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Abstract. In this paper, we first study the estimation of diffusion pa-
rameters for one-dimensional, ergodic stochastic processes observed at
some discrete times, that is a solution of a given class of stochastic differ-
ential equations driven by α-stable processes, α ∈ (1, 2). After recalling
the non-parametric estimation framework of the drift functionn namely
the Nadaraya-Watson estimation, we discuss an estimation method of
the diffusion parameters (the scaling and the driving stable process pa-
rameters) based on the Euler–Maruyama scheme. The novelty of this
paper which is our baseline is the combination of a characteristic sample
function and the Least Squares Estimation (LSE) method. Secondly,
we apply the diffusion parameters results for stable driven Ornstein-
Uhlenbeck (OU), Cox–Ingersoll–Ross (CIR) and Lotka–Volterra (LV)
processes. We also consider the estimation of the drift coefficients in the
linear case namely, the stable driven OU and CIR processes. Using the
Itô formula and the linear statistical regression derived from the LSE
method, we establish under certain conditions, the consistency of their
drift coefficients estimators. We efficiently discuss our result with nu-
merical simulations using synthetic data. A real data in finance, such as
exchange rates is used to fit the parameters of a justified model amoung
the stable driven OU and CIR processes. As a forthcoming work, we
intend to study the rate of convergence of the estimators and to create
a package on R software to handle this kind of estimation problem.

Key words and phrases: parameter estimation, Nadaraya-Watson esti-
mation, stable process, characteristic function, regression method, CIR, OU
and Lotka–Volterra processes.

1. Introduction

Due to an increase of powerful computation of statistical methods, there
has been a great interest in parameter estimation for Stochastic Differential
Equation (SDE). Such models which are mathematical tools for modelling
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2 PARAMETER ESTIMATION FOR STABLE DRIVEN SDE

the time evolution of several natural phenomena in many fields like epidemi-
ology, biology and finance. For instance, the Cox–Ingersoll–Ross (CIR) and
the Ornstein-Uhlenbeck (OU) stochastic models [31, 10], have been broadly
used in finance. Furthermore, it is worth noting that select stochastic dif-
ferential equation (SDE) models derived from continuous-time branching
processes have been demonstrated to serve as valuable tools for the analysis
of population dynamics [2, 39]. Specifically, in the context of epidemic dy-
namics, when the infectious population is of small magnitude relative to the
overall population size, it becomes feasible to approximate the continuous-
time dynamics using a nonlinear Stochastic Differential Equation (SDE)
model, such as a stochastic logistic model that incorporates variations aris-
ing from birth and death processes [2]. In the realm of classical estimation
methods, the challenges of devising procedures that strike a balance between
computational efficiency and achieving optimal statistical performance have
reached a well-established level of understanding.

Let us consider the parameter estimation problem of the following SDE
driven by a standard strictly stable process (Zt)t≥0 defined in a given filtered
probability space (Ω,F ,Ft,P) :{

dXt = f(Xt)dt+ ρ g(Xt−)dZt, t ∈ [0, T ]
X0 = x0,

(1)

where x0 is a starting point, T > 0 stands for time horizon. Notably, in
our investigation, we assume the knowledge of the function g : R → R.
The function f : R → R, constant ρ > 0 and the stable process (Zt)t∈[0,T ]

(which is considered as a nuisance parameter) are unknown. The random
variable Z1 which is a standard strictly stable distribution with parameters
α ∈ (1, 2) (the index of stability) and β ∈ [−1, 1] (the skewness parameter)
will be defined in the sequel. The existence and uniqueness of solutions to
the SDE (1) under Lipschitz conditions are standard results in stochastic
calculus [4]. Nevertheless, we recall some findings:

• For f = 0 and g is Hölder continuous with exponent 1
α ; if Z is a

symmetric stable process then it is proved in [5] that there exists a
strong solution for α ∈ (1, 2).

• If f and g have at most linear growth it is proved in [14] that there
exists a weak solution for α ∈ (1, 2) for which pathwise uniqueness
holds whenever the function g is Hölder continuous with exponent
lying in [1− 1

α ,
1
α ].

• When the drift term f is Hölder continuous of order lying in (2 −
α, 1) and g is Lipshitz continuous and bounded, then existence and
uniqueness of a strong solution is derived in [35], [38].

For further recent studies of existence and uniqueness, we refer to [32] and
the references therein.
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The main focus of this paper is the estimation of diffusion parameters
for one-dimensional ergodic stochastic processes X observed at some dis-
crete times, that is a solution of the SDE (1) driven by α-stable processes,
α ∈ (1, 2). We assume that, the processX is observed at discrete time points
{ti = i∆n, i = 0, 1, 2, ..., n} with ∆n a time frequency of the observation and
n is the sample size. Firstly, we recall not only the non-parametric estima-
tion framework of the drift coefficient but also the link between ergodicity
and mixing conditions.

The case study of the parameter estimation theory for SDE by Brownian mo-
tions are well known in the literature. Nevertheless, one can mention some
traditional methods such as the maximum likelihood estimator (MLE), the
least squares estimator (LSE) techniques [29, 13, 24, 11]; the consistency and
the asymptotic distribution [13, 24], [19], [40], [1]. For further recent investi-
gation, we refer to [23] and the references therein. Significant advancements
have been achieved in the realm of parameter estimation for Stochastic Dif-
ferential Equations (SDEs) driven by Lévy processes with finite moments.
The investigation conducted in [34] centered on the consistency and asymp-
totic normality when the driving process manifests as a zero-mean adapted
Lévy process with finite moments. The study of the asymptotic normality
of the Least Squares Estimator (LSE) and Maximum Likelihood Estima-
tor (MLE) for the pure jump case is extensively explored in [46, 47]. It is
noteworthy that research has been undertaken in instances where the driv-
ing process Z takes the form of a stable Lévy process, characterized by its
distinctive infinite variance property. However, in this scenario, the MLE
loses its validity as the explicit density function is not universally available,
and the Girsanov measure transformation encounters challenges for α-stable
processes with α ∈ (1, 2). Key contributions in this domain are highlighted
in the following well-established results:

a) In [15, 16], authors use the trajectory fitting method in conjunc-
tion with the weighted least squares technique for the drift coeffi-
cient of an α-stable driven Ornstein–Uhlenbeck (OU) process, where
α ∈ (1, 2). This approach is applicable when the process is observed
at discrete time instants, encompassing both ergodic and non-ergodic
cases. The work also delves into the consistency and asymptotic dis-
tribution of the estimator, showcasing a higher order of convergence
compared to the classical Gaussian case.

b) The investigation conducted in [26, 51] revolves around the drift
parameter estimation of a stable driven Cox–Ingersoll–Ross (CIR)
model, a special subcritical continuous-state branching process with
immigration. The authors derive the consistency and central limit
theorems of the conditional least squares estimators and the weighted
conditional least squares estimators of the drift parameters based on
low-frequency observations.
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c) [12] explores Lasso and Slope drift estimators for Lévy-driven Orn-
stein–Uhlenbeck processes.

d) Furthermore, [53] focuses on a maximum likelihood-type estimation
of the drift and volatility constant coefficient parameters in a stable-
driven CIR model.

e) In a recent contribution [6], the author addresses the joint param-
eter estimation of the drift parameters, scaling parameter for the
diffusion coefficient, and the stability index α for the jump activity
parameter. This estimation is conducted from high-frequency ob-
servations of the stable CIR process over a fixed time period. The
methodology employed is grounded in the approximation of the con-
ditional distribution.

