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Abstract

The localization and classification of musical symbols
on scanned or digital music scores pose significant chal-
lenges in Optical Music Recognition, such as similar mu-
sical symbol categories and a large number of overlapping
tiny musical symbols within high-resolution music scores.
Recently, deep learning-based techniques show promising
results in addressing these challenges by leveraging object
detection models. However, unclear directions in train-
ing and evaluation approaches, such as inconsistency be-
tween usage of full-page or cropped images, handling image
scores at full-page level in high-resolution, reporting results
on only specific object categories, missing comprehensive
analysis with recent state-of-the-art object detection meth-
ods, cause a lack of benchmarking and analyzing the impact
of proposed methods in music object recognition. To ad-
dress these issues, we perform intensive analysis with recent
object detection models, exploring effective ways of han-
dling high-resolution images on existing benchmarks. Our
goal is to narrow the gap between object detection mod-
els designed for common objects and relatively small im-
ages compared to music scores, and the unique challenges
of music score recognition in terms of object size and reso-
lution. We achieve state-of-the-art results across mAP and
Weighted mAP on two challenging datasets, namely Deep-
ScoresV2 and the MUSCIMA++ datasets, by demonstrat-
ing the effectiveness of this approach in both printed and
handwritten music scores.

1. Introduction
Optical Music Recognition (OMR) is a field of research

that focuses on developing automated systems for recog-
nizing and interpreting music scores from scanned or dig-
ital images. The localization and classification of musi-

This preprint is currently under consideration at Pattern Recognition
Letters.

cal symbols, known as music object recognition, repre-
sents a crucial and challenging component within the OMR
pipeline. Deep learning-based techniques gather significant
attention in this area, with initial successes achieved with
CNNs [1, 2, 3].

In early deep learning-based approaches on music score
recognition, hardware limitations necessitate the resizing of
images to lower resolutions, resulting in information loss
and reduced detection accuracy for small objects [4]. To
address this, a common approach involves performing de-
tection on overlapping cropped regions extracted from the
original images, followed by fusion using methods like
Non-Maximum Suppression (NMS) to eliminate duplicate
detections in overlapping regions [5, 6].

However, using cropped images for musical object
recognition presents several challenges, e.g., some objects
are partially cropped and lost. Also, during merging,
it is challenging to establish an appropriate intersection-
over-union (IoU) threshold for NMS, causing some objects
may be erroneously duplicated and not effectively elimi-
nated. While the issues related to cropping-based music
object detection have been mentioned in the literature, no
comprehensive analysis of these challenges has been con-
ducted [5, 7].

In recent years, significant progress has been made in
page-level music score recognition through the utilization
of advanced object detector backbones that offer large-scale
feature extraction capabilities, facilitated by increased com-
putational resources [7, 8, 9]. However, some recent works
have chosen to focus on subsets of classes, either due to
the importance of certain classes for OMR [10, 11] or to
address challenges related to small classes [7], leading to
ambiguity in benchmarking and evaluation. Additionally,
evaluation based on test sets created from cropped scores
without considering merging further complicates compar-
isons [5, 7]. As a result, it becomes challenging to compare
proposed methods without complete reproduction.

In this paper, we contribute to the field of music object
recognition in the following ways: i) We demonstrate that
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full-page training outperforms cropping-based training in
music object recognition at the full-page level evaluation,
providing a comprehensive analysis of both approaches. ii)
We present a comprehensive analysis of state-of-the-art ob-
ject detection models and backbones for music object de-
tection in both handwritten and printed music. iii) We show
the effect of resolution, cropping, and architecture on the
performance of music object detection models. iv) We set
a new benchmark on both printed and handwritten music
recognition tasks by introducing FocalNet [12] backbones
to the music score recognition task by utilizing Cascade R-
CNN [13] detector, achieving state-of-the-art results on the
DeepScoresV2 [8] and MUSCIMA++ [14] datasets.

