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Abstract. In this paper, we study the estimation of diffusion parame-
ters for one-dimensional, ergodic stochastic processes observed at some
discrete times, that is a solution of a given class of stochastic differential
equations driven by α-stable processes, α ∈ (1, 2). Firstly, we recall the
non-parametric estimation framework of the drift coefficient namely the
Nadaraya-Watson or Local polynomial estimators. Secondly, using the
Euler–Maruyama scheme, we discuss an estimation method of the diffu-
sion parameters (the scaling and the driving stable process parameters)
based on a sample characteristic function combined with a Linear least
squares estimation. We also consider the joint estimation of the drift
and diffusion parameters for Stable driven Cox–Ingersoll–Ross (CIR)
and Ornstein-Uhlenbeck (OU) processes. We discuss the validity and
efficiency of the numerical implementation of the estimators using syn-
thetic data. A real data in finance, such as exchange rates is used to fit
the parameters of the Stable driven CIR or OU processes as a numerical
estimation example. As a forthcoming work, we would like to establish
proofs of the rate of convergence of our estimators in order to create a
package on R software to handle this kind of estimation problem.

Key words and phrases: parameter estimation, Nadaraya-Watson esti-
mation, stable process, characteristic function, regression method, CIR and
OU processes.

1. Introduction

With the increasing of computational powerfull statistical methods, there
has been a great interest in parameter estimation for Stochastic Differential
Equation (SDE). Such models are mathematical tools to describe the time
evolution of many natural phenomena in many disciplines such as epidemi-
ology, biology and finance. As examples, the Cox–Ingersoll–Ross (CIR) and
the Ornstein-Uhlenbeck (OU) stochastic models [31, 9], has been used widely
in finance. Some equivalent SDE models from continuous-time branching
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2 DIFFUSION PARAMETERS’ ESTIMATION FOR STABLE DRIVEN SDE

processes are also shown to be useful models to study dynamic population
[2, 39]. More precisely in epidemic dynamics, when an infectious population
size is small and the population size is large, we can approximate the con-
tinuous time dynamic by a nonlinear SDE (stochastic logistic model that
includes variability due to births and deaths [2]). For classical estimation
methods, issues such as how to construct procedures which are both com-
putationally efficient and show optimal statistical performance are now well
understood. Let us consider the parameter estimation problem of the fol-
lowing SDE driven by a standard strictly stable process (Zt)t≥0 defined in
a given filtered probability space (Ω,F ,Ft,P) :{

dXt = f(Xt)dt+ ρ g(Xt−)dZt, t ∈ [0, T ]
X0 = x0,

(1)

where x0 is a starting point, T > 0 a given time horizon and the given
function g : R → R is assumed to be known. We assume that, the func-
tion f : R → R, constant ρ > 0 and the stable process (Zt)t∈[0,T ] (which is
considered as a nuisance parameter) are unknown. The random variable Z1

which is a standard strictly stable distribution with parameters α ∈ (1, 2)
(the index of stability) and β ∈ [−1, 1] (the skewness parameter) will be
defined in the sequel. The existence and uniqueness of the solution to the
SDE (??) under Lipschitz conditions are standard results in stochastic cal-
culus [4]. For non Lipchtiz coefficients, some results have been studied. Let
us recall some few existence results. For f = 0 and g is Hölder continuous
with exponent 1

α ; if Z is a symmetric stable process then it is proved in
[5] that there exists a strong solution for α ∈ (1, 2). If f and g have at
most linear growth it is proved in [13] that there exists a weak solution for
α ∈ (1, 2) for which pathwise uniqueness holds whenever the function g is
Hölder continuous with exponent lying in [1− 1

α ,
1
α ]. When the drift term f

is Hölder continuous of order lying in (2−α, 1) and g is Lipshitz continuous
and bounded, then existence and uniqueness of a strong solution is derived
in [35], [38]. For more recent existence conditions, we refer to [32] and ref-
erences therein.

The main focus of this paper is the estimation of diffusion parameters
for one-dimensional ergodic stochastic processes X observed at some dis-
crete times, that is a solution of the SDE (1) driven by α-stable processes,
α ∈ (1, 2). We assume that, the processX is observed at discrete time points
{ti = i∆n, i = 0, 1, 2, ..., n} with ∆n a time frequency of the observation
and n is the sample size. Firstly, we recall not only the non-parametric
estimation framework of the drift coefficient but also the link between er-
godicity and mixing conditions.