Now, we shift our focus to non-parametric estimation, a pivotal domain in
statistics that involves the estimation of an unknown function from a data
sample without predefining a formula. Numerous authors have delved into
the non-parametric estimation of the drift function, denoted as f , within
the framework of diffusions driven by Brownian motions, considering vari-
ous conditions. The fundamental statistical properties, including the consis-
tency and rate of convergence, have been extensively investigated for non-
parametric methods, particularly the Nadaraya-Watson (N-W) estimators
[36, 50]. These investigations span scenarios under both independence with
identically distributed data and weak dependence conditions, such as mix-
ing conditions. A comprehensive overview of non-parametric methods for
diffusion processes can be found in the survey paper authored by [17]. In
the stable and non-parametric context, additional insights are explored in
[52, 30], as well as [41, 55, 28]. However, tackling the non-parametric es-
timation of the diffusion part (ρ, g and Z) proves to be considerably more
challenging [30].
In this paper, we operate under the assumption that the function g is known
and provided. If the solution of the Stochastic Differential Equation (SDE)
represented by (1) is stationary, and the stationary distribution possesses
a continuous density and is strongly mixing, the authors in [30] establish
a non-parametric estimation of the drift function utilizing the Nadaraya-
Watson (N-W) estimator. The statistical properties, such as consistency
and the rate of convergence of the N-W estimators, under dependence con-
ditions like mixing, are systematically developed in [30]. In instances where
the drift function is linear, the estimation for both discrete and continuous
observations has been extensively investigated in previous works, including
[16, 15, 27, 6, 53], encompassing stable-driven Cox–Ingersoll–Ross (CIR) and
Ornstein–Uhlenbeck (OU) model types. All methods developed and applied
within the framework of stable-driven CIR and OU models are conditionally
dependent on the observation of the noise Z = (Zt)t∈[0,T ] parameter. Their
performance is strongly influenced by the time frequency ∆n and the time
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horizon T . While parameter estimation for stable-driven Stochastic Differ-
ential Equations (SDE’s) has seen significant development in recent years,
few works, such as [6] in the CIR case, delve into joint parameter estima-
tion for the drift coefficient, scaling parameter for the diffusion coefficient
and, the jump activity diffusion parameters. These parameters include the
stability index α and the scaling diffusion parameter ρ.

In this article, our primary objective is to address the estimation of diffu-
sion parameters for discretely observed stable driven stochastic differential
equations (1), assuming that only the function g is known. Our framework
presupposes that the solution X is stationary and strongly mixing, with a
connection emphasized with ergodic conditions. The proposed estimation
procedure introduces a novel methodology that utilizes the N-W estima-
tor for the drift function. Specifically, using the Euler–Maruyama scheme,
we derive estimators for the parameters associated with the diffusion part
(scaling parameter ρ and the stable noise parameters α and β) from a given
sample characteristic function and employing linear (or weighted) regression
techniques. Secondly, in cases where the drift function is linear, such as in
stable-driven Cox–Ingersoll–Ross (CIR) and Ornstein–Uhlenbeck (OU) pro-
cesses, we establish estimators for the drift coefficients using Itô formula
and employing again linear regression techniques, we derived unbiased and
consistent estimators of their drift coefficients.

The organizational structure of this paper is delineated as follows. In Section
2, we revisit fundamental facts about stable processes and introduce rele-
vant assumptions for the classical N-W estimation framework. We present
our main theorems in Section 3, which articulate explicit formulas for the
estimators of the diffusion parameters (scaling parameter ρ and the stable
noise parameters α and β). Additionally, we provide estimators for the drift
coefficients in cases where the drift is linear, specifically for stable-driven
CIR and OU processes. Section 4 is dedicated to presenting the proofs of
our main results and Section 5 delves into the numerical performance evalu-
ation of the estimators using synthetic data. We apply the best performance
results to real financial data, such as exchange rates of the Canadian dollar
against the US dollar over a fixed period. Finally, we outline all material
such that tables and figures in the last section as well as the connection
between ergodicity and mixing conditions for Markov processes for a better
comprehension of this paper.

2. Preliminaries: Stable processes and non-parametric
estimation of the drift

Throughout this paper we assume that (Ω,F , (Ft)t∈R+ ,P) is a filtered prob-
ability space satisfying the usual conditions, i.e.,
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(1) (Ω,Ft,P) is complete for all t ∈ R+, F0 contains all the P-null sets
in F for all t ∈ R+.

(2) Ft = Ft+ where Ft+ = ∩s>tFs, for all t ≥ 0, i.e. the filtration is
right-continuous.

In this section, our primary objectives are twofold. Firstly, we aim to intro-
duce stable laws and processes, emphasizing a method for simulating stable
alpha laws and processes. Secondly, we present key assumptions concerning
the non-parametric estimation of the drift function via the N-W estimator’s.
Stable laws, introduced by Paul Lévy in 1925, emerge as the limit of normal-
ized sums. The definitions and properties provided below are drawn from
sources such as [44] and [37]. It’s important to note that there exist multi-
ple characterizations of stable distributions, each with distinct advantages
depending on the intended applications.

Definition 2.1. A random variable X follows an α-stable distribution with
α ∈ (0, 2] and we write X ∼ Sα(σ, β, ω; 1) if it is uniquely determined by its
characteristic function :

Ψ(t) = E(exp(itX)) =

{
exp

(
−σα|t|α

[
1− iβ(tan(πα2 ))sign(t)

]
+ iωt

)
if α ̸= 1.

exp(−σ|t|[1 + iβ 2
πsign(t) log(|t|)] + iωt) if α = 1

where α ∈ (0, 2] is the index of stability, β ∈ [−1, 1] the skewness parameter;
σ > 0 the scale parameter and ω ∈ R the location or shift parameter and
sign(t) the sign function.

The aforementioned definition corresponds to parametrization 1 in [37]. The
following parametrization, denoted as parametrization 0, proves to be par-
ticularly useful for computer processing.

Definition 2.2. A random variable X ∼ Sα(σ, β, ω; 0) if,

Ψ(t) =

{
exp

(
−σα|t|α

[
1 + iβ(tan(πα2 ))sign(t)(|σt|1−α − 1)

]
+ iωt

)
if α ̸= 1.

exp(−σ|t|[1 + iβ 2
πsign(t) log(γ|t|)] + iωt) if α = 1.

For a more in-depth exploration of stable distributions, please refer to [37].
When σ = 1, we designate X as a standard α-stable random variable. For
σ ̸= 1 and ω = 0, X is referred to as a strictly α-stable random variable, and
in this case, it is known that E(X) = 0 whenever α ∈ (1, 2). Additionally,
if β = 0, it is characterized as symmetric. In general E(|X|p) < ∞ for any
p < α and E(|X|p) = +∞ for any p ≥ α so that the variance is infinite
and in the case α ∈ (0, 1) the mean is infinite. Now, let’s introduce α-stable
processes, which can be regarded as a specific class of Lévy processes. For
further insights, one can consult established literature such as [20].