Our research contributes to music object recognition and
has broader implications for tasks detecting small objects,
e.g., aerial imagery [15], aiming to offer valuable insights
and guidance to the computer vision community for ad-
dressing similar challenges across diverse domains.

2. Related Work
In recent years, music object detection has undergone a

significant transformation driven by notable advancements
in computer vision and deep learning fields. These ad-
vancements are facilitated by the availability of large an-
notated datasets, namely MUSCIMA++ [14] and Deep-
Scores [8, 16], as well as increased computational power.
As a result, Optical Music Recognition (OMR) research has
made significant progress in music score recognition and in-
terpretation.

Using Convolutional Neural Networks (CNNs) for im-
age analysis leads to significant advancements in vari-
ous domains, including OMR. This increases the devel-
opment of diverse object detection algorithms, which are
also suitable for the challenges of music object recogni-
tion. These algorithms are broadly categorized into two
main categories: one-stage detection and two-stage detec-
tion approaches. One-stage detection models, including
YOLO [17], SSD [18], and RetinaNet [19], directly gen-
erate category probabilities and coordinate positions of ob-
jects, resulting in faster detection speeds. On the other hand,
two-stage detection algorithms, e.g., Fast R-CNN [20],
Faster R-CNN [21], and R-FCN [22], offer higher detec-
tion accuracy, although at a slower speed.

In the field of music object detection, researchers employ
different object detection models on various datasets to de-
tect scores. Zaragoza et al. [1] propose the first CNN-based
staff detector and removal algorithm and, utilize CNNs
for binarization and detection of a small symbol set from
historical documents [2]. Hajič Jr and Pecina [3] employ
Faster R-CNN for detecting noteheads on handwritten mu-
sic scores. Pacha et al. [5] propose handwritten music ob-
ject detection utilizing Faster R-CNN, R-FCN, and SSD on
MUSCIMA++ dataset [14] by cropping scores. Zhang et al.

[7] introduce staff-line removal and a modified YOLO V4
architecture for page-level handwritten music object recog-
nition, but their reported results are based on 20 symbols
from the MUSCIMA++ dataset. They also conduct cus-
tom training and testing on cropped segments from music
scores, making direct comparisons impossible.

Pacha et al. [4] proposed a baseline method for mu-
sic score detection on full-page level utilizing various ob-
ject detection models, including Faster R-CNN, U-Net, and
RetinaNet, and evaluated their performance on different
datasets, including DeepScores and MUSCIMA++. Huang
et al. [10] proposed a one-stage object detection network
for OMR tasks using a dataset constructed from MuseScore
dataset incorporating a feature fusion mechanism within the
YOLO architecture. Hajič Jr et al. [23] employ a method
that involves segmenting the input score image into a bi-
nary image using a semantic segmentation model. This
binary image was then processed using a connected com-
ponent detector. Tuggener et al. [9] introduced the Deep
Watershed Detector, leveraging ResNets to predict dense
energy maps and directly process the entire image with-
out cropping each staff. While their method showed good
performance on small symbols, challenges such as inaccu-
rate bounding boxes and the detection of rare classes are
encountered. Tuggener et al. [8] utilize HRNets in order
to benefit from high-resolution representations as a back-
bone for Faster R-CNN on DeepScoresV2. Ru [11] utilize
YOLO V4 to detect noteheads for chord detection on Deep-
ScoresV2.

In conclusion, the integration of CNN-based object de-
tectors provides significant advances in music object recog-
nition, benefiting from annotated datasets and enhanced
computing power. However, unresolved questions per-
sist regarding training detectors using high-resolution full-
page dense music scores, cropping versus full-page training
choices, and the need for standardized benchmarks due to
varied study approaches, which demand further investiga-
tion.

3. Method
Our goal is to locate and classify music symbols on both

full-page high-resolution handwritten and printed scores.
We conduct a thorough analysis of detectors and backbones
for musical object detection, comparing their performance
in detecting objects within large images. The objective is to
uncover the strengths and limitations of these approaches,
focusing on accurately detecting musical objects.

