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Abstract. In this paper, we consider parameter estimation for a sto-
chastic process observed at some discrete times that is a solution of a
given class of stochastic differential equations driven by α-stable pro-
cesses, α ∈ (1, 2). Firstly, we consider the diffusion coefficients parame-
ters estimation problem such as the scaling parameter and the driving
stable process parameters. Secondly, we address the question of the joint
estimation with the drift coefficients for Stable driven Cox–Ingersoll–Ross
and Ornstein-Uhlenbeck processes. Our methodology which is based on
the use of Nadaraya-Watson estimator is new according to the litera-
ture of such estimation problem. Indeed it is based on a combination
of the characteristic sample function and the (linear or weighted) re-
gression methods. We discuss the validity and efficiency of the numeric
implementation of the estimators on synthetic data and real financial
data as indexes and exchange rates. As a forthcoming work, we intend
to provide a package (in the R programming language) for this type of
estimation problem.

Key words and phrases: stochastic differential equation, stable process,
parameter inference, characteristic function, regression method, Cox–Ingersoll–Ross
and Ornstein-Uhlenbeck processes, Nadaraya-Watson estimation.

1. Introduction

Due to the increasing of computational powerfull statistical methods, there
has been a great interest in parameter estimation for Stochastic Differ-
ential Equation (SDE). Such models are mathematical tools for modeling
the time evolution of many natural phenomena in many disciplines such
as epidemiology, biology and finance. As examples, the Cox–Ingersoll–Ross
(CIR) and the Ornstein-Uhlenbeck (OU) stochastic models [35, 10], has been
used widely in finance. Some equivalent SDE models from continuous-time
branching processes are also shown to be useful models to study dynamic
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population [2, 43]. More precisely in epidemic dynamics, when an infectious
population size is small and the population size is large, on can approximate
the continuous time dynamic by a nonlinear SDE (stochastic logistic model
that includes variability due to births and deaths [2]). For classical estima-
tion methods, issues such as how to construct procedures which are both
computationally efficient and show optimal statistical performance are now
well understood. Let us consider the parameter estimation problem of the
following SDE driven by a standard strictly stable process (Zt)t≥0 defined
in a given filtered probability space (Ω,F ,Ft,P) :{

dXt = f(Xt)dt+ ρ g(Xt−)dZt, t ∈ [0, T ]
X0 = x0,

where x0 is a starting point, T > 0 a given time horizon and the given
function g : R → R is assumed to be known. We assume that, the func-
tion f : R → R, constant ρ > 0 and the stable process (Zt)t∈[0,T ] (which is
considered as a nuisance parameter) are unknown. The random variable Z1

which is a standard strictly stable distribution with parameters α ∈ (0, 2)
(the index of stability) and β ∈ [1, 1] (the skewness parameter) will be de-
fined in the sequel.

The existence and uniqueness of the solution to the SDE (2.4) under Lip-
schitz conditions are standard results in stochastic calculus, [4]. For non
Lipchtiz coefficients, some results have been studied. Let us recall some few
existence results. For f = 0 and g is Hölder continuous with exponent 1

α ;
if Z is a symmetric stable process then it is proved in [5] that there exists
a strong solution for α ∈ (1, 2). If f and g have at most linear growth it is
proved in [15] that there exists a weak solution for α ∈ (1, 2) for which path-
wise uniqueness holds whenever the function g is Hölder continuous with
exponent lying in [1 − 1

α ,
1
α ]. When the drift term f is Hölder continuous

of order lying in (2− α, 1) and g is Lipshitz continuous and bounded, then
existence and uniqueness of a strong solution is derived in [39], [42]. For
more recent existence conditions, we refer to [37] and references therein.

The main focus of this paper is the joint parameter estimation problem for
a given solution X of the SDE (2.4) not only for the drift coefficient f but
also for the scaling diffusion parameter ρ and the stable noise parameters
appearing in the model equation. We assume that, the process X is ob-
served at discrete time points {ti = i∆n, i = 0, 1, 2, ..., n} with ∆n a time
frequency of the observation and n is the sample size. The parameter es-
timation theory for SDE driven by Brownian motions are well know in the
literature. Some traditional methods are the maximum likelihood estimator
(MLE) or or the least squares estimator (LSE) techniques, [33, 13, 27, 11],
based on the Girsanov density. The consitency and the asymptotic distri-
bution are well studied, see for instance [13, 27], [21], [45], [1]. For a more
recent comprehensive discussion, we refer to [26] and the references therein.
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Substantial progress has been made in parameter estimation for SDE driven
by Lévy processes with finite moments. The work in [38]] dealt with the con-
sistency and asymptotic normality when the driving process is a zero-mean
adapted Lévy process with finite moments. The asymptotic normality of the
LSE and MLE for the pure jump case is studied in [49, 50]. Note also that,
some work has been carried out, when the driving process Z is a stable Lévy
process which is really particular, due to it’s infinite variance property. How-
ever, the MLE is no longer valid in this setting because, the explicit density
function is not always available and the Girsanov measure transformation is
not well defined for α-stable processes, α ∈ (1, 2). Let us pointed out some
well-known results. In [16, 17], authors use the trajectory fitting method
combined with the weighted least squares technique of the drift coefficient
for an α-stable driven OU process, α ∈ (1, 2), when the process is observed
at discrete time instants, both for the ergodic and non ergodic case. They
also discuss the consistency and asymptotic distribution of the estimator
which has a higher order of convergence than in the classical Gaussian case.
In [30, 53], authors study the drift parameter estimation of a stable driven
Cox–Ingersoll–Ross (CIR) model (which is a special subcritical continuous
state branching process with immigration). They derive the consistency and
central limit theorems of the conditional least squares estimators and the
weighted conditional least squares estimators of the drift parameters based
on low frequency observations. In [12], a Lasso and Slope drift estimators
for Lévy-driven Ornstein–Uhlenbeck processes were considered. A maximum
likelihood type estimation of the drift and volatility constant coefficient pa-
rameters in stable driven CIR is studied in [56]. In the recent paper [6],
author address the joint parameter estimation of the drift parameters, scal-
ing parameter for the diffusion coefficient and the jump activity parameter
such as the index of stability α and skewness parameter β ∈ [−1, 1] from
high-frequency observations of the stable CIR process on a fixed time pe-
riod. Their methodology is based on the approximation of the conditional
distribution.

