in approximately equal shares up and down, 

while all others remain constant (Zacharias et al., 2018). The generated 

data tables for the hemocyte extracts and plasma were used for 

multivariate statistical analyses.  

2.7.3 Spectral assignment 

The identification of metabolites was performed using Chenomx 

software (Edmonton, Canada), HMDB https://hmdb.ca/ (Wishart et al., 

2022), and reference publications on mollusc NMR-based metabolomics 

(Frizzo et al., 2021; Aru et al., 2020). The annotations of the spectra were 

further confirmed by 2D 1H NMR COSY and TOCSY experiments performed 
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on a representative sample. The acquisition parameters for those two 

experiments are provided in Table S1.   

2.8 Mussel weight, volume and toxin concentration

At the end of the experiments, soft tissues of each mussel were 

individually lyophilized to measure the dry mass and estimate the 

condition index (CI, in g/mm3) as the ratio of tissue dry weight (DWtissue, 

g) over volume (V, mm3). The latter was estimated from the measurement

of shell length, width and height with a digital caliper (Mitutoyo 500-196-

30 AOS absolute; precision of 0.01 mm). As all the blood was used for flow

cytometry and NMR measurement, the amount of saxitoxin was estimated

in the whole tissue of each mussel by MS, using a Triple Quad (6420 

Agilent Technologies) and Poroshell 120 column (HILIC-Z, 2.1x100 mm, 3 

µm), with a certified standard from the National Research Council Canada 

(NRC CRM-STX-g, MRC, Halifax, Ca). The saxitoxin dosage protocol is 

detailed in the supplementary file.  

2.9 Statistical analyses

Values for each hemocyte characteristic and mussel condition index for 

exposed and non-exposed (control) mussels were compared by Student’s 

t-test, following validation of normality and homoscedasticity using the 

Shapiro-Wilk test. Additionally, linear regression analyses were used 

between each hemocyte characteristics and saxitoxin concentration in 

mussel tissues to estimate possible relationships between toxins and 

hemocyte activities. Standard deviations are indicated in plot brackets. 
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For the lipid composition of hemocytes, as individual samples were 

pooled, the replication level corresponded to the tanks (3 for control and 3

for toxic treatment). A distance-based permutational multivariate analysis 

of variance (PERMANOVA) was used to compare multivariate variables 

(lipid classes and FA profiles) following assumptions of homoscedasticity 

verified with the PERMDISP test. A posteriori comparisons were done using

a PERMANOVA pairwise test. To analyze the similarity between the 

profiles, non-metric, multi-dimensional scaling (nMDS) and SIMPER 

analyses were performed, using Euclidian distances. These statistical 

analyses were done using PRIMER 7.0.21. The significance of the 

difference between groups was further evaluated through Welch's t-test.

An orthogonal projection latent structures discriminant analyses (OPLS-

DA) was performed using the Umetrics SIMCA 17 software (Sartorius 

Stedim, Göttingen, Germany) on hemocyte extracts and plasma 1H NMR 

data sets. All data were scaled to units of variance. The minimum number 

of features needed for optimal classification of the OPLS-DA models was 

determined by iteratively excluding the variables with low regression 

coefficients and wide confidence intervals derived from jackknifing 

combined with low variable importance in the projection (VIP) until 

maximum improvement of the quality of the models (Beauclercq et al., 

2022). The model quality was evaluated after 7-fold cross validation by 

cumulative R2Y (goodness of fit), cumulative Q2 (goodness of prediction) 

and CV-ANOVA (test of cross-validated predictive residuals to assess the 

reliability of OPLS models). The contribution of each predictor in the model

was evaluated through the variable score contribution, i.e., the 
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differences, in scaled units, for all the terms in the model, between the 

outlying and the normal observation, multiplied by the absolute value of 

the normalized weight.

3 RESULTS

3.1 Mussel condition index and hemocyte count

To monitor the effect on the blue mussels of a 120 h exposure to A. 

catenella, we determined the condition index, i.e., the relationship 

between body dry weight and shell length. We also performed a hemocyte

count. First, we measured the soft-tissue concentrations of saxitoxin 

following exposure and hemolymph sampling, which ranged from 3 to 95 

µg STX/100 g, with a mean of 26  (22) µg STX/100g of mussels. At the end

of the exposure, no significant difference (p = 0.08) in condition index was

observed between exposed mussels [13.0  (2.5) g/mm3] and the control 

[11.6 (2.1) g/mm3]. Also, the hemocyte count was similar for the exposed 

[2258 (2108)] and control mussels [1727  (866), p = 0.25].