3.1. Object Detectors

Our work incorporates a diverse set of object detec-
tors, including both CNN-based models, e.g., Faster R-CNN
and Cascade R-CNN, and a transformer-based model, e.g.,
DINO. These detectors allow us to explore and analyze the
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strengths and capabilities of different architectures for mu-
sic object detection.

Faster R-CNN [21] is a widely-used framework for de-
tecting objects based on deep learning and consists of two
components: a region proposal network (RPN) and a Fast
R-CNN detector. The RPN is a fully convolutional network
trained to generate region proposals for objects, while the
Fast R-CNN network classifies the object. Both the RPN
and the Fast R-CNN benefit from shared features trained
alternatively for either task.

Cascade R-CNN [13] is an object detection framework
that enhances detection accuracy by using a cascade struc-
ture with multiple stages. It builds upon Faster R-CNN and
refines object proposals using a resampling procedure and
multiple specialized regressors optimized on the resampled
distributions of the different stages, improving the quality
of object detection.

DINO [24] is an end-to-end transformer-based object
detector. Extension of DETR [25], The proposed DINO
model improves the training efficiency and the detection
performance by using contrastive denoising training, look
forward twice, and mixed query selection strategies. This
increases success in detecting small objects with great ac-
curacy.

3.2. Object Detection Backbones

We leverage state-of-the-art object detector backbones
for feature extraction to enhance the accuracy and robust-
ness of our music object detection framework. Specifically,
we employ HRNet and Inception ResNet V2, focusing on
feature extraction from high-resolution images, by follow-
ing the work of Tuggener et al. [8], and Pacha et al. [4],
respectively. We also propose to utilize the FocalNet and
Swin Transformer in music score recognition for the first
time. They demonstrate remarkable performance in COCO
benchmark [26] when used as backbones [12, 24, 27].

Inception - ResNet V2 [28] is an influential backbone
architecture widely used in object detection tasks. Combin-
ing the strengths of Inception and ResNet models, it utilizes
parallel and residual connections to enhance feature repre-
sentation and facilitate effective learning.

HRNet [29] has proven to be a highly effective back-
bone model when detecting small objects in large images.
Its unique architecture maintains high-resolution represen-
tations throughout the network, enabling precise localiza-
tion and improved feature extraction by leveraging multi-
scale information and preserving fine-grained details.

Swin Transformer [27] is a versatile vision transformer
with a hierarchical feature representation based on patch
merging as the network deepens. A swin Transformer block
is based on shifted windows where self-attention is com-
puted within non-overlapping local windows while main-
taining cross-window connections.

FocalNet [12] emerges as a powerful alternative to self-
attention mechanisms from Transformers in computer vi-
sion. It shows superior performance in various computer vi-
sion tasks, including image classification, object detection,
and segmentation, by employing a focal modulation mech-
anism instead of traditional self-attention methods while
maintaining similar computational costs.

4. Experimental Setup

This section provides a comprehensive overview of the
datasets used in our study, detailing their annotation setups
and the implementation specifics of our experiments. Fi-
nally, we explain the evaluation metrics employed to mea-
sure the performance of our proposed methods.

4.1. Datasets

In our evaluation of the object detection models, we
considered both the DeepScoresV2 dataset, comprising
printed musical scores, and the MUSCIMA++ dataset,
consisting of handwritten musical scores. By evaluating
the best combination of models and components identified
during the ablation study on the DeepScoresV2 dataset, we
provide comprehensive results on the performance of the
selected model on both printed and handwritten musical
scores, enriching our understanding of the generalization
capabilities across different music notation styles.