Now let us turn to non parametric estimation, an important field of sta-
tistics which consists of estimating an unkown function from a sample of
data without first giving a formula. Many authors have investigated the
non parametric estimation of the drift function f in the setting of diffusion’s
driven by Brownian motions under various conditions. The major statistical
properties such as the consistency and rate of convergence of non parametric
methods for the Nadaraya-Watson (N-W) estimators [40, 52], under inde-
pendence with identically distribution and also weak dependence conditions
such as mixing conditions. For a complete review of non parametric methods
for diffusion processes; see the survey paper by [18]. In the stable and non
parametric setting, some results are also studied in [54, 34] and [46, 58, 32].
But the case of the dispersion function g is much harder. In this paper, we
assume that the function g is known and given. We recall from [34] that,
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if the solution of SDE (2.4) is stationnary (and the stationnary distribution
has continuous density) and strongly mixing, the authors establish a non
parametric estimation using the N-W estimator. When the drift function
is linear, the estimation both for discrete and continuous observations was
studied in the above mentioned papers [17, 16, 31, 6, 56] including the stable
driven CIR and OU models type. The statistical properties such as the con-
sistency and rate of convergence of the N-W estimators under dependence
conditions such as mixing are developed in [34]. All this method developed
and applied within the framework of the stable driven CIR and OU models
are conditional dependent on the observation of the noise Z = (Zt)t∈[0,T ] pa-
rameter and their performance is strongly dependent on the time frequency
∆n and the time horizon T . Although the parameter estimation for Stable
driven SDE have been developed in recent years, few works (for instance
[6] in the CIR case) deal with the joint parameter estimation both for the
drift coefficient, scaling parameter for the diffusion coefficient and the jump
activity diffusion parameters such as the index of stability α, the sekewness
β of the Stable CIR and OU processes.

In this article, our aim is the joint parameter estimation problem of the
parameters appearing in the model equation (2.4) assuming that, only the
function g is known. We assume that the solution X is stationary and
strongly mixing but we highlight the link with some sets of ergodic con-
ditions. Our joint parameter estimation procedure is a new methodology
using the N-W estimator of the drift coefficient. Indeed, from a given sam-
ple characteristic function, we derive consistent estimators of the diffusion
part parameters (scaling parameter ρ and the stable noise parameters α and
β). In the case where the drift coefficient is linear (stable driven CIR and
OU processes) we establish the drift coefficient estimators using linear (or
weighted) regression. This paper is organized as follows. In Section 2, we
recall basic fact on stable processes as well relevant stochastic models for
the numerical application. We recall the connection between ergodicity and
mixing conditions for Markov processes and the classical N-W estimation
framework including relevant assumptions. In section 3, we state our main
theorems, which consists on the explicit estimators formulas. We also give
estimators of the drift coefficients when it is linear, namely for the Stable
driven CIR and OU processes. Section 4, investigate the numerical perfor-
mance of the estimators on synthetic data. We applied the result with real
financial data such as exchanges rates of the Canadian dollar against the US
dollar in a given fixed period. The last section is dedicated to the proofs of
our main results.

2. Preliminaries

Throughout this paper we assume that (Ω,F , (Ft)t∈R+ , P ) is a filtered prob-
ability space satisfying the usual conditions, i.e.,
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(1) (Ω,Ft, P ) is complete for all t ∈ R+, F0 contains all the P-null sets
in F for all t ∈ R+.

(2) Ft = Ft+ where Ft+ = ∩s>tFs, for all t ≥ 0, i.e. the filtration is
right-continuous.

In this section our objective is firstly to present the stable laws and pro-
cesses on the one hand as well as a method for estimating the stable alpha
laws that we will use later, in particular this one by the characteristic func-
tions. Secondly, we present some results concerning the links between the
ergodicity and mixing conditions of a Markov process.

2.1. Stable distributions and processes. We will start this section by a
quick reminder about the stable laws and processes. Stable laws were intro-
duced by Paul Lévy in 1925 and arise as the limit of normalized sums . The
definitions and properties given below are taken from [47] and [41]. Note
that there are multiple characterizations of stable distributions and each of
them have some advantages depending on the purposes.

Definition 2.1. A random variable X follows an α-stable distribution with
α ∈ (0, 2] and we write X ∼ Sα(σ, β, ω; 1) if it is uniquely determined by its
characteristic function :

Ψ(t) = E(exp(itX)) =

{
exp

(
−γα|t|α

[
1− iβ(tan(πα2 ))sign(t)

]
+ iωt

)
if α ̸= 1.

exp(−σ|t|[1 + iβ 2
πsign(t) log(|t|)] + iωt) if α = 1

where α ∈ (0, 2] is the index of stability, β ∈ [−1, 1] the skewness parameter;
σ > 0 the scale parameter and ω ∈ R the location or shift parameter and
sign(t) the sign function.

The above definition is the parametrization 1 in [41]. The following is the
parametrization 0 and is usefull for computer processing.

Definition 2.2. A random variable X ∼ Sα(σ, β, ω; 0) if,

Ψ(t) =

{
exp

(
−σα|t|α

[
1 + iβ(tan(πα2 ))sign(t)(|σt|1−α − 1)

]
+ iωt

)
if α ̸= 1.

exp(−σ|t|[1 + iβ 2
πsign(t) log(γ|t|)] + iωt) if α = 1.

For more detailed discussion on stable distributions, see [41]. When σ = 1
we say X is a standard α-stable random variable. For α ̸= 1 and ω = 0 we
say that X is a strictly α-stable random variable. Furthermore if β = 0 it is
said to be symmetric. Now let us introduce α-stable processes that can be
seen as a particular class of Lévy processes and we refer to the well-known
standard literature like [23].

Definition 2.3. An Ft-adapted stochastic process Z = {Zt}t≥0 is called an
α-stable process if

(1) Z0 = 0, a.s.;
(2) Z has α-stable stationary increments distributions Zt−Zs ∼ Zt−s ∼

Sα((t− s)1/ασ, β, ω), t > s ≥ 0;
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(3) For any time points 0 ≤ s0 < . . . < sm < ∞, the random variables
Zs0 , Zs1 − Zs0 , . . . , Zsm − Zsm−1 are independent.

We also refer to [34] for the case of standard α-stable process. Note that
strictly α-stable process has the following self-similarity (scaling) property

(Zkt)t∈[0,T ]
d
= (k1/α Zt)t∈[0,T ],

where k > 0 and the equality
d
= is understood in the sense of finite dimen-

sional distributions. Every α-stable process has a right continuous with left
limits modification and we will henceforth assume in the sequel that we are
using this modification. When 0 < α < 1, Zt is a pure jump process with
locally finite variation while for α ∈ (1, 2) a strictly α-stable process is a
purely discontinuous martingale. For more path properties of α-stable pro-
cess, we refer to Sato [23]. Note that in the case α ∈ (1, 2), the characteristic
function of a strictly α-stable process Zt is reduced into the form

φZt(u) = exp

(
t

∫ +∞

−∞
(eiuy − 1− iuy)ν(dy)

)
, t ∈ [0, T ], (1)

where ν stands for the Lévy measure defined on R \ {0} by

ν(dx) :=
dx

|x|α+1

(
c+ 1{x>0} + c− 1{x<0}

)
.