Definition 2.3. An Ft-adapted stochastic process Z = {Zt}t≥0 is called an
α-stable process if

(1) Z0 = 0, a.s.;
(2) Z has α-stable stationary increments distributions Zt−Zs ∼ Zt−s ∼

Sα(σ(t− s)1/α, β, ω; k), t > s ≥ 0 and k = 0 or 1.
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(3) For any time points 0 ≤ s0 < . . . < sm < ∞, the random variables
Zs0 , Zs1 − Zs0 , . . . , Zsm − Zsm−1 are independent.

For insights into the case of standard α-stable processes, [30] is a recom-
mended reference. Set ∆Zt = Zt − Zt−. The jumps part of the stochastic
process Z can be described by its Poisson random measure (jump measure
of Z on interval [0, t]) defined as N(t, A) =

∑
0≤s≤t IA(∆Zs), A ∈ B(R∗),

the number of jumps of Z on the interval [0, t] whose size lies in the set A
bounded below. For such A, the process N(, A) is a Poisson process and
the Lévy measure ν(A) := E(N(1, A)) defined on R \ {0} has the following
explicit form: ν(dx) := dx

|x|α+1

(
c+ 1{x>0} + c− 1{x<0}

)
. In the sequel, we’ll

denote by Ñ(t, A) = N(t, A) − tν(A) the compensated Poisson measure.
Note that in the case α ∈ (1, 2), the characteristic function of a strictly
α-stable process is reduced into the form:

ΨZt(u) = exp t

(∫ +∞

−∞
(eiuy − 1− iuy)ν(dy)

)
, t ≥ 0.

The parameters c+, c− mentioned above are non-negative, with the addi-
tional condition that c+ + c− > 0. There exists a connection between jump
measurement coefficients c+, c− and the skewness parameter, for instance,
β = c+−c−

c++c−
. If β > 0, we will say that Z admits a positive jump activity.

We recall here a random walk approximation method based on the work of
[8, 18], proves useful for simulating such a stable process. Naturally, other
methods are also available, such as the series approximation of Lévy pro-
cesses, see [18] for more details.
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Algorithm 1 Discretized trajectory simulation for a strictly α-stable pro-
cess

1: Set Z = (Zt)t∈[0,T ] un processus strictement α-stable.
2: Step 1:

(1) Simulate n independent, uniformly distributed random variables
Φ on [−π/2, π/2] and n independent and identically distributed
random variable W as an exponentially with parameter 1.

3: Step 2: Compute ∆Zi for i = 1, ...n as follows.
(1) If α ̸= 1

∆Zi = σ

(
T

n

)1/α sin(α(Φ− ϕ0))

cos(Φ)1/α

(
cos(Φ− α(Φ− ϕ0))

W

) 1−α
α

.

(2) If α = 1

∆Zi = σ

(
T

n

)1/α 2

π

((π
2
+ βΦ

)
tan(Φ)− β log

(
1
2πW cos(Φ)

1
2π + βΦ

))
where

ϕ0 = −βπ

2

1− |1− α|
α

.

4: Step 3:The discretized trajectory of Z is given by

Z(ti) =
i∑

k=1

∆Zk.

From a practical point of view, we consider the linear interpolation between
instants ti and ti+1 for graphical representations. Algebraic transformations
can be used to extend the above algorithm to the general case.

Now, we revisit the non-parametric estimation framework for the drift func-
tion of the above stable driven SDE equation. Let X be a solution of the
above SDE (1). Note that Lipschitz and Hölder (or bounded) conditions
are typical conditions to show the existence of the solution. For more recent
existence conditions, we refer to [32] and references therein.

The Nadaraya-Watson (N-W) estimator is a classical method to estimate
the drift function f . It is in this way that, we make the following as-
sumptions following [30]. Similar results on the drift function estimation
is also presented in [28] where authors study the local polynomial estima-
tion under regular conditions. We consider kernel function K(·) which
is a symmetric and non negative probability density function satisfying
sup(1 ∨ |u|)K(u) < M0 < +∞ and∫ +∞

−∞
u2K(u)du < +∞,

∫ +∞

−∞
K2(u)du < +∞.
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(A1). The solution Xt is stationary and admits a unique invariant distribu-
tion π which is geometrically strong mixing.
(A2). The density function f(x) of the stationary distribution π is continuous.
(A3). As n → ∞ : h → 0, ∆n → 0,

n∆n → ∞, and
n∆nh

(log(n∆n))2
→ +∞.

Assume that, the process X is observed at some discrete time points {tk =
k∆n, k = 0, 1, 2, ..., n − 1} with ∆n a time frequency of the observation
and n is the sample size. The Euler-Maruyuma scheme of the above SDE is
written as follows.

Xn
tk+1

= Xn
tk
+ f(Xtk)∆n + ρg(Xtk)∆Zk, Xn

0 = x ∈ R,

where ∆Zk = Zn
tk+1

− Zn
tk
. Set Yk = Xn

tk+1
− Xn

tk
. The main idea of N-W

estimator is to minimize the following object function:

n−1∑
k=0

Wn,k(x)(Yk − b∆n)
2

over the parameter space of b with certain weights functions Wn,k(x) given
by:

Wn,k(x) =
Kh(

Xtk
−x

h )
n−1∑
k=0

Kh(
Xtk − x

h
)

for all x ∈ R, where Kh(x) = (K(x/h))/h with K the Kernel and h the
bandwidth parameter. Thus the N-W estimator of the drift function f is
given by the following expression :

f̂n(x) =

n−1∑
k=0

Wn,k(x)Yk, ∀x ∈ R

so that

f̂n(x) =
n∑

i=1

Kh(
Xti−x

h )(Xti −Xti−1)

n−1

n∑
i=1

Kh(
Xti − x

h
)

for all x ∈ R. (2)

In this study, we investigate several kernel functions; however, we specifically
adopt the Gaussian kernel function for simulation purposes:

K(u) =
1√
2π

e−u2/2.
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3. Main results

Using the N-W estimator as a foundation, and the Euler–Maruyama scheme,
the primary goal in this section is twofold. Firstly, it involves the simulta-
neous estimation of the scaling parameter ρ and the parameters α and β
characterizing the standard strictly stable process in the diffusion compo-
nent of the SDE (1). Secondly, we focus on the estimation of common drift
coefficients θ and µ for the Stable driven CIR and OU processes in equations
(6) or (8).