DeepScoresV2 [8] is a large artificial dataset for
Common Western Modern Notation (CWMN), compris-
ing 300,000 images with detailed annotations for symbol
classification, image segmentation, and object detection
tasks. A collection of MusicXML files sourced from Mus-
eScore [30], the dataset is rendered into images using five
unique fonts for visual diversity. The latest version, Deep-
ScoresV2, includes complete annotations, covering essen-
tial symbols, i.e., stems, beams, barlines, ledger lines, slurs.
Additionally, a denser version has been released, which in-
cludes 1,714 diverse and challenging images with annota-
tions compatible with the MUSCIMA++ dataset.

In this study, we use the dense edition of the Deep-
ScoresV2 dataset along with its MUSCIMA++ annotation
set, which encompasses a diverse range of 72 categories.
In order to prioritize the core objectives of OMR systems
research and focus on the critical aspects of music object
detection, we intentionally exclude 8 categories from our
investigation: beam, dynamicCrescendoHairpin, dynam-
icDiminuendoHairpin, slur, staff, stem, tremoloMark, tu-
ple. These categories, which can be efficiently identified
using grammatical rules, are effectively addressed by exist-
ing tools in the OMR field [31]. Additionally, accidental-
DoubleFlat, numeral, graceNoteAcciaccatura are not con-
sidered due to their absence in the test set.
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We observe a disparity in the presence of flag128s be-
tween the images and the MUSCIMA++ annotation set,
potentially causing confusion during flag detection. To
address this, we introduce two novel classes, flag128Up
and flag128Down, by incorporating them into the MUS-
CIMA++ annotation set and mirroring their definitions from
the DeepScores annotation set. This results in a unified an-
notation set with 63 categories, named Collabscore63, used
in our ablation study. However, to ensure comparability
within the scientific community, we also present results us-
ing the DeepScores annotation set in 136 categories, using
the best-performing architecture identified from the study.

The dataset encompasses distinct train and test splits,
consisting of 1,362 and 352 images, respectively. In our
ablation study, we construct a dedicated validation set
by randomly removing 176 images from the training set,
representing half the size of the test set.

MUSCIMA++ [14] dataset is comprised of 140 images
that showcase handwritten music notation. It boasts a Mu-
sic Notation Graph that features annotations, i.e., bound-
ing boxes, class labels, and image masks for all primitives.
This graph is also able to display the syntactic connections
among primitives through directed edges.

MUSCIMA++ is an extension of the CVC-
MUSCIMA [32] dataset, which holds 1,000 images
from 20 musical compositions that are copied by 50
different musicians. Furthermore, we strictly follow the
guidelines proposed in [14] for dataset partitioning. We
use V1 and V2 annotation versions depending on their
suitability for comparisons with state-of-the-art, containing
105 and 115 classes, respectively.

4.2. Implementation Details

In alignment with the DeepScoresV2 baseline [8], we
use Faster R-CNN and HRNet model with the same con-
figuration. The anchor generator in Cascade R-CNN fol-
lows the same specifications as Faster R-CNN. Images are
resized to 3000x2000 pixels denoted as resolution Resavg ,
which matches the average resolution of the dataset.

During the full-page training process on DeepScoresV2,
Faster R-CNN and Cascade R-CNN detectors are trained
using on-the-fly random cropped images of size 1000x500
pixels unless an alternative is explicitly specified. DINO
training is performed without any cropping strategy, as we
observe that DINO does not perform well when random
cropping is used. To be able to fit the GPU memory dur-
ing DINO trainings, images are resized to 0.75 times the
original resolution 2250x1500, denoted as Ressmall. It is
important to mention that random cropping is only applied
during training, while the entire music score is fed as input
during inference without any cropping, which enables us to
detect all musical symbols at the page level. Remarkably,

Table 1: Full-page level evaluation of Faster R-CNN - In-
ception ResNet V2 architecture trained on MUSCIMA++
V1 with 105 classes using cropped images and full-page
scores. Full-page training outperforms cropping-based
training in full-page evaluation, in other words, score level
evaluation. †: our reproduction

TEST ON CROPPED SCORES TEST ON FULL-PAGE SCORES

AP0.5 MAP AP0.5 MAP
STRATEGY MEAN W. MEAN MEAN W. MEAN MEAN W. MEAN MEAN W. MEAN

Cropping [5] 0.816 0.942 - - - - - -
Cropping [5]† 0.803 0.944 0.576 0.668 0.736 0.928 0.540 0.661
Full-Page - - - - 0.849 0.953 0.642 0.724

we intentionally exclude any other form of augmentation
or transformation during training to present the raw perfor-
mance of the architectures without any additional enhance-
ments.