The parameters c+, c− above are non-negative with furthermore c++c− > 0.
There is a connection between the coefficients c+, c− and parameters α and
β; for instance β = c+−c+

c++c+
. Note that, due to the above self-similarity

property and the property of stationnary independent increments, random
walk approximation is usefful if one wants to simulate such process. The
following algorithm ([9],[19]) is useful for simulating α-stable processes. Of
course, others methods are also available like the series approximation of
Lévy processes [19].

Proposition 2.1 (Discretized trajectory for a strictly and standard α-stable
process). Let Z = (Zt)t∈[0,T ] be a strictly and standard-α stable process.

Step 1 Simulate n independent, uniformly distributed random variables Φ
on [−π/2, π/2] and n independent and identically distributed random
variable W as an exponentially with parameter 1.

Step 2 Compute ∆Zi for i = 1, ...n as follows.
(1) If α ̸= 1

∆Zi = σ

(
T

n

)1/α sin(α(Φ− ϕ0))

cos(Φ)1/α

(
cos(Φ− α(Φ− ϕ0))

W

) 1−α
α

.

(2) If α = 1

∆Zi = σ

(
T

n

)1/α 2

π

((π
2
+ βΦ

)
tan(Φ)− β log

(
1
2πW cos(Φ)

1
2π + βΦ

))
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where

ϕ0 = −βπ

2

(1− |1− α|
α

)
.

Step 3 The discretized trajectory of Z is given by

Z(ti) =
i∑

k=1

∆Zk.

To extend the algorithm to the non-standard case, we can choose between
the two previous parameterisations. Note that, the parametrization 0 is
important for numerical implementation because the characteristic function,
density and cumulative distribution function are continuous with respect to
the above four parameters α, β, γ and ω. There exists some package in R to
perform the simulation (for instance the package stabledist) in [55]. Figure
2 show typical sample paths for some strictly standard α-processes. When
α is closed to 2 and β to 0 the sample paths resemble to that of Brownian
motions. For α = 1 and β = 0, the sample paths corresponds to the that of
Cauchy process.

(a) (b)

(c) (d)

Figure 1. Paths of a standard strictly 1.7-stable process
with different skewness (a), 0.7-stable process with different
scale and skewness (b), the symmetric and standard α-stable
process with different index of stability (c) and the case of
standard 1-stable process (d).
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2.2. Stable driven Stochastic models. We now present some α-stable-
driven stochastic differential equations. We are particularly interested to
the Ornstein Uhlenbeck (OU) and Cox–Ingersoll–Ross (CIR) models driven
by an α-stable process. Such models are popular in stochastic modelling
for description of interest rates in finance and population dynamics. In the
remainder of this section we assume that Z is a standard strictly α-stable
process with α ∈ (1, 2).

Definition 2.4. (Stable driven OU process) A generalized Ornstein-Uhlenbeck
(OU) process driven by an α-stable process (Zt)t≥0 is defined to be the solu-
tion to the following linear stochastic differential equation

dXt = −θXtdt+ ρdZt, X0 = x ∈ R. (2)

and has the integral representation

Xt(ω) = e−θt
(
x+ ρ

∫ t

0
eθsdZs(ω)

)
, for t ∈ [0, T ].

An additional drift term is sometimes added:

dXt = θ(µ−Xt)dt+ ρdZt, X0 = x ∈ R. (3)

where µ is a constant. The classical Cox–Ingersoll–Ross process denoted by
(Yt, t ≥ 0) is given by the following SDE

dXt = θ(µ−Xt)dt+ ρ
√

|Xt|dWt, X0 ≥ 0,

where θ, µ and µ are positive constants andW = (Wt) is the one-dimensional
standard Brownian motion. It is natural to replace the driving Wiener
process W by an α-stable process Z; see [7, 20, 44]. Some extensions of the
classical CIR model to α-stable processes are given in the literature. We
have the following stable driven CIR model.

Definition 2.5. (Stable CIR process, [56]) An α-stable CIR process is de-
fined by:

dXt = θ(µ−Xt)dt+ ρ|Xt|1/qdZt, X0 ≥ 0, (4)

where q > 0 θ > 0, ρ > 0, and µ ∈ R are constants and Z is an α-stable
process.

For example, in [56], the authors consider the case of a pure-jump α-stable
Lévy process with positive jumps Z with index α ∈ (1, 2). It was proven
in [31] that, there is a pathwise unique positive strong solution whenever
q−1 + α−1 > 1. In particular for q = 2, this model is consider in [53] for
α ∈ (0, 2). Another extension is introduced in the literature and named
SCIR process (see [6]) given as follows for q = α when α ∈ (1, 2).

Definition 2.6. (SCIR process) A SCIR process is defined by:

dXt = θ(µ−Xt)dt+ ρ|Xt|1/αdZt, X0 ≥ 0,

where θ > 0, ρ > 0, and µ ∈ R are constants.
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Similarly, it is shown in [20] that for µ > 0, θ > 0, ρ > 0 and x0 > 0 that
the solution is positive that is

P
(
Xt > 0

)
= 1.

This stable driven CIR model is a particular form of the so-called continuous-
state branching processes with immigration (CBI-processes, [28], [30] and
[43]), which arise as scaling limits of Galton–Watson branching processes
with immigration (GWI-processes); see, e.g., [22]. A Markov process with
state space R+ is called a continuous-state branching process (CB-process)
with branching mechanism φ if it has transition semigroup (Qt)t≥0 given by∫ +∞

0
e−λyQt(x, dy) = e−xvt(λ),

where t → vt(λ) is the unique strictly positive solution to the differential
equation

∂

∂t
vt(λ) = −φ(vt(λ)), v0(λ) = λ,

and with the Lévy–Khintchine representation:

φ(z) = θz +
1

2
ρ2z2 +

∫ +∞

0

(
e−zu − 1 + zu

)
m(du)

with ρ ≥ 0; θ constant and m a finite measure on (0,∞). The CB-processes
involve rich mathematical structures and have been applied to the research
in several important areas. The CB-process is called critical, subcritical or
supercritical as θ = 0, θ > 0 or θ < 0 respectively. A Markov process with
state space R+ is called a CBI-process with branching mechanism φ and
immigration rate µ ≥ 0 if it has transition semigroup (Pt)t≥0 given by∫ +∞

0
e−λyPt(x, dy) = e−xvt(y)−µ

∫ t
0 vs(λ)ds.