The parameter estimation theory for SDE driven by Brownian motions are
well know in the literature. Some traditional methods are the maximum
likelihood estimator (MLE) or the least squares estimator (LSE) techniques,
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[29, 12, 24, 10], based on the Girsanov density. The consitency and the as-
ymptotic distribution are well studied, see for instance [12, 24], [18], [40],
[1]. For a more recent comprehensive discussion, we refer to [23] and the
references therein. Substantial progress has been made in parameter esti-
mation for SDE driven by Lévy processes with finite moments. The work
in [34] dealt with the consistency and asymptotic normality when the driv-
ing process is a zero-mean adapted Lévy process with finite moments. The
asymptotic normality of the LSE and MLE for the pure jump case is stud-
ied in [44, 45]. Note also that, some work has been carried out, when the
driving process Z is a stable Lévy process which is really particular, due to
it’s infinite variance property. However, the MLE is no longer valid in this
setting because, the explicit density function is not always available and the
Girsanov measure transformation is not well defined for α-stable processes,
α ∈ (1, 2). Let us pointed out some well-known results. In [14, 15], au-
thors use the trajectory fitting method combined with the weighted least
squares technique of the drift coefficient for an α-stable driven OU process,
α ∈ (1, 2), when the process is observed at discrete time instants, both for
the ergodic and non ergodic case. They also discuss the consistency and
asymptotic distribution of the estimator which has a higher order of con-
vergence than in the classical Gaussian case. In [26, 48], authors study
the drift parameter estimation of a stable driven Cox–Ingersoll–Ross (CIR)
model (which is a special subcritical continuous state branching process with
immigration). They derive the consistency and central limit theorems of
the conditional least squares estimators and the weighted conditional least
squares estimators of the drift parameters based on low frequency obser-
vations. In [11], a Lasso and Slope drift estimators for Lévy-driven Orn-
stein–Uhlenbeck processes were considered. A maximum likelihood type
estimation of the drift and volatility constant coefficient parameters in sta-
ble driven CIR is studied in [50]. In a recent paper [6], author address the
joint parameter estimation of the drift parameters, scaling parameter for the
diffusion coefficient and the jump activity parameter such as the index of
stability α and skewness parameter β ∈ [−1, 1] from high-frequency obser-
vations of the stable CIR process on a fixed time period. Their methodology
is based on the approximation of the conditional distribution. Now let us
turn to non parametric estimation, an important field of statistics which
consists of estimating an unkown function from a sample of data without
first giving a formula. Many authors have investigated the non parametric
estimation of the drift function f in the setting of diffusion’s driven by Brow-
nian motions under various conditions. The major statistical properties such
as the consistency and rate of convergence of non parametric methods for
the Nadaraya-Watson (N-W) estimators [36, 47], under independence with
identically distribution and also weak dependence conditions such as mixing
conditions. For a complete review of non parametric methods for diffusion
processes; see the survey paper by [16]. In the stable and non paramet-
ric setting, some results are also studied in [49, 30] and [41, 51, 28]. But
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the case of the diffusion part is much harder. We recall from [30] that, if
the solution of SDE (1) is stationnary (the stationnary distribution hav-
ing continuous density) and strongly mixing, the authors established a non
parametric estimation of the drift function using the N-W estimator. The
statistical properties such as the consistency and rate of convergence of the
N-W estimators under dependence conditions such as mixing are developed
in [30]. When the drift function is linear, the estimation both for discrete
and continuous observations was studied in [15, 14, 27, 6, 50] including the
stable driven CIR and OU processes. All these methods developed and
applied within the framework of the stable driven CIR and OU processes
are conditional dependent on the observation of the scaling ρ, the noise
Z = (Zt)t∈[0,T ] parameters and time horizon T . Their performance depends
strongly on the time frequency ∆n. Although the parameter estimation for
Stable driven SDE have been developed in recent years, few works (for in-
stance [6] in the CIR case) deal with the joint parameter estimation both for
the drift coefficient, scaling parameter, the diffusion coefficient parameters
and the underlined standard strictly stable parameters such as the index of
stability α and the skewness β.

This paper is organized as follows. After the introduction, we recall in
Section 2, basic fact on stable processes, relevant assumptions for the N-
W estimation framework as well as the connection between ergodicity and
mixing conditions for Markov processes. In section 3, we state our main the-
orems, which consists on the explicit estimators formulas for the diffusion
parameters namely the scaling parameter ρ and the stable noise parameters
α and β. Using the Euler–Maruyama scheme and the N-W estimator of the
drift coefficient, we discuss an estimation method based on a sample char-
acteristic function combined with a Linear least squares estimation method.
We also give estimators of the drift coefficients in the case of Stable driven
CIR and OU processes as well as their consistency property. Section 4 is
dedicated to the proofs of our main results. The last section investigate the
numerical performance of the estimators on simulated data. A real data in
finance, such as exchange rates of the Canadian dollar against the US dollar
is used to fit the parameters of the best stable driven processes as a numer-
ical estimation example. As a forthcoming work, we would like to establish
the rate of convergence of some estimators in order to create a package on
R software to handle this kind of estimation problem.

2. Preliminaries

Throughout this paper we assume that (Ω,F , (Ft)t∈R+ , P ) is a filtered prob-
ability space satisfying the usual conditions, i.e.,

(1) (Ω,Ft, P ) is complete for all t ∈ R+, F0 contains all the P-null sets
in F for all t ∈ R+.
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(2) Ft = Ft+ where Ft+ = ∩s>tFs, for all t ≥ 0, i.e. the filtration is
right-continuous.

2.1. Stable processes and Nonparametric estimation of the drift
function. In this section our objective is to introduce firstly, stable laws
and processes. Secondly, we present a nonparametric estimation framework
for the drift function of the SDE (1). Stable laws were introduced by Paul
Lévy in 1925 and arise as the limit of normalized sums. The definitions
and properties given below are taken from [42] and [37]. Note that there
are multiple characterizations of stable distributions and each of them have
some advantages depending on the purposes.

Definition 2.1. A random variable X follows an α-stable distribution with
α ∈ (0, 2] and we write X ∼ Sα(σ, β, ω; 1) if it is uniquely determined by its
characteristic function :

Ψ(t) = E(exp(itX)) =

{
exp

(
−γα|t|α

[
1− iβ(tan(πα2 ))sign(t)

]
+ iωt

)
if α ̸= 1.

exp(−σ|t|[1 + iβ 2
πsign(t) log(|t|)] + iωt) if α = 1

where α ∈ (0, 2] is the index of stability, β ∈ [−1, 1] the skewness parameter;
σ > 0 the scale parameter and ω ∈ R the location or shift parameter and
sign(t) the sign function.

The above definition is the parametrization 1 in [37]. The following is the
parametrization 0 and is usefull for computer processing.

Definition 2.2. A random variable X ∼ Sα(σ, β, ω; 0) if,

Ψ(t) =

{
exp

(
−σα|t|α

[
1 + iβ(tan(πα2 ))sign(t)(|σt|1−α − 1)

]
+ iωt

)
if α ̸= 1.

exp(−σ|t|[1 + iβ 2
πsign(t) log(γ|t|)] + iωt) if α = 1.