3.2 Apoptotic activity and ROS production 

We also evaluated hemocyte apoptotic activity and ROS production, by 

flow cytometry with four different probes for possible changes associated 

with exposure to A. catenella. As shown in Table 1, exposure to toxic 

dinoflagellates modified hemocyte activity, including four major variables 

related to apoptosis. Specifically, when mussels were exposed to A. 

catenella, the percentage of apoptotic dead cells (p = 0.009), non-

apoptotic dead cells (p = 3.95×10−7) and apoptotic living cells (p = 

1.10×10−3) decreased, but the mean percentage of non-apoptotic living 
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cells was significantly higher (p = 2.77×10−5) as compared to the control. 

There were no significant correlations between hemocyte apoptotic-

associated variables and the saxitoxin concentration measured in the 

whole mussel tissues (Table S2). Thus, regardless of the concentration of 

saxitoxin, most cells remained alive and non-apoptotic in mussels 

exposed to A. catenella.

Table  1.  Hemocyte  apoptotic  status  variables  determined  by  flow
cytometry  for  control  mussels  and  mussels  exposed  (120  h)  to  A.
catenella.  Variables  are  presented  as  [mean (standard  deviation)]  and
with  statistical  t-Tests  on  the  means  differences.  Differences  with
statistical significance (p ≤ 0.05) are highlighted with bold characters, and
the directions of the variations are indicated by arrows.

Two 

subpopulations of hemocytes differing in size and granularity were 

identified, i.e., the granulocytes and agranulocytes. The granulocytes, 

Control Exposed t-Test
% non-apoptotic living 
cells

60.99 (14.73)  84.70  (19.99) 2.7710−5

% non-apoptotic dead 
cells

28.95  (11.88)  10.60  (12.76) 3.9510−7

% apoptotic living cells 2.40  (2.57)  0.78  (1.42) 1.1010−3

% apoptotic dead cells 7.65  (8.01)  3.91  (9.1) 8.9010−3

Agranulocyte complexity (AU)  2.69 (0.14) 104    2.67 (0.23) 
104

0.36

Granulocyte complexity 
(AU)

2.94 (0.30) 
105

 2.71 (0.45) 
105

0.05

Size agranulocyte (AU) 6.22 (0.17) 105    6.16 (0.23) 
105

0.29

Size granulocyte (AU) 2.19 (0.17) 106    2.17 (0.17) 
106

0.78

% alive agranulocytes 49.07 (13.07)    45.08 (9.46) 0.22

% alive granulocytes 19.41 (6.86)    19.60 (5.11) 0.80

% dead agranulocytes 14.37 (2.49)  16.16 (2.92) 0.04

% dead granulocytes 17.15 (6.23)    19.16 (5.82) 0.24

ROS agranular cells (FAU) 2306 (416)  3622 (1612) 5.2710−6

ROS granular cells (FAU) 73017 (44002)    81618 (52059) 0.19

408

409

410

411

412

413

414
415
416
417
418
419
420

421

422

423

424

425

426

427

428

429

430

431



20

which contain granules, were larger than the agranulocytes and 

accounted for ~40% of all hemocytes (Table 1). Although the majority of 

granulocytes and agranulocytes were alive in both treatments, the 

exposure to A. catenella induced a higher mortality percentage in the 

agranulocyte population (p = 0.035) as well as a 1.6-time rise in ROS 

production (p = 5.27×10−6). Moreover, the complexity, or granularity, of 

the granulocytes, was significantly higher in the “toxic” treatment (p = 

0.05). 

3.3 Lipid composition of hemocyte membranes

Lipid composition analysis of the hemocyte membranes revealed 

differences between the polar and neutral fractions (DF = 1 and 11, 

Pseudo-F = 6249, p = 0.0001). Indeed, the polar fraction showed the 

presence of 56% phospholipids and the absence of triglycerides; whereas,

the neutral fraction contained 55% triglycerides and no phospholipids. 