In our full-page experiments on MUSCIMA++, the im-
ages are resized to 3500x2000 pixels, which is the average
resolution of the dataset, and trained on random cropped im-
ages of size 1000x500 pixels, similar to DeepScoresV2 ex-
periments. In our cropping experiments on MUSCIMA++,
we follow the approach used by Pacha et al. [5]. We create
the same cropped regions and annotations as they do and use
the Faster R-CNN model with Inception-ResNet-V2 back-
bone, which they found to have the best mAP. We resize the
input images to 580x350 pixels, which is the average res-
olution of the cropped images. To combine our detections
to evaluate on full-page level, we use NMS with an IoU
threshold of 0.8.

We conducted parallel training using four GPUs, specif-
ically utilizing Nvidia A100 GPUs for all DINO architec-
tures while employing Nvidia V100 GPUs for other tasks.
All the DINO trainings employ a batch size of 1, while
Faster R-CNN and Cascade R-CNN with HRNet and In-
ception ResNet V2 backbones use a batch size of 16. Cas-
cade R-CNN with FocalNet and Swin Transformer back-
bones employ a batch size of 8. HRNet backbone is config-
ured with V2p W32 configuration, while for FocalNet back-
bone base and tiny configurations are used and denoted as
FocalNetB and FocalNetT . In our experiments, we utilize
the SwinL configuration for the Swin Transformer, while
for DINO, we adopt the configuration that incorporates 5-
scale feature maps. All backbones are pretrained on the
Imagenet-1K [33], except Swin Transformer, which is pre-
trained on the Imagenet-22K [33].

The AdamW [34] optimizer with a learning rate of 10−4

is employed for training. We observe the weighted mean
Average Precision (mAP) on the validation set and multiply
the learning rate by 10−1 if there is no improvement for
five consecutive epochs. The minimum achievable learning
rate is set to 10−6, and training is stopped if the weighted
mAP of the validation set does not increase for the past eight
epochs for stability.
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4.3. Evaluation Metrics

In evaluating the object detection models, we use the
Average Precision (AP) metric and follow both Pascal
VOC [35] and COCO [26] evaluation protocols. The AP
considers precision and recall to provide an overall measure
of accuracy. To calculate mAP, as described in the COCO
protocol, we use 10 predefined IoU thresholds ranging from
0.50 to 0.95 with an increment of 0.05, then take their av-
erage. Additionally, we calculate AP at an IoU threshold
of 0.5, denoted as AP0.5, a widely accepted standard for
assessing object localization in various music score recog-
nition studies and used in Pascal VOC protocol. Finally, we
calculate these metrics class-wise and report their mean and
weighted mean values.

5. Results
In this section, we present the comprehensive results of

our music object recognition experiments, focusing on both
cropped and full-page images from the MUSCIMA++ and
full-page images from DeepScoresV2 datasets.

5.1. Full-Page vs. Cropping-Based Training

We reproduce the results with Faster R-CNN - Incep-
tion ResNet V2 on cropped images, following the approach
by [5] with the version of containing the staff lines. Fol-
lowing the work of [5], we used version V1 annotations of
the MUSCIMA++, having 105 classes on the training set.
Table 1 presents the full-page evaluation on MUSCIMA++
Test Set.

After verifying similar results on the cropped test set,
we combined the detections and evaluated them against the
original ground truths from the full-page test set. For the
full-page case, we employed the same architecture for train-
ing on the entire page. The only configuration difference
between full-page and cropping model architectures lies in
the training resolution and random cropping during training,
as detailed in Section 4.2.