By a Theorem of [29], for any α ∈ (1, 2], we can identify the SCIR-model
as a subcritical CBI-process with immigration rate µ ≥ 0 and branching
mechanism

φ(z) = θz +
ρα

α
zα, z ≥ 0.

2.3. The connection between ergodicity and mixing conditions. Let
(Xt, t ≥ 0) be a continuous time ergodic Markov process with unique invari-
ant measure π. Denote by Pt(x, dz) be the transition probability of the
process Xt starting from X0 = x. Consider the Markov semigroup (Pt)t≥0

associated to (Xt, t ≥ 0) and defined by Ptf(x) = E
(
f(Xt)/X0 = x

)
for all

measurable and positive functions or in Lp(π). Recall that P is a bounded
operator in all Lp(π), p ≥ 1 with operator norm equal to 1 (i.e. a contrac-
tion). Let us also recall the following adjoint operator P ∗, defined by∫

f Ptg dπ =

∫
g P ∗

t f dπ
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(a) (b)

Figure 2. Paths of a standard strictly 1.7-stable OU process
with β = 0.5, θ = 1.2, ρ = 1 and sample size n = 1000
(a), standard strictly 1.7-stable CIR process with β = 0.5,
θ = 1.2, ρ = 1, µ = 0, q = 1.7 and sample size n = 1000 (b).

for f and g square integrable w.r.t.π, which is again a contraction. The
following definition introduces some way to control the ergodic decay to
equilibrium.

Definition 2.7 (Ergodic rates of convergence [8]). For any r ≥ p ≥ 1 and
t ≥ 0 we define the following ergodic rates

ηp,r(t) = sup
|f ||Lr(π)

∫
fdπ=0

||Ptf ||Lp(π).

The process X is said to be uniformly ergodic if limt→+∞ η2,∞(t) = 0 and
the we call η2,∞ the uniform decay rate.

The following definitions can be found in [59].

Definition 2.8 (Exponentially or strongly ergodic process). Assume that
X = (Xt, t ≥ 0) is a continuous time ergodic Markov process with unique
invariant measure π and X0 = x.

1. The process X with is called exponentially ergodic if there exist a
constant k > 0 and a positive measurable function c(x) such that for
all t > 0 we have

||Pt(x, .)− π||var ≤ c(x)e−kt,

2. The process X with is called strongly ergodic if there exist two con-
stants k,C > 0 such that for all t > 0 we have

||Pt(x, .)− π||var ≤ Ce−kt.



PARAMETER ESTIMATION FOR STABLE DRIVEN STOCHASTIC DIFFERENTIAL EQUATION11

where ||.||var denotes the total variation norm on the space of signed proba-
bility measures defined by

||Pt(x, .)− π||V ar = sup
A∈F

|Pt(x,A)− µ(A)|

= sup
||f ||∞≤1 andLaw(Y )=π

|Ef(Xt)− Ef(Y )|.

From this definition, one say that the process X is said to be strongly
or exponentially ergodic if limt→+∞ η1,∞(t) = 0 and the we call η1,∞ the
strong or exponential ergodic decay rate. Now, let us define some usual
mixing coefficients in order to compare mixing properties and ergodic decay
properties.

Definition 2.9 (Mixing conditions, see [36]). . Let Fs (resp.Gs) be respec-
tively the backward (or the past) and the forward (or the future) σ-fields
generated by Xu for 0 ≤ u ≤ s (resp. u ≤ s).

1. The strong mixing coefficient αmix(t) is defined as :

αmix(t) = sup
s

sup
A∈A∈Fs, B∈Gs+t

|P(A ∪B)− P(A)P(B)|

=
1

4
sup
s

{
sup
F,G

Cov(F,G) , F Fs(resp.G Gt+s) measurable and bounded by 1.

}
If limt→∞ αmix(t) = 0, the process is strongly mixing.

2. The β-mixing coefficient φ(t) is defined as:

βmix(t) = sup
s

{
sup
A,B

(P(B|A)− P(B)) , A ∈ Fs , B ∈ Gs+t

}
.

If limt→∞ βmix(t) = 0, the process is β-mixing or uniformly mixing.

3. The ρ-mixing coefficient ρmix(t) is defined as the maximal correlation
coefficient, i.e.

ρmix(t) = sup
s

{
sup
F,G

Corr(F,G) , F ∈ L2(Fs) , G ∈ L2(Gt+s)

}
.

If limt→∞ ρmix(t) = 0 the process is ρ-mixing.

Note that if X is a stationary process (i.e. such that, for all n ≥ 0, the
law of Xt+s is the same as the one of Xs), the supremum on s is irrelevant.
The following Lemma is contained in our past paper [8] and allow to make
a connection between ergodicity and mixing conditions.

Lemma 2.1. For all t ≥ 0, we have

(1) η2∞,2(t) ∨ (η∗)2∞,2(t) ≤ αmix(t) ≤ η∞,2([t/2]) η
∗
∞,2(t/2).
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(2) Either η2,2(t) = 1 for all t or η2,2(t) ≤ c e−λ t for some λ > 0. In
the second case

η22,2(t) = (η∗)22,2(t) ≤ ρmix(t) ≤ c η2,2(t) .

(3) βmix(t) ≤ η21,∞(t/2) .

From the above Lemma one easily derive the following result.

Theorem 2.2. Assume that X = (Xt, t ≥ 0) is a continuous time ergodic
Markov process with unique invariant measure π.

a) If X is strongly or exponentially ergodic then it is β-mixing.
b) If X is uniformly ergodic, then it is strongly mixing.
c) Any kind of exponential ergodic decay rate in L2 imply the ρ-mixing.

Now let us discuss about the exponential ergodicity of the Stable OU and
SCIR-models. Based on the explicit coupling method, the exponential er-
godicity of a Lévy driven OU process is established in [51]. The result entails
that if θ > 0 then the α-Stable OU process (2) has a unique invariant mea-
sure π and it is strongly ergodic (mixing). More generally, let us consider the
case where the drift f and diffusion coefficient g are supposed to satisfy suf-
ficient conditions for the solution of (2.4) to exist and to be unique [5, 15].

According to [25], if f(.) is locally Lipschitz and lim sup|x|→+∞
f(x)
x < 0

then, for any α ∈ (1, 2), the solution of (2.4) is exponentially ergodic and its
invariant distribution exists and is unique. This therefore applies to the case
of the stable OU model (3) under the condition θ > 0. This result is also
generalized in [14] to the case when g = 1, ρ = 1 and f is regularly varying
at infinity with regularly varying coefficient greater than one. In the case of
the SCIR-model, some results exists in [30]. Note that for θ > 0 and µ ≥ 0
this model can be seen as a subcritical CBI process with immigration rate
µ. Thus, using the result of [30], we conclude that the SCIR-model is ex-
ponentially ergodic and hence strongly mixing that is, as t → +∞, αmix(t)
decays to zero exponentially. Moreover, the Laplace transform of the unique
stationary distribution π is given by

Lπ(λ) =

∫ +∞

0
e−λxπ(dx) = e

−
∫ λ
0

αµ

αθ+ραzα−1 dz, z ≥ 0.