Simper analysis indicated that these two lipid classes explain more than 

83% of the dissimilarity between the polar and neutral lipid profiles. Both 

hemocyte lipid fractions had similar lipid class composition, whether 

exposed or not to A. catenella (Figure 1). Total lipids, however, 

represented by the sum of the concentration of each lipid class, showed 

significant interactions between lipid fractions (neutral and polar) and 

conditions (DF = 1 and 11, Pseudo-F = 13, p = 0.0064). Differences 

attributable to the toxic exposure were not observed in the polar fraction, 

in contrast to the neutral fraction in toxin-exposed mussels, which showed
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less than half the lipid concentration (p = 0.0092) of the control [300 (50) 

vs. 650 (130) mg·g−1 dry mass].

Figure 1. Non-metric multi-dimensional scaling of the Euclidian similarity
matrix based on the relative abundance of lipids classes in the neutral and
polar lipid fractions of hemocytes exposed (Toxic, blue) or not (Control,
red) to A. catenella.

The fatty acid (FA) profiles of the lipid fractions from the hemocytes of 

mussels exposed to the PST-producing dinoflagellate and from those 

exposed to the forage T. suecica algae were different (Figure 2). A 

significant interaction was observed (DF = 1 and 11, Pseudo-F = 5.25, p =

0.0108), and associated with differences in the FAs profile only in the 

polar fraction (p = 0.0049), but not in the neutral fraction (p = 0.8365). 

The Simper analysis indicates that these are related to the saturated FAs 

16:0 (19.3%) and 18:0 (9.4%), with relative abundances higher in the 
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control (p = 0.004), as well as the unsaturated FAs 20:5n3 (29.5%), 

20:4n6 (9.7%), 20:1n9 (8.9%), 22:6n3 (8.2%) in higher abundance in the 

toxic group (Figure 3). The differences between groups were significant (p 

≤ 0.05) for C16:0, C18:0, C20:1n9, and C22:6n3. 

Figure 2. Non-metric multi-dimensional scaling of the Euclidian similarity 
matrix based on the relative abundance of fatty acids in the neutral and 
polar lipid fractions of hemocytes exposed (Toxic, red) or not (Control, 
blue) to A. catenella.
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Figure 3. Relative abundances of the six fatty acids in the polar lipid 
fraction that contributed to 85% of the differences between hemocytes 
exposed (Toxic, red) or not (Control, blue) to A. catenella in Simper 
analysis. The significance of the differences between groups was further 
evaluated through Welch's t-test (P-value NS > 0.05, * ≤ 0.05, ** ≤ 0.01, 
*** ≤ 0.005).

3.4 Hemocyte and plasma metabolomes by solution NMR

Annotated representative 1H NMR spectra of the hemocyte extracts and

of the plasma are shown in Figure 4. The NMR spectra were divided into 

97 and 138 buckets corresponding to 59 and 55 identified metabolites for 

the hemocyte extracts and the plasma samples, respectively. The 

percentage of unidentified buckets were 17% in the spectra of the 

hemocyte extracts and 15% in the plasma samples. The identified 

metabolites belonged mainly to 5 classes: amino acids, FAs and 

conjugated, purines, pyrimidines, and tricarboxylic acid cycle (TAC) acids. 
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Figure 4. Representative annotated 1H NMR spectra of (A) the hemocyte 
extract and (B) plasma. DMA: dimethylamine, DMG: dimethylglycine, DMS:
dimethyl sulfone.
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OPLS-DA models were adjusted to the metabolome of the hemocytes 

and plasma of mussels exposed or not to A. catenella to explore possible 

effects of the toxic dinoflagellate upon the immune system and general 

metabolism of the mussels. The first model was fitted to the hemocyte 

metabolomics data and contained a subset of 35 buckets corresponding 

to 28 identified metabolites (Figure 5). The model was composed of one 

predictive and one orthogonal component with an explicative ability (R2Y) 