For more detailed discussion on stable distributions, see [37]. When σ = 1
we say X is a standard α-stable random variable. For α ̸= 1 and ω = 0 we
say that X is a strictly α-stable random variable. Furthermore if β = 0 it
is said to be symmetric. Note that, the parametrization 0 is important for
numerical implementation because the characteristic function, density and
cumulative distribution function are continuous with respect to the above
four parameters α, β, γ and ω. Now let us introduce α-stable processes
that can be seen as a particular class of Lévy processes and we refer to the
well-known standard literature like [20].

Definition 2.3. An Ft-adapted stochastic process Z = {Zt}t≥0 is called an
α-stable process if

(1) Z0 = 0, a.s.;
(2) Z has α-stable stationary increments distributions Zt−Zs ∼ Zt−s ∼

Sα((t− s)1/ασ, βω), t > s ≥ 0;
(3) For any time points 0 ≤ s0 < . . . < sm < ∞, the random variables

Zs0 , Zs1 − Zs0 , . . . , Zsm − Zsm−1 are independent.
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We also refer to [30] for the case of standard α-stable process. Now, we
recall a non-parametric estimation framework of the drift coefficient of the
following Stable driven SDE equation:{

dXt = f(Xt)dt+ ρg(Xt−)dZt, t ∈ [0, T ]
X(0) = x0

where f is an unknown function, ρ > 0 an unkown diffusion coefficient and
the driving standard strictly stable process Z is unknown too. We assume
in this paper that only the function g is known. Let X be a solution of
the above SDE. Note that Lipschitz and Hölder (or bounded) conditions
are typical conditions to show the existence of a solution. We refer to [32]
and references therein. The Nadaraya-Watson (N-W) estimator is a classical
method to estimate the drift function f . It is in this way that, we make the
following assumptions following [30]. Similar results on the drift function
estimation is also presented in [28] where authors study the local polynomial
estimation under others regular conditions. We consider kernel function
K(·) which is a symmetric and non negative probability density function
satisfying sup(1 ∨ |u|)K(u) < M0 < +∞ and∫ +∞

−∞
u2K(u)du < +∞,

∫ +∞

−∞
K2(u)du < +∞.

(A1). The solution Xt is stationary and admits a unique invariant distribu-
tion π which is geometrically strong mixing.
(A2). The density function f(x) of the stationary distribution π is continuous.
(A3). As n → ∞ : h → 0, ∆n → 0,

n∆n → ∞, and
n∆nh

(log(n∆n))2
→ +∞.

Assume that, the process X is observed at some discrete time points {tk =
k∆n, k = 0, 1, 2, ..., n − 1} with ∆n a time frequency of the observation
and n is the sample size. The Euler-Maruyuma scheme of the above SDE is
written as follows.

Xn
tk+1

= Xn
tk
+ f(Xtk)∆n + ρg(Xtk)∆Zk, Xn

0 = x ∈ R,

where ∆Zk = Zn
tk+1

− Zn
tk
. Set Yk = Xn

tk+1
− Xn

tk
. The main idea of N-W

estimator is to minimize the following object function:

n−1∑
k=0

Wn,k(x)(Yk − b∆n)
2

over the set of parameters b with certain weights functions Wn,k(x) given
by:

Wn,k(x) =
Kh(

Xtk
−x

h )
n−1∑
k=0

Kh(
Xtk − x

h
)
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for all x ∈ R, where Kh(x) = (K(x/h))/h with K the Kernel and h the
bandwidth parameter. Thus the N-W estimator of the drift function f is
given by the following expression :

f̂n(x) =

n−1∑
k=0

Wn,k(x)Yk, ∀x ∈ R

so that

f̂n(x) =
n∑

i=1

Kh(
Xti−x

h )(Xti −Xti−1)

n−1

n∑
i=1

Kh(
Xti − x

h
)

for all x ∈ R. (2)

We explore various Kernel functions in this paper but we choose only the
one which perform the simulation. For instance we’ll consider the Gaussian
kernel function:

K(u) =
1√
2π

e−u2/2.

2.2. Ergodic Markov processes and mixing conditions. We present in
this section, some results concerning the link between ergodicity and mixing
conditions for Markov processes. Let (Xt, t ≥ 0) be an ergodic Markov
process with unique invariant measure π. It is well known that solution of
some classical SDE driven by Lévy processes are Markov processes. Denote
by Pt(x, dz) be the transition probability of the process Xt starting from
X0 = x. Consider the Markov semigroup (Pt)t≥0 associated to (Xt, t ≥ 0)
and defined by Ptf(x) = E

(
f(Xt)/X0 = x

)
for all measurable and positive

functions or in Lp(π). Recall that P is a bounded operator in all Lp(π),
p ≥ 1 with operator norm equal to 1 (i.e. a contraction). Let us also recall
the following adjoint operator P ∗, defined by∫

f Ptg dπ =

∫
g P ∗

t f dπ

for f and g square integrable w.r.t.π, which is again a contraction. The
following definition introduces some way to control the ergodic decay to
equilibrium.

Definition 2.4 (Ergodic rates of convergence [7]). For any r ≥ p ≥ 1 and
t ≥ 0 we define the following ergodic rates

ηp,r(t) = sup
|f ||Lr(π)

∫
fdπ=0

||Ptf ||Lp(π).

The process X is said to be uniformly ergodic if limt→+∞ η2,∞(t) = 0 and
the we call η2,∞ the uniform decay rate.

The following definitions can be found in [52].
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Definition 2.5 (Exponentially or strongly ergodic process). Assume that
X = (Xt, t ≥ 0) is an ergodic Markov process with unique invariant measure
π and X0 = x.