For a more general SDE in the form (2.4), it was shown in [57], that the
exponential ergodicity holds under some dissipative and non-degenerate as-
sumptions on the drift f and diffusion function g. Their proofs are mainly
based on heat kernel estimates, the strong Feller property and the irre-
ducibility of the associated semi group.

2.4. Non parametric estimation of the drift function. In this section,
we recall the non-parametric estimation framework of the drift coefficient of
the following Stable driven SDE equation:
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{
dXt = f(Xt)dt+ ρg(Xt−)dZt, t ∈ [0, T ]
X(0) = x0

where f is an unknown function, ρ > 0 an unkown diffusion coefficient and
the driving standard strictly stable process Z is unknown too. We assume
in this paper that only the function g is known.
Let X be a solution of the above SDE. Note that Lipschitz and Hölder (or
bounded) conditions are typical conditions to show the existence of a solu-
tion. Let us recall some existence result. Here are just some few existence
results.

• If g is Hölder continuous with exponent 1
α and Z is a symmetric

stable process, it is proved in [5] that there exists a strong solution
whenever α ∈ (1, 2).

• If f and g have at most linear growth it is proved in [15] that there
exists a weak solution for α ∈ (1, 2) for which pathwise uniqueness
holds whenever the function g is particularly Hölder continuous with
exponent lying in [1− 1

α ,
1
α ].

For more recent existence conditions, we refer to [37] and references therein.
The Nadaraya-Watson (N-W) estimator is a classical method to estimate the
drift function f . It is in this way that, we make the following assumptions
following [34]. We consider kernel function K(·) which is a symmetric and
non negative probability density function satisfying sup(1∨|u|)K(u) < M0 <
+∞ and ∫ +∞

−∞
u2K(u)du < +∞,

∫ +∞

−∞
K2(u)du < +∞.

(A1). The solution Xt is stationary and admits a unique invariant distribu-
tion π which is geometrically strong mixing.
(A2). The density function f(x) of the stationary distribution π is continuous.
(A3). As n → ∞ : h → 0, ∆n → 0,

n∆n → ∞, and
n∆nh

(log(n∆n))2
→ +∞.

Assume that, the process X is observed at some discrete time points {tk =
k∆n, k = 0, 1, 2, ..., n − 1} with ∆n a time frequency of the observation
and n is the sample size. The Euler-Maruyuma scheme of the above SDE is
written as follows.

Xn
tk+1

= Xn
tk
+ f(Xtk)∆n + ρg(Xtk)∆Zk, Xn

0 = x ∈ R,

where ∆Zk = Zn
tk+1

− Zn
tk
. Set Yk = Xn

tk+1
− Xn

tk
. The main idea of N-W

estimator is to minimize the following object function:

n−1∑
k=0

Wn,k(x)(Yk − b∆n)
2
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over the set of parameters b with certain weights functions Wn,k(x) given
by:

Wn,k(x) =
Kh(

Xtk
−x

h )
n−1∑
k=0

Kh(
Xtk − x

h
)

for all x ∈ R, where Kh(x) = (K(x/h))/h with K the Kernel and h the
bandwidth parameter. Thus the N-W estimator of the drift function f is
given by the following expression :

f̂n(x) =
n−1∑
k=0

Wn,k(x)Yk, ∀x ∈ R

so that

f̂n(x) =

n∑
i=1

Kh(
Xti−x

h )(Xti −Xti−1)

n−1

n∑
i=1

Kh(
Xti − x

h
)

for all x ∈ R. (5)

We explore various Kernel functions in this paper but we choose only the
one which perform the simulation. For instance we’ll consider the Gaussian
kernel function:

K(u) =
1√
2π

e−u2/2.

For pratical setting, we choose the optimal bandwidth h by considering the
method proposed by [48]. The R function h.amize allow to do it. Note also

that, in many cases people usually choose h = hn = n−1/5.

3. Main results

Based on the N-W estimator, the main objective in this section is firstly the
joint estimation of the scaling parameter ρ and the standard strictly stable
process parameters α and β of the diffusion component in the SDE in (2.4).
Secondly, we particularly consider the drift common coefficients estimation
θ and µ of the Stable driven CIR and OU processes in (3) or (4).

Theorem 3.1. Let X = (Xt)t∈[0,1] be a real valued stationnary and strongly
mixing process with unique invariant distribution which is solution of the
SDE (2.4). We assume that X is observed on a sample of discrete time
points ti with step ∆n of size n such g(Xti) ̸= 0. Assume that assumptions

(A1), (A2) and (A3) holds. Let (f̂n(Xti))
n
i=1 be the sequence of the N-W

estimate of the drift coefficient of the SDE (2.4).
We define the following sample characteristic function

ϕ̂n(uk) =
1

n

n−1∑
i=0

exp

(
juk

(∆Xti − f̂n(Xti)∆n

g(Xti)

))
(6)
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for all k ∈ [[1,m]], m > 0, and j2 = −1. Set

α̂m =

m∑
k=1

WkVk −
1

m

m∑
k=1

Vk

m∑
k=1

Wk

∑m
k=1 W

2
k−

1
m

( m∑
k=1

Wk

)2 ,

λ̂m = 1
m

m∑
k=1

Vk −
α̂m

m

m∑
k=1

Uk

ρ̂m = ∆
− 1

α̂m
n exp λ̂m

α̂m

β̂m =

m∑
k=1

ukSk

m∑
k=1

ukBk

,

(7)

where

Sk = arg(φ̂n(uk)), Bk = tan(
πα̂

2
)sign(ui)

(
uk − uα̂k

)
∆1/α̂m

n ,

Vk = log(− log|φ̂n(uk)|) and Wk = log(|uk|).
Then α̂m, ρ̂m and β̂m are consistent estimators of α, ρ and β.

A simulation study is conducted to evaluate the performance of the proposed
estimation. The choice of optimal value of m was proposed in [24], which
suggest selecting points ui in the interval [0.1, 1]. We give the proof of
Theorem 3.1 in section 5. Theorem 3.1 contains the case of the Stable driven
CIR and OU processes mentioned in the preceding section. Concerning the
latter, the following result discusses the estimation of the drift coefficient
parameters θ and µ with T = 1.