of 0.94 and a predictive ability (Q2) of 0.71 (CV-ANOVA = 0.05). The 

metabolites included in the models belonged mainly to the classes of 

amino acids, purines, and pyrimidines. Purines such as adenosine 

monophosphate (AMP), adenosine diphosphate (ADP), and guanosine 

monophosphate (GMP), amines (dimethylamine), carboxylic acids 

(formate), and some amino acids (dimethylglycine, glycine, phenylalanine,

isoleucine, lysine, aspartic acid, sarcosine, arginine) were more plentiful in

the hemocytes after toxic treatment. On the other hand, alanine, serine, 

tyrosine and the purine adenosine triphosphate (ATP) as well as 

pyrimidines (uridine monophosphate (UMP), uridine diphosphate 

UDP/UDP-glucose, uracil), sulfonic acids (taurine), disaccharides (maltose),

alkaloids (trigonelline), monosaccharides (glucose), benzamides 

(mytilitol), and fatty esters (acetylcarnitine) were lower in the hemocyte 

extracts of mussels exposed to the toxic treatment.
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Figure 5. Metabolomic analysis of the effect on the hemocytes of a 120h 
exposure to A. catenella. (A) Contributions plot, indicative of the 
contribution of hemocyte metabolites identified in the OPLS-DA. (B) Score 
plots following OPLS-DA with the treatment as categorical factor Y and the
metabolites as explanatory qualitative variables X. The hemocyte samples
exposed to A. catenella and the control are represented by pink and 
turquoise circles, respectively. The model contained 35 buckets, 1 
predictive and 1 orthogonal components, and its descriptive and 
predictive performance were R2Y = 0.94 and Q2 = 0.71.

The second OPLS-DA model based on plasma data aimed to assess the 

effects of an exposure to A. catenella on the global metabolism of the 

mussels (Figure 6). This model was composed of 32 buckets projected to 

one predictive and one orthogonal components with a R2Y of 0.92 and a Q2

of 0.78 (CV-ANOVA = 0.02). As for the hemocytes, the 25 metabolites in 

the model were mostly amino acids, purines, and pyrimidines. Amino 

acids (dimethylglycine, Glu, Tyr, Phe, Ala, Ser, Asp, Ornithine, Arg, Gln, 
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Trp), pyrimidines (UDP, uracil), disaccharides (maltose), alkaloids 

(trigonelline), monosaccharides (glucose), benzamides (mytilitol), 

carboxylic acid (glycolate), and sulfonic acid (hypotaurine) were higher in 

the control condition. Conversely, the purines AMP and ADP, sulfonic acid 

taurine, amino acids betaine and homarine, as well as FAs and conjugates 

(2-aminobutyrate) were markers of A. catenella exposure.

Figure 6. Metabolomic analysis of the effect on the plasma of a 120h 
exposure to A. catenella. (A) Contributions plot indicative of the 
contribution of plasma metabolites identified in the OPLS-DA. (B) Score 
plots following OPLS-DA. The plasma samples exposed to A. catenella and 
the control are represented by pink and turquoise circles, respectively. 
The model contained 32 buckets, 1 predictive and 1 orthogonal 
components, and its descriptive and predictive performance were R2Y = 
0.92 and Q2 = 0.78.
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4 DISCUSSION

In this work, we assessed some effects of a 120 h exposure of M. edulis 

to A. catenella. We determined a mean concentration in whole mussel soft

tissues of 26  (23) µg STX/100g saxitoxin in the soft tissue, i.e.,  below the 

threshold of 80 µg STXeq /100g at which blue mussels are considered 

inedible (Bates et al., 2020). Nevertheless, significant effects were detected

upon hemocyte activity, lipid composition, and metabolome, as well as 

mussel general metabolism as determined by the plasma metabolome.

4.1 Immune cell responses to A. catenella exposure

Our results showed that the percentage of live hemocytes in circulation 

was slightly higher following exposure to A. catenella as compared to the 

control group, despite possible lethal effects of toxins upon mussels, as 

reported by Bianchi et al. (2021). The moderate levels of toxins 

accumulated in mussels and short exposure time could explain this result.

Hemocytes in exposed mussels were not going through the normal 

cellular death cycle because the production and use of hemocytes was 

necessary to respond to the toxic dinoflagellate by encapsulating and 

expelling them in the alimentary canal (Hegaret et al., 2007). Granulocytes 

are the most active phagocytic cells (Wikfors and Alix, 2014) and have a 

higher ability to produce ROS (de la Ballina et al., 2022). Our results showed 

that the granularity of the granulocytes was increased following toxic-

algal treatment, which could be related to the internalization of algal 

toxins and detoxification through enzymatic activities. However, further 

analysis, such as measuring phagocyte activity of the hemocytes could 
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confirm this hypothesis. Active detoxification and elimination of toxin 

metabolites by diapedesis of hemocytes into the mussel gut (Galimany et 

al., 2008b) would leave fewer hemocytes cycling through apoptosis. 