1. The process X with is called exponentially ergodic if there exist a
constant k > 0 and a positive measurable function c(x) such that for
all t > 0 we have

||Pt(x, .)− π||var ≤ c(x)e−kt,

2. The process X with is called strongly ergodic if there exist two con-
stants k,C > 0 such that for all t > 0 we have

||Pt(x, .)− π||var ≤ Ce−kt.

where ||.||var denotes the total variation norm on the space of signed proba-
bility measures defined by

||Pt(x, .)− π||V ar = sup
A∈F

|Pt(x,A)− µ(A)|

= sup
||f ||∞≤1 andLaw(Y )=π

|Ef(Xt)− Ef(Y )|.

From this definition, one say that the process X is said to be strongly
or exponentially ergodic if limt→+∞ η1,∞(t) = 0 and the we call η1,∞ the
strong or exponential ergodic decay rate. Now, let us define some usual
mixing coefficients in order to compare mixing properties and ergodic decay
properties.

Definition 2.6 (Mixing conditions, see [33]). . Let Fs (resp.Gs) be respec-
tively the backward (or the past) and the forward (or the future) σ-fields
generated by Xu for 0 ≤ u ≤ s (resp. u ≤ s).

1. The strong mixing coefficient αmix(t) is defined as :

αmix(t) = sup
s

sup
A∈A∈Fs, B∈Gs+t

|P(A ∪B)− P(A)P(B)|

=
1

4
sup
s

{
sup
F,G

Cov(F,G) , F Fs(resp.G Gt+s) measurable and bounded by 1.

}
If limt→∞ αmix(t) = 0, the process is strongly mixing.

2. The β-mixing coefficient φ(t) is defined as:

βmix(t) = sup
s

{
sup
A,B

(P(B|A)− P(B)) , A ∈ Fs , B ∈ Gs+t

}
.

If limt→∞ βmix(t) = 0, the process is β-mixing or uniformly mixing.
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3. The ρ-mixing coefficient ρmix(t) is defined as the maximal correlation
coefficient, i.e.

ρmix(t) = sup
s

{
sup
F,G

Corr(F,G) , F ∈ L2(Fs) , G ∈ L2(Gt+s)

}
.

If limt→∞ ρmix(t) = 0 the process is ρ-mixing.

Note that if X is a stationary process (i.e. such that, for all n ≥ 0, the
law of Xt+s is the same as the one of Xs), the supremum on s is irrelevant.
The following Lemma is contained in our past paper [7] and allow to make
a connection between ergodicity and mixing conditions.

Lemma 2.1. For all t ≥ 0, we have

(1) η2∞,2(t) ∨ (η∗)2∞,2(t) ≤ αmix(t) ≤ η∞,2([t/2]) η
∗
∞,2(t/2).

(2) Either η2,2(t) = 1 for all t or η2,2(t) ≤ c e−λ t for some λ > 0. In
the second case

η22,2(t) = (η∗)22,2(t) ≤ ρmix(t) ≤ c η2,2(t) .

(3) βmix(t) ≤ η21,∞(t/2) .

From the above Lemma one easily derive the following result.

Theorem 2.2. Assume that X = (Xt, t ≥ 0) is an ergodic Markov process
with unique invariant measure π.

a) If X is strongly or exponentially ergodic then it is β-mixing.
b) If X is uniformly ergodic, then it is strongly mixing.
c) Any kind of exponential ergodic decay rate in L2 imply the ρ-mixing.

3. Main results

Using the N-W estimator and the Euler–Maruyama scheme, the main objec-
tive in this section is firstly the joint estimation of the scaling parameter ρ
and the standard strictly stable process parameters α and β of the diffusion
component in the SDE in (2.1).

Theorem 3.1. Let X = (Xt)t∈[0,1] be a real valued stationnary and strongly
mixing process with unique invariant distribution which is solution of the
SDE (2.1). We assume that X is observed on a sample of discrete time
points ti with step ∆n of size n such g(Xti) ̸= 0. Assume that assumptions

(A2) and (A3) holds. Let (f̂n(Xti))
n
i=1 be the sequence of the N-W estimate

of the drift coefficient of the SDE (2.1). We define the following sample
characteristic function

φ̂n(uk) =
1

n

n−1∑
i=0

exp

(
juk

(∆Xti − f̂n(Xti)∆n

g(Xti)

))
(3)
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for all k ∈ [[1,m]], m > 0, and j2 = −1. Set

α̂m =

m∑
k=1

WkVk −
1

m

m∑
k=1

Vk

m∑
k=1

Wk

∑m
k=1 W

2
k−

1
m

( m∑
k=1

Wk

)2 ,

λ̂m = 1
m

m∑
k=1

Vk −
α̂m

m

m∑
k=1

Wk

ρ̂m = ∆
− 1

α̂m
n exp λ̂m

α̂m

β̂m =

m∑
k=1

ukSk

m∑
k=1

ukBk

,

(4)

where

Sk = arg(φ̂n(uk)), Bk = tan(
πα̂

2
)sign(ui)

(
uk − uα̂m

k

)
∆1/α̂m

n ,

and

Vk = log(− log|φ̂n(uk)|) and Wk = log(|uk|).
For n large enough, α̂m, ρ̂m and β̂m are least squares estimators of α, ρ and
β.

Let’s discuss about some formulations in order to check the consistency
through a linear statistical regression model.

Remark 3.1. Depending on the normality for the observed distributions of
the sample characteristic function φ̂n estimation from the N-W estimator;
the above estimators can be consistent and unbiased if the errors have finite
variance and are uncorrelated with the regressors log(|uk|). The condition
that the errors are uncorrelated with the regressors is here satisfied in an
experimentation since they are deterministic. If the sample prediction er-
rors follow a Gaussian distribution then the above estimators are consistent
and unbiased. If this is not the case, note that data normalization trans-
formations are available in order to have Gaussian observed distributions of
the sample characteristic function. For instance, the Min-Max Scaling can
be applied since the data may vary in different scales, reducing the effect of
outliers.