Theorem 3.2. Let X = (Xt)t∈[0,1] be a real valued stationnary and strongly
mixing process satisfying (3) or (4). We assume that X is observed on a
sample of discrete time points ti with time frequency ∆n of size n. Let
(f̂n(Xti))

n
i=1 be the sequence of the N-W estimate of the linear drift function

in (3) or (4). set

θ̂n =

∑n
i=1Xti f̂n(Xti)− 1

n

n∑
i=1

Xti

n∑
i=1

f̂n(Xti)

1
n

( n∑
i=1

Xti

)2 − n∑
i=1

X2
ti

µ̂n = θ̂−1
n

1
n

n∑
i=1

f̂n(Xti) +
1

n

n∑
i=1

Xti .

(8)

Then θ̂n and µ̂n are consistent estimators of θ and µ as n → +∞.
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Similarly, the above consistency result is is again applicable using the weighted
least squares method with given weight K(i). For instance, one can consider
the following estimator:

θ̃n =

∑n
i=1K(i)Xti f̂n(Xti)−

∑n
i=1K(i)f̂n(Xti)

∑n
i=1K(i)Xti

(
∑n

i=1K(i)Xti)
2 −

n∑
i=1

K(i)X2
ti

.

4. Numerical Application

We now investigate the numerical performance of our estimation procedure
on synthetic. After that, we apply them to real data. All codes were devel-
oped in R software.

4.1. Simulated data. We simulate and approximate X by using the Euler
scheme on the interval [0, T ] with sample size n = 500, 1000, 2000 and
within a period T = 1. In order to ensure that the Stable driven OU and
CIR processes satisfies Assumption (A1), we shall employ the exponential
ergodicity results we discuss in subsection 2.3 when choosing the model
parameters. In the sequel, we consider the following common parameters:

x0 = 1, θ = 0.3, µ = 1.2 α = 1.6 β = 0 and ρ = 1.

We proceed by generating data from models 3 and 4 according to the previ-
ous setting. We plot the kernel density estimate of a realization of X with
the histogram in order to check numerically the regularity condition on the
density function of the stationary distribution π, assumed to be continu-
ous in Assumption (A2). Therefore choosing a suitable time frequency ∆n

(for instance ∆n = 1√
n
), the models satisfies all the required conditions.

We explore the performance of the Nadayaro Watson estimator of the drift
function and the estimate parameters of the diffusion part, namely α, β and
ρ in the context of the stable driven CIR and OU models on simulated data.
Figures 3 and 4 display the graphical performance of the N-W estimator
with respect to the true drift function considered (θ = 0.3, µ = 1.2). The
pictures show the comparison according to three sample sizes n = 500, n =
1000 and n = 2000 with time interval T = 1 or T = 10. We can see that
varying T for a fixed n slightly seems not improve the estimates of the drift
function in the SCIR model. This confirms that the drift function can not
be identified in a fixed time interval in the framework of N-W estimator, no
matter how frequently the observations are sampled. One notices that for
a fixed length of observation interval T , as the sample size gets larger, the
N-W estimator does not behave better, which is consistent with the asymp-
totic theory of the N-W estimator for stochastic processes driven by Lévy
motions. The regularity condition on the density function of the stationary
distribution is graphically checked throughout Figures 5 and 6.
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To evaluate the performance, we make not only illustration by picture but
also, via the square-Root of Average Square Errors defined by

RMSE =
1

n

n∑
i=1

(
f̂n(xi)− f(xi)

)2
where x = (xi) are chosen uniformly to cover the range of sample path of
X. We summarized the performance in Tables 1 and 5, which reports the
results on the diffusion parameters (the standard and strictly stable process
parameters α and β) and the scaling parameter ρ as well as the RMSE on
n replicates with three sample sizes n = 500, n = 1000 and n = 2000,
respectively for time interval T = 1 and T = 10. We can see that varying T
for a fixed n slightly improves the estimates of the stable process parameters
α, β, except for the scaling parameter ρ. But for T fixed to be for instance
one, varying n preserves the consistency of the scaling parameter ρ.

4.2. Financial exchanges rates data. We now turn to the estimation
using real data. We analyse real financial data such as indexes or exchanges
of the Canadian dollar against the US dollar in a given fixed period varying
from May 2018 to June 2022 are analysed with a sample size n = 1000.

Figures 7 (a), (b) and (c), show the time series variation of the exchanges
rates. We also look at the speed of decreasing of the Covariance using the
autocorrelation function (ACF) diagram [3]. Indeed for a stationary time
series, the ACF will fall to zero quickly whereas the ACF of non-stationary
time series decreases slowly. The Dickey Fuller test returns a p-criticism of
0.01, which confirms the stationarity of the times series. The decreasing of
the covariance using the ACF diagram test shows that the data sequence
is weakly dependent. The data can be considered as mixing in the sense of
the ρ-mixing (which implies strong mixing). The density estimation of the
stationnary distribution is given also in Figures 7 (a’), (b’) and (c’) so that
the regularity condition is satisfied.

Figures in 8 display the graphical NW estimation of the observed drift func-
tion. Tables 3 and 4 summarise the parameter estimation of the diffusion
part. As concerned the drift part, Tables 2 summarise the estimated drift
coefficients with the real data. We compare the prediction result with the
stable OU model in Figure 9 since it seems to match better than the Stable
CIR process.

5. Proofs of the main Theorems

In this section, we derive the proofs of our main results.

5.1. Proof of Theorem 3.1.
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Proof. We recall first the Euler approximation of SDE (2.4):

Xn
ti = Xn

ti−1
+ f(Xn

ti)∆n + g(Xn
ti)Y

n
i

where Y n
i = ρ∆Zn

i = (Zn
i+1−Zn

i ), i = 0, . . . , n−1, are identically distributed

sequence with the same law as Z∆n ∼ Sα

(
∆

1/α
n ρ, β, 0

)
. We can regard

∆Xti − f̂n(Xti)∆n

g(Xti)
, ∀i = 0, . . . , n− 1

as an estimate value of Y n
i for all i = 0, . . . , n− 1; so that

Y n
i

d
=

∆Xti − f̂n(Xti)∆n

g(Xti)
,

where the equality
d
= is understood in the sense of law. We can define an

approximate sample characteristic function by

φ̂n(u) =
1

n

n−1∑
i=0

exp{ju
(∆Xti − f̂n(Xti)∆n

g(Xti)

)
}, ∀u ∈ R, (9)

which is asymptotically equal to the characteristic function φZ∆n
(u) of Z∆n

when n is large enough. Now, from the following formula:

log(− log|φZ∆n
(u)|) = log(ρα∆n) + α log(|u|),

we can set up a regression model in order to estimate α and ρ. To this end,
we make use of the least squares method to minimize

G(λ, α) =

m∑
k=1

(Vk − λ− αWk)
2

(λ̂, α̂) = arg min
(λ,α)

G(λ, α)

where

Vk = log(− log|φ̂n(uk)|) Wk = log(|uk|) λ = log(ρα∆n).