Conversely, the mortality of the agranulocytes was higher in the toxic 

treatment, suggesting that these cells are more vulnerable to microalgal 

toxins than the immuno-competent granular cells, as was observed for 

Pacific oyster Crassostrea gigas hemocytes exposed to saxitoxin (Abi-Khalil

et al., 2017). Moreover, the ROS production by the agranulocytes from the 

STX-exposed mussels was higher, indicating a generalized stress 

response. It has been demonstrated that both hemocyte subpopulations 

contribute to the production of ROS, with the granulocytes being the most 

active cells (Andreyeva et al., 2019).  Intracellular ROS increase in 

agranulocytes, as observed in our study, is seen in hypoxic conditions, 

consistent with the increased oxygen consumption rate previously 

recorded during exposure of mussels to A. catenella (Lavaud et al., 2021). 

Meanwhile, the production of ROS remained stable in granulocytes, as the 

intracellular ROS production is part of the detoxification, defense response

(Bianchi et al., 2021). Thus, moderate levels of toxins may have an indirect 

effect upon the production of ROS in the agranulocytes, through the 

increase of oxygen consumption associated with stress.

4.2Modification of hemocyte neutral lipid composition

Exposing molluscs to harmful substances can affect the lipid 

composition of hemocytes (Leroux et al., 2022). A. catenella is no 

exception; our results showed that STX-exposed mussels responded with 
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a decrease in hemocyte neutral lipids (triacylglycerides (TAGs), ketones, 

sterols, acetone mobile polar lipids) in comparison to the control. A study 

of M. galloprovincialis hemocytes exposed to nanoplastics showed that 

TAGs were the most abundant class of lipids released into the culture 

medium, suggesting increased release of TAG-enriched vesicles (Leroux et 

al., 2022). Similarly, the lower concentration of neutral lipids in the 

hemocytes after exposure to A. catenella could be attributable to a 

preferential use in excretion vesicles containing the algal toxins or 

participation in ROS oxidative consumption. Some neutral lipids such as 

TAGs can also be used in the production of energy (Cantrell and Mohiuddin, 

2022). Indeed, immune stimulation is an energy-demanding process, 

therefore TAGs and phospholipids could be hydrolyzed by the hepatic 

lipases in the digestive gland to provide free FAs to maintain energy 

requirements, thereby limiting availability for the production of hemocytes

(Qiu et al., 2020). 

The FA composition was different between treatments only in the polar 

fraction. Two saturated FA (palmitic acid [16:0] and stearic acid [18:0]), 

one monounsaturated FA (MUFA) (eicosenoic acid [20:1n9]) and three 

polyunsaturated FAs (PUFA) (arachidonic acid [20:4n6], eicosapentaenoic 

acid [20:5n3], docohexaenoic acid [22:6n3]) were the major contributors 

to this difference (85%). More specifically, the two saturated FAs were 

more concentrated in the control, while the MUFAs and PUFAs were more 

concentrated in the STX-exposed hemocytes. This result suggest that 

hemocyte membrane lipids did not participate in the oxidation processes 

following increased ROS production induced by the A. catenella treatment,
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which usually reduces by peroxidation the amount of MUFA and PUFAs 

(Winston et al., 1996). 

4.3 Comparison of hemocyte and plasma metabolomics profiles

Our analysis showed an 85% similarity in the metabolite composition of 

hemocyte extracts and plasma samples, but the plasma was richer and 

more concentrated in metabolites than the hemocyte extracts, as 

previously reported (Frizzo et al., 2021). Osmolytes (taurine, hypotaurine, 

betaine, Gly, Ala) had the highest signal intensity in both matrices, 

highlighting the importance of osmoconformity in mussel physiology, with 

amino acids being the most abundant compounds. The major difference 

between matrices was the presence of carboxylic acid salts (pyruvate, 

malate, malonate, galactarate), nucleotides (UMP, GMP), and tyramine in 

the hemocyte extracts, and the absence of glycolate, and 4-

guanidinobutanoate (gamma amino acids). Pyruvate and malate are 

markers of energy metabolism in the cells, as pyruvate is the final product

of glycolysis, and malate is involved in the Krebs cycle for the production 

of ATP. We cannot rule out that the glycolate circulating in the plasma 

could originate from algae in the mussel diet, because unicellular green 

algae can produce glycolate by photorespiration via oxygenation of 

ribulose-1,5-bisphosphate, usually during suboptimal growth periods at 

high temperatures (Taubert et al., 2019; Bruin et al., 1970). Only two 

molecules specific to molluscs were identified in the metabolomes: 

mytilitol (a cyclohexanol) and homarine (a pyridinecarboxylic acid) (Aru et 

al., 2020; Tikunov et al., 2010; Netherton and Gurin, 1982). Trigonelline, an 
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alkaloid product of the metabolism of niacin (vitamin B3), detected in 

vegetables and cereals, was putatively identified in both matrices. NMR 

signals similar to those for this metabolite have been detected in another 

study of mussels, but the presence of trigonelline in mussels has never 

been ascertained (Frizzo et al., 2021). This clearly illustrates the lack of 

knowledge of NMR signatures of metabolites specific to marine organisms 

and explains why almost 20% of the signals detected in the NMR spectra 

of the hemocytes and plasma could not be identified.