A simulation study is conducted to evaluate the performance of the pro-
posed estimation. The choice of optimal value of m was proposed in [21],
which suggest selecting points ui in the interval [0.1, 1]. We give the proof
of Theorem 3.1 in section 4.
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Theorem 3.1 also applies to the following α-stable-driven Ornstein Uhlen-
beck (OU) and Cox–Ingersoll–Ross (CIR) processes. Such models are pop-
ular in stochastic modelling for description of interest rates in finance and
population dynamics. Assume that Z is a standard strictly stable pro-
cess with parameters α ∈ (1, 2) and β ∈ [−1, 1]. A generalized Ornstein-
Uhlenbeck (OU) process driven by an α-stable process (Zt)t≥0 is defined to
be the solution to the following linear stochastic differential equation

Definition 3.1. (Stable OU process)

dXt = θ(µ−Xt)dt+ ρdZt, X0 = x ∈ R. (5)

and has the integral representation for any t ≥ r ≥ 0 :

Xt = e−θ(t−r)Xr + θµ

∫ t

r
e−θ(t−s)ds+ ρ

∫ t

r
e−θ(t−s)dZs, t ≥ 0.

where θ and µ are constants.

The stable driven Cox–Ingersoll–Ross (SCIR [50]) is defined by:

dXt = θ(µ−Xt)dt+ ρ|Xt|1/qdZt, X0 ≥ 0, (6)

where q > 0 θ > 0, ρ > 0, and µ ∈ R are constants and Z is an α-stable
process. In the case of a pure-jump α-stable Lévy process Z with positive
jumps the following extension is introduced in the literature (see [6]) given
as follows for q = α when α ∈ (1, 2).

Definition 3.2. (Stable CIR process) An α-stable process is defined by:

dXt = θ(µ−Xt)dt+ ρ|Xt|1/αdZt, X0 ≥ 0,

where θ > 0, ρ > 0, and µ ∈ R are constants.

This stable driven CIR model is a particular form of the so-called continuous-
state branching processes with immigration (CBI-processes, [25], [26] and
[39]), which arise as scaling limits of Galton–Watson branching processes
with immigration (GWI-processes); see, e.g., [19].

The following result discuss the parameter estimation of the drift coefficients
θ and µ of the above stable driven CIR and OU processes.

Theorem 3.2. Let X = (Xt)t∈[0,1] be a real valued stationary and strongly
mixing process satisfying (5) or (6). We assume that X is observed on a
sample of discrete time points ti with time frequency ∆n of size n. Let
(f̂n(Xti))

n
i=1 be the sequence of the N-W estimate of the linear drift function
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in (5) or (6) and set

ân =

∑n−1
i=0 Xti f̂n(Xti+1)− 1

n

n−1∑
i=0

Xti

n∑
i=1

f̂n(Xti+1)

1
n

( n−1∑
i=0

Xti

)2 − n−1∑
i=0

X2
ti

µ̂n = â−1
n

1
n

n−1∑
i=0

f̂n(Xti+1) +
1

n

n−1∑
i=0

Xti

θ̂n = −W (ân),

(7)

where W is the Lambert function.

• We assume moreover that the driving process Z in the stable driven
CIR process (6) is an α-stable symmetric process with α ∈ (

√
2, 2).

For n large enough, θ̂n and µ̂n are consistent estimators of θ and µ.

4. Proofs of the main Theorems

In this section, we derive the proofs of our main results.

4.1. Proof of Theorem 3.1.

Proof. We recall first the Euler Euler–Maruyama approximation of the SDE
(1):

Xn
ti = Xn

ti−1
+ f(Xn

ti)∆n + g(Xn
ti)Y

n
i

where Y n
i = ρ∆Zn

i = ρ(Zn
i+1−Zn

i ), i = 0, . . . , n−1, are identically sequence

distributed as Z∆n ∼ Sα

(
∆

1/α
n ρ, β, 0

)
. We have

Y n
i =

∆Xti − f̂n(Xti)∆n

g(Xti)
, ∀i = 0, . . . , n− 1.

We can define an approximate sample characteristic function by

φ̂n(u) =
1

n

n−1∑
i=0

exp{ju
(∆Xti − f̂n(Xti)∆n

g(Xti)

)
}, ∀u ∈ R, (8)

which shall be asymptotically equal to the characteristic function φZ∆n
(u)

of Z∆n . Now, using Definition 2.1 or 2.2, we have the following formula:

log(− log|φZ∆n
(u)|) = log(ρα∆n) + α log(|u|).

From this, we can set up an ordinary least squares regression method in or-
der to obtain the estimators of α and ρ. To this end, it is desired to find the
vector parameter (α, λ) such that the underlined linear function fits best the
given data in the least squares sense, that is, the following sum of squares :
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G(λ, α) =

m∑
k=1

(Vk − λ− αWk)
2

(λ̂, α̂) = arg min
(λ,α)

G(λ, α),

is minimized, where

Vk = log(− log|φ̂n(uk)|), Wk = log(|uk|), λ = log(ρα∆n).

The minimum value of G(λ, α) occurs when the gradient is zero. Since the
model contains two parameters, there are two gradient equations:

∂G(λ,α)
∂α = −2

m∑
k=1

Wk(Vk − λ− αWk)

∂G(λ,α)
∂λ = −2

m∑
k=1

(Vk − λ− αWk),

and these gradient equations have a closed solution given by:

{
∂G(λ,α)

∂α = 0
∂G(λ,α)

∂λ = 0
=⇒



α̂m =

m∑
k=1

WkVk −
1

m

m∑
k=1

Vk

m∑
k=1

Wk

∑m
k=1 W

2
k−

1
m

( m∑
k=1

Wk

)2 ,

λ̂m = 1
m

m∑
k=1

Vk −
α̂m

m

m∑
k=1

Wk.