Theorem 3.1. Let X = (Xt)t∈[0,1] be a real valued stationnary and strongly
mixing process with unique invariant distribution which is solution of the
SDE (1). We assume that X is observed on a sample of discrete time points
ti with step ∆n of size n such g(Xti) ̸= 0. Assume that assumptions (A2)

and (A3) holds. Let (f̂n(Xti))
n
i=1 be the sequence of the N-W estimate of

the drift coefficient of the SDE (1). We define the following sample charac-
teristic function

φ̂n(zk) =
1

n

n−1∑
i=0

exp

(
jzk

(∆Xti − f̂n(Xti)∆n

g(Xti)

))
(3)

for all k ∈ [[1,m]], m > 0, and j2 = −1. Set

α̂m =

m∑
k=1

WkVk −
1

m

m∑
k=1

Vk

m∑
k=1

Wk

(∑m
k=1 W

2
k

)
− 1

m

( m∑
k=1

Wk

)2 ,

λ̂m = 1
m

m∑
k=1

Vk −
α̂m

m

m∑
k=1

Wk

ρ̂m = ∆
− 1

α̂m
n exp λ̂m

α̂m

β̂m =

m∑
k=1

zkSk

m∑
k=1

zkBk

,

(4)

where

Sk = arg(φ̂n(zk)), Bk = tan(
πα̂

2
)sign(zk)

(
zk − zα̂m

k

)
∆1/α̂m

n ,

and

Vk = log(− log|φ̂n(zk)|) and Wk = log(|zk|).
For n large enough and good choice of m values zk, α̂m, ρ̂m and β̂m are least
squares estimators of α, ρ and β.
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If we consider some weights pk, for instance pk = 1
δ2k

the inverse of the

variance of the k-th observation, a weighted least squares method lead to
the following estimators:

α̂m =

m∑
k=1

pkWkVk −
1∑m

k=1 pk

m∑
k=1

Vk

m∑
k=1

Wk

(∑m
k=1 pkW

2
k

)
− 1

m

(∑m
k=1 pk

)( m∑
k=1

Wk

)2 ,

Set λ̂m = 1∑m
k=1 pk

m∑
k=1

pkVk −
α̂m∑m
k=1 pk

m∑
k=1

pkWk

β̂m =

m∑
k=1

pkzkSk

m∑
k=1

pkzkBk

.

(5)

The proof of Theorem 3.1 is presented in Section 5, encompassing the sce-
narios of Stable driven CIR, OU and Lotka-Volterra processes.

Let’s discuss about some formulations in order to check some consistency
properties of these linear least squares estimators through a linear statistical
regression model. Since (Vk) is a random sequence and |φ̂n(zk)| ∈ [0, 1] one
may say that V = (Vk)

m
k=1 for m well-chosen values of zk can be obtained

from a truncated uniform random variable U so that − log(U) follows a
truncated exponential random variable T where occurrences is limited to
finite positive values [0, A] with A > 0. Hence V is a truncated distribution
of log(T ) such that E(log(T )I[0,A]) and Var(log(T )I[0,A]) are finite. When
the number of observations m is sufficiently large, a Gaussian distribution
can be assumed for the error ϵk = Vk − α log(|zk|)− log(ρα∆n) that can be
considered to be uncorrelated with the (deterministic) regressors log(|zk|).
Hence the above estimators become Maximum Likelihood Estimators. When
the normality assumption is no longer valid, we can try to reduce the data
to Gaussian distributions by means of data transformations, and the sym-
metrization and standardization (since E(log(T )I[0,A]) and Var(log(T )I[0,A])
are finite) offers an advantage. The Min-Max Scaling can be applied since
the data may vary in different scales, reducing the effect of outliers.

The optimal value of m is suggested in [21], advocating the selection of
points zk within the interval [0.1, 1].

Theorem 3.1 applies particularly to the following α-stable-driven Ornstein
Uhlenbeck (OU), Cox–Ingersoll–Ross (CIR) and Lotka–Volterra processes.
Such models are popular in stochastic modelling for description of inter-
est rates in finance and population dynamics. Assume that Z is a standard
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strictly stable process with parameters α ∈ (1, 2) and β ∈ [−1, 1]. A general-
ized Ornstein-Uhlenbeck (OU) process driven by a strictly standard α-stable
process (Zt)t≥0 is defined to be the solution to the following linear stochastic
differential equation

Definition 3.1. (Stable OU process)

dXt = θ(µ−Xt)dt+ ρdZt, X0 = x ∈ R. (6)

where θ and µ are constants.

We can apply Theorem 3.1 to this model to estimate parameters ρ, α and
β.

Definition 3.2. (Stable CIR process) A stable driven Cox–Ingersoll–Ross
(Stable CIR [53]) is defined by:

dXt = θ(µ−Xt)dt+ ρ|Xt|1/qdZt, X0 ≥ 0, (7)

where q > 0 θ > 0, ρ > 0, and µ ∈ R are constants and Z is for example a
strictly standard α-stable process with positive jump activity.

Note that if Z is symmetric and since x → |x|1/q is Hölder continuous for
q ≥ 1, there exists a solution according to [5]. For q = 2 the Stable CIR
is studied in [51] for symmetric stable process. According to [27], there
is a pathwise unique positive solution for the above Stable CIR Strong as
q−1 + α−1 ≥ 1 when ρ is small whenever the process Z have only positive
jumps.We can apply Theorem 3.1 to this model to estimate parameters ρ,
α and β when the parameter q is known.

For q = α ∈ (1, 2) and in the case where Z is a pure-jump α-stable Lévy
process Z with positive jumps the following stable driven CIR is introduced
in the literature (see [6] or [26]) as a particular form of the continuous-state
branching processes with immigration, which emerge as scaling limits of
Galton–Watson branching processes with immigration (CBI-processes, [25],
[26] and [39]).

Definition 3.3. (SCIR process) The SCIR process is defined by:

dXt = θ(µ−Xt)dt+ ρ|Xt|1/αdZt, X0 ≥ 0, (8)

where θ > 0, ρ > 0, and µ ∈ R are constants and Z is a standard and
positive strictly α-stable process.

It is shown whenever that the solution is positive that is P
(
Xt > 0

)
= 1,

whenever µ > 0, θ > 0, ρ > 0 and x0 > 0. Unfortunately, we cannot esti-
mate α with this model, as q is a function of α. Only the parameters ρ and
β must be unknown to use Theorem 3.1.
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The following stable driven Lotka and Volterra extension was studied in [56]
for q = 1:

Definition 3.4. (A Stable driven Lotka–Volterra process)
A Stable driven Lotka–Volterra process can be defined as follows

dXt = Xt(λ− θXt)dt+ ρ|Xt|1/qdZt, X0 ≥ 0, (9)

where λ, ρ, θ are real constants.

The author proved in [56] for q = 1, the existence of a unique global positive
solution of the above stable driven Lotka–Volterra process, if Z is a spec-
trally positive strictly α-stable process for any α ∈ (0, 2).

A simulation study is conducted to evaluate the performance of the proposed
estimation of the diffusion parameters in Section 5 from data generated by
ergodic stationary processes. We also revisit the link between ergodicity and
mixing conditions in Section 6. In what follows, we discuss the parameter
estimation of the drift coefficients θ and µ of the above stable driven OU
and the SCIR processes.

Theorem 3.2. Let X = (Xt)t∈[0,T ] be a real valued stationary and strongly
mixing (ergodic) process satisfying (6) or (8). We assume that X is observed
on a sample of discrete time points ti with time frequency ∆n of size n.
Assume that assumptions (A2) and (A3) holds. Let (f̂n(Xti))

n
i=1 be the

sequence of the N-W estimate of the linear drift function in (6) or (8) and
let an = θe−θ∆n. Set

ân =

∑n−1
i=0 Xti f̂n(Xti+1)− 1

n

n−1∑
i=0

Xti

n∑
i=1

f̂n(Xti+1)

1
n

( n−1∑
i=0

Xti

)2 − n−1∑
i=0

X2
ti

µ̂n = 1
n

n−1∑
i=0

f̂n(Xti+1)− ân
1

n

n−1∑
i=0

Xti

θ̂n = − 1
∆n

W (−ân∆n),

(10)

where W is the Lambert function.