Nevertheless, this first attempt at establishing the effect of HAB on 

mussel hemocytes and general metabolomes showed changes in 47% and

44% of the metabolites identified in the hemocytes and plasma, 

respectively. 

4.3.1 A. catenella affects the energy metabolism of the hemocytes

The effect of A. catenella upon the energy metabolism of the 

hemocytes was revealed by changes in several reporting molecules. The 

explicative and predictive OPLS-DA model based upon hemocyte data 

highlighted a higher level of carbohydrates (glucose, maltose) and ATP in 

the control. However, AMP and ADP were higher in STX-exposed mussels, 

indicating a modification of the energy balance in the hemocytes. The 

feeding of mussels exposed to the toxic dinoflagellate may also have been

altered (discussed below), thus reducing the general production of ATP. 

Hemocytes may also use more energy to eliminate the algal toxins or to 

trigger ROS response (Cruz et al., 2007). The acetylcarnitine product of the 

reaction to produce the co-enzyme A (CoA) from acetyl-CoA and carnitine 
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was higher in the control hemocytes, which may be another indicator of a 

higher production of ATP in this group, as CoA is involved in the Krebs 

cycle.   

UDP – a ribonucleoside diphosphate sometimes associated with glucose 

and involved in glycogenesis – was also higher in the control hemocytes. 

Indeed, before glucose can be stored as glycogen in granules (abundant in

mussel granulocytes (Cajaraville and Pal, 1995)), the enzyme glycogen 

synthase combines UDP-glucose units to form a glycogen chain (Koyama et

al., 2020; Gabbott and Whittle, 1986). The higher level of UDP/UDP-glucose in

the control is consistent with a higher energetic status, as well as the 

higher content of carbohydrates, and may imply a higher ability to 

synthesize and store glycogen as energy storage. The related compounds 

uracil and UMP were also higher in the control group. Conversely, STX-

exposed hemocytes may have lower glycogen storage and less energy 

since AMP and ADP (the products of ATP hydrolysis in cells) were higher. 

Glycogen could not be quantified as it was not extracted during sample 

preparation. 

Two disruptors of mitochondrial functions, malonate and formate, were 

higher in the hemocytes of mussels exposed to A. catenella.  Malonate 

can cause rapid mitochondrial potential collapse and ROS production that 

overwhelms the mitochondria’s antioxidant capacity and leads to cell 

swelling (Fernandez-Gomez et al., 2005). Formate is a byproduct of acetate 

production and is responsible for the disruption of mitochondrial electron 

transport and energy production by inhibiting cytochrome oxidase 
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activity, the terminal electron acceptor of the electron transport chain. 

This mechanism can lead to cell death from depletion of ATP and 

increased production of cytotoxic ROS secondary to the blockade of the 

electron transport chain. Malonate and formate might be molecular 

precursors of the increased production of ROS by hemocyte mitochondria 

as a defense mechanism (Donaghy et al., 2012). They may also lead to 

hemocyte mortality when exposed to higher doses of STX, but not at such 

a low STX dose as achieved in the present study.

Bivalve cells rely upon free amino acids (FAA) to produce energy by 

oxidation or gluconeogenesis (Ponder et al., 2019). Our results do not, 

however, show a preference for this mode of energy production in the 

hemocytes. Indeed, some glucogenic amino acids were more present in 

the cytoplasm of the hemocytes exposed to A. catenella (Arg, Asp, Gly, 

Ile, Phe, sarcosine) and others (Ala, Ser, Trp) in the control group. The 

presence of FAAs also have another function: the regulation of isoosmotic 

cell volume, as will be discussed below. 