(9)

To estimate β, we use Definition 2.2. to obtain the following formula:

Sk = βBk + ωuk here we have, ω = 0

since we consider in this work strictly α-stable process and

Sk = arg(φ̂n(uk)), Bk = tan(
πα̂

2
)sign(ui)

(
uk − uα̂k

)
∆1/α̂

n .

We use again the above least squares method to minimize the following sum
of squares:

T (β, ω) =

m∑
k=1

(
Sk − βBk − ωuk

)2
.

From the gradient equations:
∂T (β,ω)

∂β = −2

m∑
k=1

Bk(Sk − ωuk − βBk)

∂T (β,ω)
∂ω = −2

m∑
k=1

uk(Sk − ωuk − βBk),



14 DIFFUSION PARAMETERS’ ESTIMATION FOR STABLE DRIVEN SDE

we have the following closed solution when ω = 0:

β̂m =

m∑
k=1

ukSk

m∑
k=1

ukBk

.

□

4.2. Proof of Theorem 3.4.

Proof. Note that, by applying Itô’s formula to (5) or (6) we have

Xti = µ(1− e−θ) + e−θXti−1 + ϵi

where

ϵi =

{
ρ
∫ ti
ti−1

e−θ(i−s)|Xs−|1/αdZs for the stable CIR process

ρ
∫ ti
ti−1

e−θ(i−s)dZs for the stable OU process.

The sequence (ϵi) is a centered random variable (martingale differences) in
the case of the stable OU process (5) if Z is a strictly α-stable process with
α ∈ (1, 2) for with α ∈ (1, 2). If Z is a symmetric α-stable process and in the
case of the stable CIR process (6), then according to the existence result in
[5] and integrability property in [13] and [17] the sequence (ϵi) is a centered

random variable with α ∈ (
√
2, 2) since x → |x|1/α is Holder continuous with

exponent α−1. Therefore we have

f̂(Xti+1) = aµ− aXti + ηi, a = θe−θ, i ≥ 0,

where the sequence (ηi) is again a centered random sequence. We can set up
a Linear Least Square Method which consists in minimizing the following
objective function:

G(a, µ) =

n−1∑
i=0

(
f̂(Xti+1)− aµ+ aXti

)2
.

Using, the gradient equations:
∂G(a,µ)

∂a = 2(−µ+Xti)
n−1∑
i=0

(
f̂(Xti+1)− aµ+ aXti

)
∂G(a,µ)

∂µ = −2a
n−1∑
i=0

(
f̂(Xti+1)− aµ+ aXi

)
,
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it is straightforward to obtain the following least square estimators :

ân =

∑n−1
i=0 Xti f̂n(Xti+1)− 1

n

n−1∑
i=0

Xti

n∑
i=1

f̂n(Xti+1)

1
n

( n−1∑
i=0

Xti

)2 − n−1∑
i=0

X2
ti

µ̂n = â−1
n

1
n

n−1∑
i=0

f̂n(Xti+1) +
1

n

n−1∑
i=0

Xti

θ̂n = −W (ân),

(10)

where W is the Lambert function [8]. Now, let us prove the consistency of

these estimators. Set Ui = f̂n(Xti+1) and note that since we assume that the

process X is ergodic and α ∈ (1, 2) then X̄ = 1
n

n−1∑
i=0

Xti and Ū = 1
n

n−1∑
i=0

Ui

converge. We have

ân =

n∑
i=1

XtiUi −
1

n

n∑
i=1

Ui

n∑
i=1

Xti

1
n

n∑
i=1

Xti

n∑
i=1

Xti −
n∑

i=1

X2
ti

=

n∑
i=1

Xti

(
Ui − Ū

)
n∑

i=1

Xti

(
X̄ −Xti

) (11)

where Ū =
1

n

n∑
i=1

Ui and X̄ =
1

n

n∑
i=1

Xti

(12)

so that

=

n∑
i=1

(
Xti − X̄

)(
Ū − Ui

)
n∑

i=1

(
Xti − X̄

)2 since

n∑
i=1

X̄(Ui − Ū) = 0 and

n∑
i=1

X̄(Xti − X̄) = 0.

(13)

From the relation
Ui − U = a(X̄ −Xti) + εi,

where εi is a centered random sequence (martingale differences), we have

ân =

n∑
i=1

(
Xti − X̄

)(
a(Xti − X̄)− εi

)
n∑

i=1

(
X̄ −Xti

)2 = a+

n∑
i=1

(
Xti − X̄

)
εi

n∑
i=1

(
X̄t −Xti

)2 −→
n→+∞

0,

(14)
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since the process X = {Xt, t ≥ 0} is ergodic, stationary and have infinite

square variation. We deduce the consistency of θ̂n and µ̂n by the use of
continuous mapping theorem. □

5. Numerical Application with strong ergodic stochastic
models

The numerical implementation was done with R software. For practical set-
ting, we choose the optimal bandwidth h (appearing in the Gaussian Kernel
for the N-W estimation) by considering the method proposed by [43]. The
R function h.amize allow to do it. Note also that, in many cases people
usually choose h = hn = n−1/5.

We now investigate the numerical performance of our estimation procedure
on simulated data generated from ergodic stationary processes. The expo-
nential ergodicity of a Lévy driven OU process is established in [46]. The
result entails that if θ > 0 then the α-Stable OU process (5) has a unique in-
variant measure π and it is strongly ergodic (mixing). More generally, let us
consider the case where the drift f and diffusion coefficient g verify sufficient
conditions for the solution of (1) to exist [5, 13]. According to [22], if f(.)

is locally Lipschitz and lim sup|x|→+∞
f(x)
x < 0 then, for any α ∈ (1, 2), the

solution of (1) is exponentially ergodic and its invariant distribution exists
and is unique. This therefore applies to the case of the stable OU model
(5) under the condition θ > 0. In the case of the Stable driven CIR-model
6, some results exists in [26] whenever the stable process has only positive
jumps, where for θ > 0 and µ ≥ 0 it can be seen as a subcritical CBI process
with immigration rate µ. Thus, using the result of [26], we conclude that
the Stable driven CIR process is exponentially ergodic and hence strongly
mixing.