• We assume moreover that α ∈ (
√
2, 2) for the driving process Z in

the SCIR process (8).

For n large enough, θ̂n and µ̂n are unbiased and consistent estimators of θ
and µ.

4. Proofs of the main Theorems

In this section, we provide the proofs for our main results.
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4.1. Proof of Theorem 3.1.

Proof. We begin by revisiting the Euler approximation of the SDE (1):

Xn
ti = Xn

ti−1
+ f(Xn

ti)∆n + g(Xn
ti)Y

n
i

where Y n
i = ρ∆Zn

i = ρ(Zn
i+1−Zn

i ), i = 0, . . . , n−1, are identically sequence

distributed as Z∆n ∼ Sα

(
∆

1/α
n ρ, β, 0

)
. We have

Y n
i =

∆Xti − f̂n(Xti)∆n

g(Xti)
, ∀i = 0, . . . , n− 1.

We can define an approximate sample characteristic function as follows:

φ̂n(u) =
1

n

n−1∑
i=0

exp{ju
(∆Xti − f̂n(Xti)∆n

g(Xti)

)
}, ∀u ∈ R, (11)

which shall be asymptotically equal to the characteristic function φZ∆n
(u)

of Z∆n . Now, using Definition 2.1 or 2.2 and, utilizing the following formula:

log(− log|φZ∆n
(u)|) = log(ρα∆n) + α log(|u|),

we can establish an ordinary least squares regression method to estimate
α and ρ. To achieve this, it is desired to find the vector parameter (α, λ)
such that the underlined linear function fits best the given data in the least
squares sense, that is, the following sum of squares is minimized:

G(λ, α) =

m∑
k=1

(Vk − λ− αWk)
2

(λ̂, α̂) = arg min
(λ,α)

G(λ, α),

where

Vk = log(− log|φ̂n(uk)|), Wk = log(|uk|), λ = log(ρα∆n).

The minimum value of G(λ, α) occurs when the gradient is zero. Since the
model contains two parameters, there are two gradient equations:

∂G(λ,α)
∂α = −2

m∑
k=1

Wk(Vk − λ− αWk)

∂G(λ,α)
∂λ = −2

m∑
k=1

(Vk − λ− αWk),
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and these gradient equations have a closed solution given by:

{
∂G(λ,α)

∂α = 0
∂G(λ,α)

∂λ = 0
=⇒



α̂m =

m∑
k=1

WkVk −
1

m

m∑
k=1

Vk

m∑
k=1

Wk

∑m
k=1 W

2
k−

1
m

( m∑
k=1

Wk

)2 ,

λ̂m = 1
m

m∑
k=1

Vk −
α̂m

m

m∑
k=1

Wk.

(12)

To estimate β, we use Definition 2.2 and the following formula:

Sk = βBk + ωuk here we have, ω = 0

where

Sk = arg(φ̂n(uk)), Bk = tan(
πα̂

2
)sign(ui)

(
uk − uα̂k

)
∆1/α̂

n .

Note that we set ω = 0 since we consider in this work strictly α-stable
process Z. We employ once again the aforementioned least squares method
to minimize the following sum of squares:

T (β, ω) =
m∑
k=1

(
Sk − βBk − ωuk

)2
.

From the gradient equations:
∂T (β,ω)

∂β = −2
m∑
k=1

Bk(Sk − ωuk − βBk)

∂T (β,ω)
∂ω = −2

m∑
k=1

uk(Sk − ωuk − βBk),

we have the following closed solution when ω = 0:

β̂m =

m∑
k=1

ukSk

m∑
k=1

ukBk

.

□

4.2. Proof of Theorem 3.2.

Proof. We have

f̂(Xti+1) = θ(µ−Xti+1).

If X satisfy (6) we have the following integral representation:

Xt = e−θtX0 + θµ

∫ t

0
e−θ(t−s)ds+ ρ

∫ t

0
e−θ(t−s)dZs, t ≥ 0.
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so that for any t ≥ r ≥ 0 :

Xt = e−θ(t−r)Xr + θµ

∫ t

r
e−θ(t−s)ds+ ρ

∫ t

r
e−θ(t−s)dZs, t ≥ 0. (13)

We refer to [20], Chapter 3 for the case when µ = 0 and to [15] for the case
µ ̸= 0.
If X satisfy (8), note that for α ∈ (1, 2) it is well known that the positive
stable process Z admits the following representation:

Zt =

∫ t

0

∫ +∞

0
z Ñ(ds, dz), t ≥ 0.

and applying Itô’s formula for Jump processes [42], we have the following
integral representation (see also [26]) :

Xt = e−θ(t−r)Xr + θµ

∫ t

r
e−θ(t−s)ds+ ρ

∫ t

r
e−θ(t−s)|Xs−|1/αdZs, t ≥ 0.

(14)
We have

Xti = e−θ(ti−ti−1)Xti−1 + θµ

∫ ti

ti−1

e−θ(ti−s)ds+ ϵi, (15)

where

ϵi =

{
ρ
∫ ti
ti−1

e−θ(ti−s)|Xs−|1/αdZs if X is the stable CIR process in (7)

ρ
∫ ti
ti−1

e−θ(ti−s)dZs if X is the stable OU process in (6).

Note that if X is the stable OU process in (6), by basic properties of α-stable
stochastic integrals for deterministic integrands [48, 43], the sequence (ϵi) is a

α-stable random variable with distribution Sα

(
ρτ

1/α
n , β, 0; 1

)
with τn =

1−e−θα∆n

θα so that it is centered random sequence (also martingales differ-
ence). In the case where X is SCIR process in (8), according to the mar-
tingale property of a compensated Poisson stochastic integral it is a martin-
gale differences if E|Xs|2/α is finite; which is the case whenever 2

α < α i.e.

α ∈ (
√
2, 2). Therefore,

Xti = e−θ∆nXti−1 + µ
(
1− e−θ∆n

)
+ ϵi,

where (ϵi) is a centered random sequence (martingale differences). Finally,

f̂(Xti+1) = θ(µ−Xti+1) = aµ− aXti + ηi, a = θe−θ∆n , i ≥ 0,

where (ηi)i≥0 is again a centered random sequence (martingale differences).
We can set up a Linear Least Square Method which consists in minimizing
the following objective function:

G(a, µ) =
n−1∑
i=0

(
f̂(Xti+1)− aµ+ aXti+1

)2
.
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Using, the gradient equations:
∂G(a,µ)

∂a = 2(−µ+Xti)
n−1∑
i=0

(
f̂(Xti+1)− aµ+ aXti

)
∂G(a,µ)

∂µ = −2a

n−1∑
i=0

(
f̂(Xti+1)− aµ+ aXti

)
,

it is straightforward to obtain the following least square estimators :

ân =

∑n−1
i=0 Xti f̂n(Xti+1)− 1

n

n−1∑
i=0

Xti

n∑
i=1

f̂n(Xti+1)