The results demonstrate that even if the detector per-
forms well on individual cropped images, the performance
will degrade after merging. We observe that, after gener-
ating the cropped images, 3 classes are automatically lost
on the training set. More than that, on the test set, 5
more classes also disappear. The reason for this is that the
cropped regions are extracted by centering the staff lines.
This means that objects that are far away from the staff lines
are lost, e.g., arpeggio ”wobble”. Additionally, objects that
are likely to be wider, i.e., hairpin-cresc., hairpin-decr., are
cut in half and therefore not included. To ensure a fair com-
parison with the full-page model, we set the APs to 0 for
these classes, as the overall pipeline lacks the ability to learn
to detect them.

To show the issues with lost or cut objects are not the

Table 2: Comparison of Faster R-CNN and Cascade R-
CNN detectors with Inception ResNet V2, HRNet, Swin
Transformer (SwinL) and FocalNetB detectors on the Deep-
ScoresV2 Test Set with Collabscore63 annotation set.

AP0.5 MAP

ARCHITECTURE MEAN W. MEAN MEAN W. MEAN

Faster R-CNN - Inception R. V2 0.990 0.994 0.878 0.898
Faster R-CNN - HRNet 0.994 0.994 0.881 0.911
Cascade R-CNN - HRNet 0.993 0.992 0.920 0.939
Cascade R-CNN - SwinL 0.992 0.990 0.919 0.926
Cascade R-CNN - FocalNetB 0.996 0.992 0.929 0.940
DINO - FocalNetB 0.923 0.967 0.849 0.904

Table 3: Comparison of DINO on different resolutions and
random cropping area on the DeepScoresV2 Test Set with
Collabscore63 annotation set. The results demonstrate that
applying random cropping during training significantly de-
creases the detection success of DINO.

AP0.5 MAP

DETECTOR BACKBONE RESOLUTION CROPPING MEAN W. MEAN MEAN W. MEAN

DINO FocalNetB ResSmall ✗ 0.923 0.967 0.849 0.904
DINO FocalNetT ResSmall ✗ 0.924 0.968 0.847 0.902

DINOS FocalNetT ResSmall ✗ 0.918 0.967 0.840 0.901
DINOS FocalNetT ResAvg ✗ 0.914 0.968 0.865 0.924
DINOS FocalNetT ResAvg ✓ 0.642 0.736 0.468 0.478

only concerns, we additionally compute APs on the full-
page using only the objects that appear in the cropped test
set annotations after cropping by removing 5 mentioned
classes above from the test set. This evaluation yields mean
AP0.5 of 0.802, weighted mean AP0.5 of 0.937, mean mAP
of 0.582, and weighted mean mAP of 0.667. Despite the im-
provement observed in these results compared to the model
with cropped images in Table 1, it becomes apparent that the
model trained at a full-page level consistently outperforms
the model trained using cropped images during evaluation
on full-page scenario. This highlights the benefit of having
large contexts i.e., receptive fields, for music object detec-
tion.

5.2. Full-Page analysis

We explore music object detection at a full-page level.

5.2.1 Printed Music Object Detection

Table 2 provides a comprehensive analysis comparing the
performance of Faster R-CNN, Cascade R-CNN, and DINO
with HRNet and FocalNetB Backbones on DeepScoresV2
dataset with Collabscore63 annotation set. Notably, Cas-
cade R-CNN emerges as the top-performing detector, while
FocalNetB stands out as the superior backbone. Cascade
R-CNN benefits of multiple stages compared to Faster R-
CNN. Combining Cascade R-CNN and FocalNetB yields
the best overall results across various metrics.
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Table 4: Performance of different cropping configurations
on Cascade R-CNN - FocalNetB architecture on the Deep-
ScoresV2 Test Set with Collabscore63 annotation set.