To estimate β, we start from the following formula:

Sk = βBk + ωuk,

and we use again the above least squares method to obtain the desired esti-
mators and deduce their consistency in the classical framework of regression
estimation method. □
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5.2. Proof of Theorem 3.4.

Proof. Since the drift term in (4) or (3) is linear, we can set up the following
linear regression model :

Ui = µθ − θXti + εi, i ≥ 1

where εi is a zero mean IID sequence of given Gaussian random variable
with variance say δ2. We consider the Least Square Estimation (LSE) which
consists in minimizing the following objective function:

G =
n∑

i=1

(
Ui − θµ+ θXi

)2
.

Thus it is straightforward to obtain the desired estimators. Now, let us
prove the consistency of these estimators. Firstly, remark that

n∑
i=1

(
Xti − 1

n

∑n
i=1Xti

1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

)
µθ =

∑n
i=1

(
Xti − 1

n

∑n
i=1Xti

)
1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

µθ

=

∑n
i=1Xti − n× 1

n

∑n
i=1Xti

1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

µθ = 0

and

−
n∑

i=1

(
Xti − 1

n

∑n
i=1Xti

1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

)
θXti = −θ

n∑
i=1

(
Xti − 1

n

∑n
i=1Xti

1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

)
Xti

= −θ
n∑

i=1

(
X2

ti −
1
n (
∑n

i=1Xti)Xti

1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

)

= −θ

∑n
i=1

(
X2

ti −
1
n (
∑n

i=1Xti)
)
Xti

1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

= −θ

∑n
i=1X

2
ti −

1
n (
∑n

1 Xti)
∑n

i=1Xti

1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

= −θ

∑n
i=1X

2
ti −

1
n (
∑n

i=1Xti)
2

1
n (
∑n

i=1Xti)
2 −

∑n
i=1X

2
ti

= θ.

Consequently, θ̂n is rewritten as follows

θ̂n = θ +
n∑

i=1


Xti − 1

n

n∑
i=1

Xti

1
n

(
n∑

i=1

Xti

)2

−
n∑

i=1

X2
ti

 εi.
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This show that θ̂n is an unbiased estimator of θ. Now, from the following
relation,

µ̂n = θ̂−1
n

1

n

n∑
i=1

Ui +
1

n
θ̂−1
n θ

n∑
i=1

Xti ,

we deduce that µ̂n is also an unbiased estimator of µ. To check the consis-
tency, note that,

θ̂n =

n∑
i=1

XtiUi −
1

n

n∑
i=1

Ui

n∑
i=1

Xti

1
n

n∑
i=1

Xti

n∑
i=1

Xti −
n∑

i=1

X2
ti

=

n∑
i=1

Xti

(
Ui − Ū

)
n∑

i=1

Xti

(
X̄ −Xti

) (10)

where Ū =
1

n

n∑
i=1

Ui and X̄ =
1

n

n∑
i=1

Xti

=

n∑
i=1

(
Xti − X̄

)(
Ū − Ui

)
n∑

i=1

(
Xti − X̄

)2 since
n∑

i=1

X̄(Ui − Ū) = 0 and
n∑

i=1

X̄(Xti − X̄) = 0.

(11)

Now, from the fact that Ui − U = θ(X̄ −Xti) + ϵi, we have

θ̂n =

n∑
i=1

(
Xti − X̄

)(
θ(Xti − X̄)− εi

)
n∑

i=1

(
X̄ −Xti

)2 = θ +

n∑
i=1

(
Xti − X̄

)
εi

n∑
i=1

(
X̄t −Xti

)2 . (12)

Recall that, the errors εi are uncorrelated and have the same variance δ2.
As a result, the variance of the sum is the sum of the variance. Hence we
have:

Var[θ̂n] = E(θ̂n − θ)2 = δ2

n∑
i=1

(
Xti − X̄

)2
(∑n

i=1(Xti − X̄)2
)2 =

δ2∑n
i=1(Xti − X̄)2

−→
n→+∞

0,

(13)

since the process X = {Xt, t ≥ 0} is ergodic and by have infinite square

variation. This show the consistency of θ̂n. We also deduce the consistency
of µ̂n by the use of continuous mapping theorem. □
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146(4):23–54, 2005.
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cesses driven by stable lévy motions. Communications on Stochastic Analysis, 1(2):1,
2007.

[17] Yaozhong Hu and Hongwei Long. Least squares estimator for ornstein–uhlenbeck
processes driven by α-stable motions. Stochastic Processes and their applications,
119(8):2465–2480, 2009.

[18] Stefano M Iacus et al. Simulation and inference for stochastic differential equations:
with R examples, volume 486. Springer, 2008.

[19] Aleksander Janicki, Zbigniew Michna, and Aleksander Weron. Approximation of sto-
chastic differential equations driven by stable lévy motion. Applicationes Mathemat-
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[23] Sato Ken-Iti. Lévy processes and infinitely divisible distributions, volume 68. Cam-
bridge university press, 1999.

[24] Stephen M Kogon and Douglas B Williams. Characteristic function based estima-
tion of stable distribution parameters. A practical guide to heavy tails: statistical
techniques and applications, pages 311–338, 1998.

[25] Alexey M Kulik. Exponential ergodicity of the solutions to sde’s with a jump noise.
Stochastic Processes and their Applications, 119(2):602–632, 2009.

[26] Yu A Kutoyants. Statistical inference for ergodic diffusion processes. Springer Science
& Business Media, 2004.

[27] A Le Breton. On continuous and discrete sampling for parameter estimation in diffu-
sion type processes. In Stochastic Systems: Modeling, Identification and Optimization,
I, pages 124–144. Springer, 2009.

[28] Pei-Sen Li, Zenghu Li, Jian Wang, and Xiaowen Zhou. Exponential ergodic-
ity of branching processes with immigration and competition. arXiv preprint
arXiv:2205.15499, 2022.

[29] Zenghu Li and Zenghu Li. Entrance laws and excursion laws. Measure-Valued Branch-
ing Markov Processes, pages 179–206, 2011.

[30] Zenghu Li and Chunhua Ma. Asymptotic properties of estimators in a stable cox–
ingersoll–ross model. Stochastic Processes and their Applications, 125(8):3196–3233,
2015.

[31] Zenghu Li and Leonid Mytnik. Strong solutions for stochastic differential equations
with jumps. In Annales de l’IHP Probabilités et statistiques, volume 47, pages 1055–
1067, 2011.