5.1. Simulated data case’s. We simulate and approximate X by using
the Euler scheme on the interval [0, T ] with sample size n = 500, 1000, 2000
and within a period T = 1. In order to ensure that the Stable driven OU and
CIR processes satisfies Assumption (A1), we shall employ the exponential
ergodicity results we discuss above when choosing the model parameters. In
the sequel, we consider the following common parameters:

x0 = 1, θ = 0.3, µ = 1.2 α = 1.6 β = 0 and ρ = 1.

We proceed by generating data from models (5) and (6) according to the
previous setting with a strictly standard α-stable process. We plot the kernel
density estimate of a realization of X with the histogram in order to check
numerically the regularity condition on the density function of the stationary
distribution π, assumed to be continuous in Assumption (A2). Therefore
choosing a suitable time frequency (for instance ∆n = 1√

n
), the models satis-

fies all the required conditions (including Assumption (A3)). We explore the
performance of the Nadaraya-Watson estimator of the drift function and the
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estimate parameters of the diffusion part, namely α, β and ρ in the context
of the stable driven CIR and OU models on simulated data. Figures 1 and 2
display the graphical performance of the N-W estimator with respect to the
true drift function considered (θ = 0.3, µ = 1.2). The pictures show the
comparison according to three sample sizes n = 500, n = 1000 and n = 2000
with time interval T = 1 or T = 10. We can see that varying T for a fixed
n slightly seems not improve the estimates of the drift function in the SCIR
model. This confirms that the drift function can not be identified in a fixed
time interval in the framework of N-W estimator, no matter how frequently
the observations are sampled. One notices that for a fixed length of observa-
tion interval T , as the sample size gets larger, the N-W estimator does not
behave better, which is consistent with the asymptotic theory of the N-W
estimator for stochastic processes driven by Lévy motions. The regularity
condition on the density function of the stationary distribution is graphi-
cally checked throughout Figures 3 and 4.

To evaluate the performance, we make not only illustration by picture but
also, via the square-Root of Average Square Errors defined by

RMSE =
1

n

n∑
i=1

(
f̂n(xi)− f(xi)

)2
where x = (xi) are chosen uniformly to cover the range of sample path of
X. We summarized the performance in Tables 1 and 4, which reports the
results on the diffusion parameters (the standard and strictly stable process
parameters α and β) and the scaling parameter ρ as well as the RMSE on
n replicates with three sample sizes n = 500, n = 1000 and n = 2000,
respectively for time interval T = 1 and T = 10. We can see that varying T
for a fixed n slightly changes the estimates of the stable process parameters
α, β, except for the scaling parameter ρ.

5.2. Real data case’s: financial exchanges rates. We now turn to the
estimation using real data. We analyse real financial data such as indexes
or exchanges of the Canadian dollar against the US dollar in a given fixed
period varying from May 2018 to June 2022 are analysed with a sample size
n = 1000. Figures 5(a), 5(b) and 5(c) show the time series variation of the
exchanges rates. We also look at the speed of decreasing of the Covariance
using the auto-correlation function (ACF) diagram [3]. Indeed for a sta-
tionary time series, the ACF will fall to zero quickly whereas the ACF of
non-stationary time series decreases slowly. The Dickey Fuller test returns a
p-criticism of 0.01, which confirms the stationarity of the times series. The
decreasing of the covariance using the ACF diagram test shows that the data
sequence is weakly dependent. The data can be considered as mixing in the
sense of the ρ-mixing (which implies strong mixing). The density estimation
of the stationary distribution is given also in Figures 5 (a’), 5(b’) and 5(c’)
so that the regularity condition is satisfied. Figure 6 display the graphical
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N-W estimation of the observed drift function. Tables 3 and 5 summarise
the parameter estimation of the diffusion part. As concerned the drift part,
Tables 2 summarise the estimated drift coefficients with the real data. We
compare the prediction result with the stable OU model in Figure 7 since it
seems to match better than the Stable CIR process.
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Statistics, Series A, pages 359–372, 1964.

[48] Chao Wei. Estimation for the discretely observed cox–ingersoll–ross model driven by
small symmetrical stable noises. Symmetry, 12(3):327, 2020.

[49] Wei Biao Wu. Nonparametric estimation for stationary processes. University of
Chicago. Technical Report, 536, 2003.

[50] Xu Yang. Maximum likelihood type estimation for discretely observed cir model with
small α-stable noises. Statistics & Probability Letters, 120:18–27, 2017.

[51] Xuekang Zhang, Haoran Yi, and Huisheng Shu. Nonparametric estimation of the
trend for stochastic differential equations driven by small α-stable noises. Statistics
& Probability Letters, 151:8–16, 2019.

[52] Zhenzhong Zhang, Xuekang Zhang, and Jinying Tong. Exponential ergodicity for
population dynamics driven by α-stable processes. Statistics & Probability Letters,
125:149–159, 2017.