1
n

( n−1∑
i=0

Xti

)2 − n−1∑
i=0

X2
ti

µ̂n = â−1
n

1
n

n−1∑
i=0

f̂n(Xti+1) +
1

n

n−1∑
i=0

Xti

θ̂n = − 1
∆n

W (−ân∆n),

(16)

where W is the Lambert function [9]. Now, let us prove the consistency of

these estimators. Set Ui = f̂n(Xti+1) and note that since we assume that

the process X is ergodic and α ∈ (1, 2) then X̄ = 1
n

n−1∑
i=0

Xti converge to µ

and Ū = 1
n

n−1∑
i=0

Ui also converge. We have

ân =

n∑
i=1

XtiUi −
1

n

n∑
i=1

Ui

n∑
i=1

Xti

1
n

n∑
i=1

Xti

n∑
i=1

Xti −
n∑

i=1

X2
ti

=

n∑
i=1

Xti

(
Ui − Ū

)
n∑

i=1

Xti

(
X̄ −Xti

) (17)

where Ū =
1

n

n∑
i=1

Ui and X̄ =
1

n

n∑
i=1

Xti , (18)

so that

=

n∑
i=1

(
Xti − X̄

)(
Ū − Ui

)
n∑

i=1

(
Xti − X̄

)2 since
n∑

i=1

X̄(Ui − Ū) = 0 and
n∑

i=1

X̄(Xti − X̄) = 0.

(19)

From the relation

Ui − U = a(X̄ −Xti) + εi,
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where (εi) is again a centered random sequence, we have

ân =

n∑
i=1

(
Xti − X̄

)(
a(Xti − X̄)− εi

)
n∑

i=1

(
X̄ −Xti

)2 = a+

n∑
i=1

(
Xti − X̄

)
εi

n∑
i=1

(
X̄t −Xti

)2 −→
n→+∞

0,

(20)

since the process X = {Xt, t ≥ 0} is ergodic, stationary and have infinite

square variation. We deduce the consistency of θ̂n and µ̂n by the use of
continuous mapping theorem. □

5. Numerical Application with ergodic stochastic models

We now scrutinize the numerical performance of our estimation procedure
on synthetic data. Subsequently, we apply these procedures to real-world
data. All the implemented codes were developed using the R software. For
practical applications, we determine the optimal bandwidth h = (hn) using
the method proposed by [45]. The R function h.amize facilitates this pro-
cess. It is worth noting that, in many instances, people commonly opt for
h = hn = n−1/5. A simulation study is conducted to evaluate the perfor-
mance of the proposed estimation from data generated by ergodic stationary
processes. We discuss in Appendix 6 the link between ergodicity and mixing
conditions for Markov processes. We summarize the discussion as follows.

The exponential ergodicity of a Lévy driven OU process is established in
[49]. The result implies that if θ > 0 then the α-Stable OU process (6) has a
unique invariant measure π and is strongly ergodic (mixing). More generally,
let’s consider the case where the drift function f and diffusion function g sat-
isfy sufficient conditions for the solution of (1) to exist and be unique [5, 14].

According to [22], if f(·) is locally Lipschitz, and lim sup|x|→+∞
f(x)
x < 0,

then, for any α ∈ (1, 2) and bounded function g, the solution of (1) is expo-
nentially ergodic, and its invariant distribution exists and is unique. This
result applies to the case of the stable OU model (6) under the condition
θ > 0.

In the case of stable driven CIR-models, some ergodicity conditions are well
known when the driving process has only positive jumps. For θ > 0 and
µ ≥ 0, this model can be seen as a subcritical CBI process with an immi-
gration rate µ. Thus, using the result of [26], we conclude that the SCIR
process is exponentially ergodic and hence strongly mixing.

For a more general SDE in the form (1), it was shown in [54], that the
exponential ergodicity holds under some dissipative and non-degenerate as-
sumptions on the drift f and diffusion function g. In terms of forthcoming
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study, we are currently interested in ergodicity properties for SDE in the
form (1) under more realistic conditions.

5.1. Simulated data. We simulate and approximate the solution X =
(Xt)t≥0 by using the Euler scheme on the interval [0, T ] with sample size
n = 500, 1000, 2000 within a period T = 1. We employ the exponential
ergodicity results when choosing the model parameters. We consider the
following parameters:

x0 = 1, θ = 0.3, µ = 1.2 α = 1.6 β = 0or 0.1 and ρ = 1.

Thus, Assumption (A1) is verified for model (6) for general strictly driving
α-stable process Z. For model (8), we consider positive jump driving stable
process Z so that Assumption (A1) is once again verified for β > 0. We
choose q = 2 for model (7). For model (9) and according to [56], we choose
(in order to have strongly mixing solution)

x0 = 1, θ = 0.5, µ = 0.5 α = 1.5 β = 0.1 and ρ = 0.5.

We generate data from models (6), (7) or (8) and (9) based on the previ-
ous configuration. To numerically validate the regularity condition on the
density function of the stationary distribution π, assumed to be continuous
in Assumption (A2), we plot the kernel density estimate of a realization
of X alongside the histogram. Choosing a suitable time frequency (e.g.,
∆n = 1√

n
), ensures that the models satisfy all the necessary conditions.

We assess the performance of the N-W estimator for the drift function and
the estimated parameters of the diffusion part (α, β, ρ) in the context of
the stable driven CIR, OU and Lotka-Volterra models on simulated data.
Figures 1, 2 and 6 present the graphical performance of the N-W estima-
tor concerning the true drift functions. The comparisons are made across
three sample sizes n = 500, n = 1000 and n = 2000 with time interval
T = 1 or T = 10. It is observed that varying T for a fixed n does not
significantly improve the estimates of the drift function in the SCIR model.
This confirms that the drift function cannot be precisely identified within
a fixed time interval using the N-W estimator, regardless of how frequently
the observations are sampled. Additionally, for a fixed length of the obser-
vation interval T , as the sample size increases, the N-W estimator does not
exhibit better performance, aligning with the asymptotic theory of the N-W
estimator for stochastic processes driven by Lévy motions. Figures 3 and 4
visually confirm the regularity condition on the density function of the sta-
tionary distribution. The performance of the estimation in 5 for q = 2 seems
to imply that the model in (8) is ergodic. We have not found any references
proving this. An actual forthcoming work is the study of the erogidicity of
SDE 1 under various conditions. To assess the performance, we employ not
only visual illustrations through figures but also quantitative measures such
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as the Square Root of Average Square Errors, defined by:

RMSE =
1

n

n∑
i=1

(
f̂n(xi)− f(xi)

)2
where f(xi) and f̂n(xi) are transformed (Min-Max scaling) to cover the range
of sample paths of X in a common scale, reducing the effect of outliers.

We summarized the performance in Tables 1, 5 and 4, which reports the
results on the diffusion parameters (α, β, ρ) as well as the RMSE on n repli-
cates with three sample sizes n = 500, n = 1000 and n = 2000, respectively
for time interval T = 1 and T = 10. We can see that varying T for a fixed n
slightly changes the estimates of the stable process parameters α, β, except
for the scaling parameter ρ.

5.2. Real data: financial exchanges rates. In this section, we shift our
focus to the estimation using real data. We analyze financial data, specif-
ically indexes or exchanges of the Canadian dollar against the US dollar,
spanning a fixed period from May 2018 to June 2022. The analysis is con-
ducted with a sample size of n = 1000.