AP0.5 MAP

TRAINING CROPPING SIZE MEAN W. MEAN MEAN W. MEAN

1000x500 pixels 0.996 0.992 0.929 0.940
1000x1000 pixels 0.989 0.989 0.934 0.949
1500x1000 pixels 0.992 0.994 0.916 0.938
2000x1000 pixels 0.990 0.990 0.920 0.940

Table 5: Comparison of the Impact of Targeted vs. Compre-
hensive Class Training using Cascade R-CNN - FocalNetB
architecture on DeepScoresV2 on 3000x2000 pixels input
resolution and 1000x500 random cropping during training.

AP0.5 mAP
Train Ann. Set Test Ann. Set Mean W. Mean Mean W. Mean
Collabscore63 Collabscore63 0.996 0.992 0.929 0.940
DS136 Collabscore63 0.835 0.670 0.773 0.625

In Table 3, we present the results obtained from the
DINO architecture and smaller DINO architecture, denoted
as DINOS , whose embedding and hidden dimensions are
divided by half, and also illustrate the negative effects of
employing random cropping during DINO training, high-
lighting a contrast with the performance of Cascade R-CNN
and Faster R-CNN presented in Table 2. Our observations
reveal that in our task, in contrast to common object de-
tection benchmarks, characterized by detecting small and
dense objects in high-resolution images, the sensitivity of
positional encoding to spatial disruptions and scale varia-
tions is increased due to training on random cropped images
and testing on full-page images strategy. Hence, we use the
full score for training without random cropping, requiring
significantly higher GPU memory. As a result, this prevents
us from using the best backbone we found according to Ta-
ble 2, FocalNetB with Resavg .

Furthermore, our experiments reveal that the success rate
decreases as the image resolution is reduced. This obser-
vation also suggests that if we can accommodate the GPU
memory requirements of the original DINO detector with
FocalNetB backbone by applying Resavg to the input, we
may achieve significantly better results with DINO. To en-
sure a fair comparison and show the effect of the resolution,
we utilize a smaller FocalNetT backbone when evaluating
the DINO detector trained by Ressmall and Resavg . Still, it
can perform lower in our task, which can be related to insuf-
ficient data for a transformer to achieve convergence [36].
Until now, employing DINO as the detector is less appro-
priate than Cascade R-CNN on DeepScoresV2.

Table 4 presents the impact of various cropping resolu-
tions on the performance. The evaluation was conducted

Table 6: Evaluation on DeepScoresV2 with DeepScores
Annotation Set (136 Classes) demonstrates Cascade R-
CNN - FocalNetB outperforming other listed architectures
at 3000x2000 pixels resolution with 1000x500 random
cropping, achieving state-of-the-art results. Increasing in-
put resolution and using optimal random cropping on train-
ing further improves performance. †: our reproduction. ⋆:
5500x4000 pixels input and 1000x1000 random cropping.
DWD: Deep Watershed Detector.

AP0.5 MAP

ARCHITECTURE MEAN W. MEAN MEAN W. MEAN

DWD - ResNet101 [9] 0.503 0.422 0.203 0.422
Faster R-CNN - Inception R. V2 [4]† 0.939 0.724 0.827 0.641
Faster R-CNN - HRNet [9] 0.799 0.676 0.700 0.608
Faster R-CNN - HRNet [9]† 0.946 0.726 0.828 0.651

Cascade R-CNN - FocalNetB 0.977 0.725 0.902 0.679
Cascade R-CNN - FocalNetB ⋆ 0.981 0.729 0.940 0.700

using the Cascade R-CNN - FocalNetB architecture, which
exhibited the highest Weighted mAP as shown in Table 2.
In addition to the 1000x500 pixels cropping area men-
tioned in Table 2, we also incorporated 1000x1000 pixels,
1500x1000 pixels, and 2000x1000 pixels cropped regions in
our analysis. Interestingly, our findings reveal that increas-
ing the area of the random cropping does not yield a linear
improvement in performance in the Cascade R-CNN detec-
tor. We also examine APs for individual symbols between
1000x500 pixels and 1000x1000 pixels, noting a general in-
crease but no substantial improvement for any specific ob-
ject.