DIFFUSION PARAMETERS’ ESTIMATION FOR STABLE DRIVEN SDE 21

6. Appendix: Figures and Tables

Table 1. Performance of the estimated diffusion and scal-
ing parameters (α̂, β̂, ρ̂) with a standard symmetric 1.6-stable
driven OU process

n and T True parameters Estimate Parameters RMSE

500 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.70, β̂n = 0.08, ρ̂n = 0.80 1.55

500 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.69, β̂n = 0.015, ρ̂n = 3.38 8.34

1000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.55, β̂n = 0.11, ρ̂n = 1.2 1.10

1000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.56, β̂n = 0.13, ρ̂n = 4.87 8.43

2000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.6346, β̂n = 0.1146, ρ̂n = 0.9335 0.77

2000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.6029, β̂n = 0.064, ρ̂n = 4.33 6.91

Table 2. Estimated drift coefficients (θ̂, µ̂) with the ex-
change rates data

n Estimate Parameters

1000 θ̂n = 1.08, µ̂n = 0.93

500 θ̂n = 1.06, µ̂n = 0.95

200 θ̂n = 1.028493, µ̂n = 0.9674548

Table 3. Estimated diffusion and scaling parameters
(α̂, β̂, ρ̂) with the exchange rates data using an unknown
strictly standard stable driven OU process

n Estimated drift coefficients

1000 α̂n = 1.98, β̂n = 1, ρ̂n = 13.21

500 α̂n = 1.99, β̂n = 1, ρ̂n = 10.11

200 α̂n = 1.99, β̂n = 1, ρ̂n = 6.17
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Table 4. Performance of the estimated diffusion and scal-
ing parameters (α̂, β̂, ρ̂) with a standard symmetric 1.6-stable
driven CIR process

n and T True parameters Estimate Parameters RMSE

500 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.66, β̂n = 0.13, ρ̂n = 0.88 1.17

500 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.51, β̂n = 0.08, ρ̂n = 5.95 8.24

1000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.63, β̂n = 0.217, ρ̂n = 0.98 3.72

1000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.53, β̂n = 0.35, ρ̂n = 6.32 15.36

2000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.61, β̂n = 0.07, ρ̂n = 1.03 2.07

2000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.64, β̂n = 0.04, ρ̂n = 4 11.13

Table 5. Estimated diffusion and scaling parameters
(α̂, β̂, ρ̂) with the exchange rates data using an unknown
strictly standard SCIR process with given parameter q.

n q Estimate Parameters

1000 q=2 α̂n = 1.80, β̂n = −0.33, ρ̂n = 67.89

1000 q=1.99 α̂n = 1.78, β̂n = −0.31, ρ̂n = 70.57

1000 q=1.95 α̂n = 1.78, β̂n = −0.33, ρ̂n = 71.59

1000 q=1.9 α̂n = 1.77, β̂n = −0.35, ρ̂n = 75.83

1000 q=1.8 α̂n = 1.72, β̂n = −0.37, ρ̂n = 8736

1000 q=1.6 α̂n = 1.59, β̂n = −0.28, ρ̂n = 130.70

1000 q=1.5 α̂n = 1.53, β̂n = −0.20, ρ̂n = 163.02

500 q=2 α̂n = 1.79, β̂n = −0.12, ρ̂n = 39.61

500 q=1.99 α̂n = 1.78, β̂n = −0.12, ρ̂n = 39.99

500 q=1.95 α̂n = 1.77, β̂n = −0.093, ρ̂n = 41.56

500 q=1.9 α̂n = 1.75, β̂n = −0.06, ρ̂n = 43.74

500 q=1.8 α̂n = 1.72, β̂n = −0.009, ρ̂n = 48.98

500 q=1.6 α̂n = 1.59, β̂n = 0.08, ρ̂n = 70.13

500 q=1.5 α̂n = 1.53, β̂n = 0.073, ρ̂n = 86.03

200 q=2 α̂n = 1.69, β̂n = −0.31, ρ̂n = 25.56

200 q=1.99 α̂n = 1.69, β̂n = −0.30, ρ̂n = 25.83

200 q=1.95 α̂n = 1.67, β̂n = −0.25, ρ̂n = 26.98

200 q=1.9 α̂n = 1.65, β̂n = −0.19, ρ̂n = 28.59

200 q=1.8 α̂n = 1.60, β̂n = −0.008, ρ̂n = 32.42

200 q=1.6 α̂n = 1.51, β̂n = 0.04, ρ̂n = 43.64

200 q=1.5 α̂n = 1.44, β̂n = 0.08, ρ̂n = 5386
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 1. Performance of the Nadaraya-Watson kernel es-
timator with respect to the true drift in the case of a stan-
dard symmetric 1.6-stable driven OU process with sample
size n = 500 and t = 1 in (a), sample size n = 500 and t = 10
in (a’), sample size n = 1000 and t = 1 in (b), sample size
n = 1000 and t = 10 in (b’), sample size n = 2000 and t = 1
in (c) and sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 2. Performance of the Nadaraya–Watson kernel es-
timator with respect to the true drift in the case of a stan-
dard symmetric 1.6-stable driven CIR process with sample
size n = 500 and t = 1 in (a), sample size n = 500 and t = 10
in (a’), sample size n = 1000 and t = 1 in (b), sample size
n = 1000 and t = 10 in (b’), sample size n = 2000 and t = 1
in (c) and sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 3. Kernel density estimation of a standard symmet-
ric 1.6-stable driven OU process with sample size n = 500
and t = 1 in (a), sample size n = 500 and t = 10 in (a’),
sample size n = 1000 and t = 1 in (b), sample size n = 1000
and t = 10 in (b’), sample size n = 2000 and t = 1 in (c) and
sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 4. Kernel density estimation of a standard symmet-
ric 1.6-stable driven CIR process with sample size n = 500
and t = 1 in (a), sample size n = 500 and t = 10 in (a’),
sample size n = 1000 and t = 1 in (b), sample size n = 1000
and t = 10 in (b’), sample size n = 2000 and t = 1 in (c) and
sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 5. The exchange rates of the Canadian dollar
against the US dollar global variation and density estimation
with t sample size n = 1000 (a); local sample size n = 500
(b) and sample size n = 200 (c).
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(a) (b)

(c)

Figure 6. NW drift estimated function with the exchange
rates of the Canadian dollar against the US dollar variation
with the global sample size n = 1000 (a); local sample size
n = 500 (b) and sample size n = 200 (c).
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(a) (b)

(c)

Figure 7. Comparison between exchange rates prediction
with Stable driven OU process with sample size n = 200 (a);
sample size n = 500 (b) and sample size n = 1000 (c).