Figures 7 (a), (b), and (c) present the time series variations of the exchange
rates. To assess the stationarity of the time series, we examine the autocor-
relation function (ACF) diagram [3]. A rapidly decreasing ACF indicates
stationarity, and the Dickey Fuller test confirms this with a p-value of 0.01.
The ACF diagram demonstrates a quick decline, indicating weak depen-
dence and implying the data’s mixing properties, specifically -mixing, which
implies strong mixing.

Figures 5(a), (b) and (c) present the time series variations of the exchange
rates. To assess the stationarity of the time series, we examine the autocor-
relation function (ACF) diagram [3]. A rapidly decreasing ACF indicates
stationarity, and the Dickey Fuller test confirms this with a p-value of 0.01.
The ACF diagram demonstrates a quick decline, indicating weak dependence
and implying the data’s mixing properties, specifically ρ-mixing, which im-
plies strong mixing. The density estimation of the stationary distribution is
given also in Figures 5 (a’), 5(b’) and 5(c’) so that the regularity condition
is satisfied.

In Figures 7, we present the graphical N-W estimation of the observed drift
function. To summarize the parameter estimation of the diffusion part,
Tables 3 and 6 provide detailed results. Regarding the drift part, Tables 2
summarize the estimated drift coefficients based on real data. Additionally,
in Figure 8, we compare the prediction results with the stable OU model
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since the N-W estimator of the drift function seems to be linear and match
better than the Stable CIR process.
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6. Appendix, Figures and Tables

Ergodic Markov processes and mixing conditions. We present in this
section, some results concerning the link between ergodicity and mixing con-
ditions for Markov processes. Let (Xt, t ≥ 0) be an ergodic Markov process
with unique invariant measure π. It is well known that solution of some
classical SDE driven by Lévy processes are Markov processes. Consider
the Markov semigroup (Pt)t≥0 associated to (Xt, t ≥ 0) and defined by
Ptf(x) = E

(
f(Xt)/X0 = x

)
for all f in Lp(π) or measurable and positive

functions f . Recall that P is a bounded operator in all Lp(π), p ≥ 1 with
operator norm equal to 1 (i.e. a contraction). The adjoint operator P ∗ is
defined by

∫
f Ptg dπ =

∫
g P ∗

t f dπ. For functions f and g that are square
integrable with respect to π, this operator is once more a contraction. The
subsequent definition introduces a method for regulating the ergodic decay
to equilibrium.

Definition 6.1 (Ergodic rates of convergence [7]). For any r ≥ p ≥ 1 and
t ≥ 0 we define the following ergodic rates

ηp,r(t) = sup
|f ||Lr(π)

∫
fdπ=0

||Ptf ||Lp(π).

The process X is said to be uniformly ergodic if limt→+∞ η2,∞(t) = 0.

The following definitions can be found in [56].

Definition 6.2 (Exponentially or strongly ergodic process). Assume that
X = (Xt, t ≥ 0) is an ergodic Markov process with unique invariant measure
π and X0 = x.

1. The process X with is called exponentially ergodic if there exist a
constant k > 0 and a positive measurable function c(x) such that for
all t > 0 we have

||Pt(x, .)− π||var ≤ c(x)e−kt,

2. The process X with is called strongly ergodic if there exist two con-
stants k,C > 0 such that for all t > 0 we have

||Pt(x, .)− π||var ≤ Ce−kt.

where ||.||var denotes the total variation norm on the space of signed proba-
bility measures defined by

||Pt(x, .)− π||V ar = sup
A∈F

|Pt(x,A)− µ(A)|

= sup
||f ||∞≤1 andLaw(Y )=π

|Ef(Xt)− Ef(Y )|.

From this definition, one can state that the process X is considered strongly
or exponentially ergodic iflimt→+∞ η1,∞(t) = 0, where η1,∞ is termed the
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strong or exponential ergodic decay rate. Now, let’s introduce some conven-
tional mixing coefficients to compare mixing properties and ergodic decay
properties.

Definition 6.3 (Mixing conditions, see [33]). . Let Fs (resp.Gs) be respec-
tively the backward (or the past) and the forward (or the future) σ-fields
generated by Xu for 0 ≤ u ≤ s (resp. u ≤ s).

1. The strong mixing coefficient αmix(t) is defined as :

αmix(t) = sup
s

sup
A∈A∈Fs, B∈Gs+t

|P(A ∪B)− P(A)P(B)|

=
1

4
sup
s

{
sup
F,G

Cov(F,G) , F Fs(resp.G Gt+s) measurable and bounded by 1.

}
If limt→∞ αmix(t) = 0, the process is strongly mixing.

2. The β-mixing coefficient φ(t) is defined as:

βmix(t) = sup
s

{
sup
A,B

(P(B|A)− P(B)) , A ∈ Fs , B ∈ Gs+t

}
.

If limt→∞ βmix(t) = 0, the process is β-mixing or uniformly mixing.

3. The ρ-mixing coefficient ρmix(t) is defined as the maximal correlation
coefficient, i.e.

ρmix(t) = sup
s

{
sup
F,G

Corr(F,G) , F ∈ L2(Fs) , G ∈ L2(Gt+s)

}
.

If limt→∞ ρmix(t) = 0 the process is ρ-mixing.

The following lemma, as contained in [7], enables a connection between
ergodicity and mixing conditions.

Lemma 6.1. For all t ≥ 0, we have

(1) η2∞,2(t) ∨ (η∗)2∞,2(t) ≤ αmix(t) ≤ η∞,2([t/2]) η
∗
∞,2(t/2).

(2) Either η2,2(t) = 1 for all t or η2,2(t) ≤ c e−λ t for some λ > 0. In
the second case

η22,2(t) = (η∗)22,2(t) ≤ ρmix(t) ≤ c η2,2(t) .

(3) βmix(t) ≤ η21,∞(t/2) .

From the above Lemma one easily derive the following result.

Theorem 6.2. Assume that X = (Xt, t ≥ 0) is an ergodic Markov process
with unique invariant measure π.

a) If X is strongly or exponentially ergodic then it is β-mixing.
b) If X is uniformly ergodic, then it is strongly mixing.
c) Any kind of exponential ergodic decay rate in L2 imply the ρ-mixing.
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Table 1. Performance of the estimated diffusion and scal-
ing parameters (α̂, β̂, ρ̂) with a standard symmetric 1.6-stable
driven OU process

n and T True parameters Estimate Parameters RMSE

500 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.70, β̂n = 0.08, ρ̂n = 0.80 1.55

500 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.69, β̂n = 0.015, ρ̂n = 3.38 8.34

1000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.55, β̂n = 0.11, ρ̂n = 1.2 1.10

1000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.56, β̂n = 0.13, ρ̂n = 4.87 8.43