4.3.2 A. catenella affects hemocyte osmolyte composition and 

anti-oxidant profile

To maintain normal cell and hemocyte-specific functions, organisms 

more primitive than crustaceans compensate for the salinity level in their 

environment by changing FAA concentrations. Aminopeptidase-I plays a 

critical role in creating this pool of amino acids that maintains the 

isoconformity in the cells, by breaking down proteins and polypeptides 

into FAAs at the lysosomal level (Hilbish and Koehn, 1987). In mussels, the 

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725



35

major osmolytes are Gly, Ala and its isomer β-Ala, taurine and their 

derivatives dimethylglycine, betaine (trimethylglycine) and hypotaurine. 

Homarine is derived from Gly and is specific to marine organisms. It is 

involved in methylation reactions to create betaine, and may also function

as an osmolyte (May et al., 2017; Kube et al., 2007; Yancey, 2005), as does 

dimethylamine (Zhang et al., 2011). 

Ala, β-Ala and taurine were higher in the hemocytes of the control 

group; whereas, Gly and dimethylglycine were lower as compared to the 

STX-exposed mussels. Other studies have reported that an increased 

concentration of β-Ala enhances carbohydrate metabolism in mussels 

(Wang et al., 2021), and is a taurine transport inhibitor (Jong et al., 2012). In 

addition, taurine has antioxidant properties, protecting the mitochondria 

against excessive superoxide generation (Jong et al., 2012). Thus, the lower

level of the anti-oxidant taurine in the hemocytes following the toxic 

treatment could help maintain production of ROS by mitochondria as part 

of the immune response (Winston et al., 1996).

Interestingly, only Ala varied in the same way as OPLS-DA adjusted to 

the plasma metabolites. Hypotaurine, Ala and dimethylglycine were 

higher in the plasma of the controls, but betaine, taurine, and homarine 

were higher in the plasma following toxic treatment. The higher contents 

of betaine and taurine – two antioxidants – in the exposed mussels may 

have a protective effect against ROS (Liang et al., 2020; Zhang et al., 2016). 

Mussels exposed to toxins tended to produce more ROS, which induced an

antioxidant and detoxifying response involving enzymes such as 
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superoxide dismutase or glutathione-S-transferase, but also molecules 

such as glutathione (Liu et al., 2020) or betaine and taurine. 

4.3.3 A. catenella seems to affect food intake

The OPLS-DA model showed lower carbohydrates (maltose, glucose), 

but also UDP/UDP-glucose and uracil (see above) circulating in the plasma

of mussels exposed to the toxic dinoflagellate, suggesting that mussels 

may stop or reduce feeding as reported in juvenile oysters (Cassis, 2005). 

The behavioral response of oysters when exposed to toxigenic 

Alexandrium spp., which also produce STX, is complete closure and 

feeding cessation. In M. edulis mussels, the response is different. At 

intermediary algal densities, similar to that archived in our experimental 

conditions, increased valve opening could be explained by a paralysis of 

the adductor muscle, potentially interfering with the control of the 

filtration process (Durier et al., 2022). Glycolate – a molecule that could 

originate from the algae in the diet – as well as all the amino acids present

in the model based upon the plasma [Arg, Asp, Gln, Glu, Phe, Ser, Trp, Tyr,

ornithine (a precursor of Arg), and 2-aminobutyrate (Ile biosynthesis)], 

were also in lower levels in mussels exposed to the toxic treatment, which

could be another indicator of lower feed intake. Moreover, the higher level

of ATP-hydrolysis products (ADP, AMP) in the plasma may be indicative of 

lower energy following feeding cessation exacerbated by the higher need 

for energy to reject the toxic dinoflagellates and eliminate toxins that 

made it inside the organism.    
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5 CONCLUSION
This work intended to study the effect of a HAB upon blue mussel 

immune response. A 120 h exposure of blue mussels to A. catenella led to

moderate STX contamination of the tissues, with an average 

concentration of 26 (23) µg STX/100 g of mussel soft tissues. At this sub-

lethal toxin concentration (Bricelj et al., 2005), several effects upon 

hemocyte activity were detected. The aggregated changes are consistent 

with activation of defense mechanisms in granular hemocytes and a 

stress response in agranular cells, both consuming energy and changing 

the overall metabolic status of the mussels.

The implementation of 1H NMR-based metabolomics as a high-

throughput profiling and classification tool opens new perspectives to 

understand the effects of HAB upon mussel general and immune 

metabolisms. This study offers a new approach to decipher biochemical 

pathways in mussels, involving hemocyte activity measurement, lipid 

composition determination, and the first NMR-detected metabolomic 

investigation of hemocytes and their plasma.
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