[32] ZhengYan Lin, YuPing Song, and JiangSheng Yi. Local linear estimator for stochas-
tic differential equations driven by stable lévy motions. Science China Mathematics,
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6. Appendix: Figures and Tables

Table 1. Performance of the estimated diffusion and scal-
ing parameters (α̂, β̂, ρ̂) with a standard symmetric 1.6-stable
driven OU process

n and T True parameters Estimate Parameters RMSE

500 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.70, β̂n = 0.08, ρ̂n = 0.80 1.55

500 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.69, β̂n = 0.015, ρ̂n = 3.38 8.34

1000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.55, β̂n = 0.11, ρ̂n = 1.2 1.10

1000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.56, β̂n = 0.13, ρ̂n = 4.87 8.43

2000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.6346, β̂n = 0.1146, ρ̂n = 0.9335 0.77

2000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.6029, β̂n = 0.064, ρ̂n = 4.33 6.91

Table 2. Estimated drift coefficients with the exchange rates

n Estimate Parameters

1000 θ̂n = 1.08, µ̂n = 0.93

500 θ̂n = 1.06, µ̂n = 0.95

200 θ̂n = 1.028493, µ̂n = 0.9674548

Table 3. Estimated diffusion parameters with the exchange
rates using an unknown strictly standard stable driven OU
process

n Estimated drift coefficients

1000 α̂n = 1.98, β̂n = 1, ρ̂n = 13.21

500 α̂n = 1.99, β̂n = 1, ρ̂n = 10.11

200 α̂n = 1.99, β̂n = 1, ρ̂n = 6.17
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Table 4. Estimated diffusion parameters with the exchange
rates using an unknown strictly standard stable driven CIR
process with given parameter q.

n q Estimate Parameters

1000 q=2 α̂n = 1.80, β̂n = −0.33, ρ̂n = 67.89

1000 q=1.99 α̂n = 1.78, β̂n = −0.31, ρ̂n = 70.57

1000 q=1.95 α̂n = 1.78, β̂n = −0.33, ρ̂n = 71.59

1000 q=1.9 α̂n = 1.77, β̂n = −0.35, ρ̂n = 75.83

1000 q=1.8 α̂n = 1.72, β̂n = −0.37, ρ̂n = 8736

1000 q=1.6 α̂n = 1.59, β̂n = −0.28, ρ̂n = 130.70

1000 q=1.5 α̂n = 1.53, β̂n = −0.20, ρ̂n = 163.02

500 q=2 α̂n = 1.79, β̂n = −0.12, ρ̂n = 39.61

500 q=1.99 α̂n = 1.78, β̂n = −0.12, ρ̂n = 39.99

500 q=1.95 α̂n = 1.77, β̂n = −0.093, ρ̂n = 41.56

500 q=1.9 α̂n = 1.75, β̂n = −0.06, ρ̂n = 43.74

500 q=1.8 α̂n = 1.72, β̂n = −0.009, ρ̂n = 48.98

500 q=1.6 α̂n = 1.59, β̂n = 0.08, ρ̂n = 70.13

500 q=1.5 α̂n = 1.53, β̂n = 0.073, ρ̂n = 86.03

200 q=2 α̂n = 1.69, β̂n = −0.31, ρ̂n = 25.56

200 q=1.99 α̂n = 1.69, β̂n = −0.30, ρ̂n = 25.83

200 q=1.95 α̂n = 1.67, β̂n = −0.25, ρ̂n = 26.98

200 q=1.9 α̂n = 1.65, β̂n = −0.19, ρ̂n = 28.59

200 q=1.8 α̂n = 1.60, β̂n = −0.008, ρ̂n = 32.42

200 q=1.6 α̂n = 1.51, β̂n = 0.04, ρ̂n = 43.64

200 q=1.5 α̂n = 1.44, β̂n = 0.08, ρ̂n = 5386

Table 5. Performance of the estimated diffusion and scal-
ing parameters (α̂, β̂, ρ̂) with a standard symmetric 1.6-stable
driven CIR process

n and T True parameters Estimate Parameters RMSE

500 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.66, β̂n = 0.13, ρ̂n = 0.88 1.17

500 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.51, β̂n = 0.08, ρ̂n = 5.95 8.24

1000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.63, β̂n = 0.217, ρ̂n = 0.98 3.72

1000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.53, β̂n = 0.35, ρ̂n = 6.32 15.36

2000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.61, β̂n = 0.07, ρ̂n = 1.03 2.07

2000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.64, β̂n = 0.04, ρ̂n = 4 11.13
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 3. Performance of the Nadayaro Watson estimator
with respect to the true drift in the case of a standard sym-
metric 1.6-stable driven OU process with sample size n = 500
and t = 1 in (a), sample size n = 500 and t = 10 in (a’), sam-
ple size n = 1000 and t = 1 in (b), sample size n = 1000 and
t = 10 in (b’), sample size n = 2000 and t = 1 in (c) and
sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 4. Performance of the Nadayaro Watson estima-
tor with respect to the true drift in the case of a standard
symmetric 1.6-stable driven CIR process with sample size
n = 500 and t = 1 in (a), sample size n = 500 and t = 10
in (a’), sample size n = 1000 and t = 1 in (b), sample size
n = 1000 and t = 10 in (b’), sample size n = 2000 and t = 1
in (c) and sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 5. Kernel density estimate of a standard symmetric
1.6-stable driven OU process with sample size n = 500 and
t = 1 in (a), sample size n = 500 and t = 10 in (a’), sample
size n = 1000 and t = 1 in (b), sample size n = 1000 and
t = 10 in (b’), sample size n = 2000 and t = 1 in (c) and
sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 6. Kernel density estimate of a standard symmetric
1.6-stable driven CIR process with sample size n = 500 and
t = 1 in (a), sample size n = 500 and t = 10 in (a’), sample
size n = 1000 and t = 1 in (b), sample size n = 1000 and
t = 10 in (b’), sample size n = 2000 and t = 1 in (c) and
sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 7. The exchange rates of the Canadian dollar
against the US dollar global variation and density estimation
with t sample size n = 1000 (a); local sample size n = 500
(b) and sample size n = 200 (c).
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(a) (b)

(c)

Figure 8. NW drift estimated function with the exchange
rates of the Canadian dollar against the US dollar variation
with the global sample size n = 1000 (a); local sample size
n = 500 (b) and sample size n = 200 (c).
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(a) (b)

(c)

Figure 9. Comparison between exchange rates prediction
with Stable driven OUP with sample size n = 200 (a); sample
size n = 500 (b) and sample size n = 1000 (c).