2000 and T=1 α = 1.6, β = 0, ρ = 1 α̂n = 1.6346, β̂n = 0.1146, ρ̂n = 0.9335 0.77

2000 and T=10 α = 1.6, β = 0, ρ = 1 α̂n = 1.6029, β̂n = 0.064, ρ̂n = 4.33 6.91

Table 2. Estimated drift coefficients (θ̂, µ̂) with the ex-
change rates data

n Estimate Parameters

1000 θ̂n = 1.08, µ̂n = 0.93

500 θ̂n = 1.06, µ̂n = 0.95

200 θ̂n = 1.028493, µ̂n = 0.9674548

Table 3. Estimated diffusion and scaling parameters
(α̂, β̂, ρ̂) with the exchange rates data using an unknown
strictly standard stable driven OU process

n Estimated diffusion and scaling parameters

1000 α̂n = 1.98, β̂n = 1, ρ̂n = 13.21

500 α̂n = 1.99, β̂n = 1, ρ̂n = 10.11

200 α̂n = 1.99, β̂n = 1, ρ̂n = 6.17

Table 4. Performance of the estimated diffusion and scaling
parameters (α̂, β̂, ρ̂) with a standard strictly 1.5-stable Lotka
Volterra process with positive jump activity β > 0 and q = 1

n and T True parameters Estimate Parameters RMSE

500 and T=1 α = 1.5, β = 0.1, ρ = 0.5 α̂n = 1.51, β̂n = 0.38, ρ̂n = 0.51 0.9699

1000 and T=1 α = 1.5, β = 0.1, ρ = 0.5 α̂n = 1.59, β̂n = 0.12, ρ̂n = 0.43 0.8033

2000 and T=1 α = 1.5, β = 0.1, ρ = 0.5 α̂n = 1.54, β̂n = 0.11, ρ̂n = 0.45 0.7980
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Table 5. Performance of the estimated diffusion and scaling
parameters (α̂, β̂, ρ̂) with a standard strictly 1.6-stable CIR
process with positive jump activity β > 0 and q = 2

n and T True parameters Estimate Parameters RMSE

500 and T=1 α = 1.6, β = 0.1, ρ = 1 α̂n = 1.66, β̂n = 0.13, ρ̂n = 0.88 1.17

500 and T=10 α = 1.6, β = 0.1, ρ = 1 α̂n = 1.51, β̂n = 0.08, ρ̂n = 5.95 8.24

1000 and T=1 α = 1.6, β = 0.1, ρ = 1 α̂n = 1.63, β̂n = 0.217, ρ̂n = 0.98 3.72

1000 and T=10 α = 1.6, β = 0.1, ρ = 1 α̂n = 1.53, β̂n = 0.135, ρ̂n = 6.32 15.36

2000 and T=1 α = 1.6, β = 0.1, ρ = 1 α̂n = 1.61, β̂n = 0.07, ρ̂n = 1.03 2.07

2000 and T=10 α = 1.6, β = 0.1, ρ = 1 α̂n = 1.64, β̂n = 0.04, ρ̂n = 4 11.13

Table 6. Estimated diffusion and scaling parameters
(α̂, β̂, ρ̂) with the exchange rates data using an unknown
strictly standard SCIR process with given parameter q.

n q Estimate Parameters

1000 q=2 α̂n = 1.80, β̂n = −0.33, ρ̂n = 67.89

1000 q=1.99 α̂n = 1.78, β̂n = −0.31, ρ̂n = 70.57

1000 q=1.95 α̂n = 1.78, β̂n = −0.33, ρ̂n = 71.59

1000 q=1.9 α̂n = 1.77, β̂n = −0.35, ρ̂n = 75.83

1000 q=1.8 α̂n = 1.72, β̂n = −0.37, ρ̂n = 8736

1000 q=1.6 α̂n = 1.59, β̂n = −0.28, ρ̂n = 130.70

1000 q=1.5 α̂n = 1.53, β̂n = −0.20, ρ̂n = 163.02

500 q=2 α̂n = 1.79, β̂n = −0.12, ρ̂n = 39.61

500 q=1.99 α̂n = 1.78, β̂n = −0.12, ρ̂n = 39.99

500 q=1.95 α̂n = 1.77, β̂n = −0.093, ρ̂n = 41.56

500 q=1.9 α̂n = 1.75, β̂n = −0.06, ρ̂n = 43.74

500 q=1.8 α̂n = 1.72, β̂n = −0.009, ρ̂n = 48.98

500 q=1.6 α̂n = 1.59, β̂n = 0.08, ρ̂n = 70.13

500 q=1.5 α̂n = 1.53, β̂n = 0.073, ρ̂n = 86.03

200 q=2 α̂n = 1.69, β̂n = −0.31, ρ̂n = 25.56

200 q=1.99 α̂n = 1.69, β̂n = −0.30, ρ̂n = 25.83

200 q=1.95 α̂n = 1.67, β̂n = −0.25, ρ̂n = 26.98

200 q=1.9 α̂n = 1.65, β̂n = −0.19, ρ̂n = 28.59

200 q=1.8 α̂n = 1.60, β̂n = −0.008, ρ̂n = 32.42

200 q=1.6 α̂n = 1.51, β̂n = 0.04, ρ̂n = 43.64

200 q=1.5 α̂n = 1.44, β̂n = 0.08, ρ̂n = 5386
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 1. Performance of the Nadaraya-Watson kernel es-
timator with respect to the true drift in the case of a stan-
dard symmetric 1.6-stable driven OU process with sample
size n = 500 and t = 1 in (a), sample size n = 500 and t = 10
in (a’), sample size n = 1000 and t = 1 in (b), sample size
n = 1000 and t = 10 in (b’), sample size n = 2000 and t = 1
in (c) and sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 2. Performance of the Nadaraya–Watson kernel esti-
mator with respect to the true drift in the case of a standard
strictly 1.6-stable CIR process with positive jump activity
and sample size n = 500 and t = 1 in (a), sample size n = 500
and t = 10 in (a’), sample size n = 1000 and t = 1 in (b),
sample size n = 1000 and t = 10 in (b’), sample size n = 2000
and t = 1 in (c) and sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 3. Kernel density estimation of a standard symmet-
ric 1.6-stable driven OU process with sample size n = 500
and t = 1 in (a), sample size n = 500 and t = 10 in (a’),
sample size n = 1000 and t = 1 in (b), sample size n = 1000
and t = 10 in (b’), sample size n = 2000 and t = 1 in (c) and
sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 4. Kernel density estimation of a standard strictly
1.6-stable CIR process with positive jump activity and sam-
ple size n = 500 and t = 1 in (a), sample size n = 500 and
t = 10 in (a’), sample size n = 1000 and t = 1 in (b), sample
size n = 1000 and t = 10 in (b’), sample size n = 2000 and
t = 1 in (c) and sample size n = 2000 and t = 10 in (c’).
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 5. The exchange rates of the Canadian dollar
against the US dollar global variation and density estima-
tion with sample size n = 1000 (a); local sample size n = 500
(b) and sample size n = 200 (c).
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(a) (b) (c)

Figure 6. Performance of the Nadaraya-Watson kernel esti-
mator with respect to the true drift in the case of a standard
and positive strictly 1.5-stable driven Lotka-Volterra process
with sample size n = 500 and t = 1 in (a), sample size
n = 1000 and t = 1 in (b), sample size n = 2000 and t = 1
in (c).
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(a) (b)

(c)

Figure 7. Nadaraya-Watson kernel estimator of the drift
function with the exchange rates of the Canadian dollar
against the US dollar variation with the global sample size
n = 1000 (a); local sample size n = 500 (b) and sample size
n = 200 (c).
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(a) (b)

(c)

Figure 8. Comparison between exchange rates prediction
with Stable driven OU process with sample size n = 200 (a);
sample size n = 500 (b) and sample size n = 1000 (c).