In Table 5, we highlight the advantages of training the
music object detection pipeline with only the symbols we
consider necessary to recognize, as opposed to training with
all the symbols from the labeling. This narrowed training
approach yields higher performance, demonstrating the im-
portance of targeted symbol selection.

In order to establish comparability within the scien-
tific community, we provide our findings on the Deep-
Scores Annotation Set, which comprises 136 classes, in Ta-
ble 6. Pacha et al. [4] propose utilizing Faster R-CNN - In-
ception ResNetV2 architecture for DeepScoresV1 as full-
page detector; since we are working on DeepScoresV2, we
employ the same architecture to evaluate and report results,
allowing for direct comparisons with their approach. The
achieved reproduction of Faster R-CNN - HRNet config-
uration surpasses the reported results [9], possibly due to
our training meta parameters, detailed in Section 4.2. Once
more, among the various architectures, the configuration of
Cascade R-CNN - FocalNetB proves to be the most effec-
tive choice within this annotation set by obtaining state-of-
the-art results on DeepScoresV2. Moreover, by employing
the highest resolution along with optimal random cropping
during training leads to improved outcomes.
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Table 7: Evaluation on MUSCIMA++ V2 Test Set demon-
strates Cascade R-CNN - FocalNetB outperforming Faster
R-CNN - Inception ResNet V2 at 3500x2000 pixels res-
olution with 1000x500 random cropping size, achieving
state-of-the-art results. Increasing resolution and using op-
timal random cropping on training further improves perfor-
mance. †: our reproduction. ⋆: 3500x2500 pixels input and
1000x1000 random crop.

AP0.5 MAP
ARCHITECTURE MEAN W. MEAN MEAN W. MEAN

Faster R-CNN - Inception R. V2 [4]† 0.849 0.953 0.642 0.724
Cascade R-CNN - FocalNetB 0.882 0.965 0.787 0.789
Cascade R-CNN - FocalNetB ⋆ 0.882 0.964 0.790 0.793

5.2.2 Handwritten Music Object Detection

We evaluate the Cascade R-CNN and FocalNetB combi-
nation on a handwritten music dataset. Table 7 show-
cases the results obtained using the architecture with ex-
isting approaches on the MUSCIMA++ dataset on V2 an-
notation set. To facilitate a fair comparison with these
approaches, we utilize the MUSCIMA++ V2 annotation
set. Pacha et al. [4] trained the Faster R-CNN with Incep-
tion ResNet V2 architecture at a lower resolution and ob-
tain 0.039 mAP and 0.079 weighted mAP. In contrast, we
employ the same architecture with the average resolution
of the dataset, achieving higher results. Furthermore, the
study by Shatri and Fazekas [37] reproduces this architec-
ture on MUSCIMA++, further confirming the correctness
of our chosen settings. These results solidify the prowess
of the Cascade R-CNN - FocalNet architecture in hand-
written music score recognition, as it demonstrates state-
of-the-art performance across all annotated symbols within
the MUSCIMA++ V2 dataset. Similar to the observations
in Table 6, using the maximum resolution with an optimal
random cropping strategy during training increases the de-
tection performance.

Figure 1 shows sample detections from the test sets of
both the DeepScoresV2 and MUSCIMA++ datasets. In
the DeepScoresV2, objects like stems often pose challenges
due to their narrow width, approaching a single pixel, mak-
ing them difficult to detect accurately. Moreover, given our
optimization of the detector for the Collabscore63 annota-
tion set, which also excludes stems, this outcome is ex-
pected. In contrast, MUSCIMA++ presents an opposite sce-
nario. Despite stems having greater width due to handwrit-
ten nature, the inclusion of handwritten symbols introduces
higher variability, leading to occasional detection failures.

6. Conclusion

In conclusion, our study provides a comprehensive anal-
ysis of three object detection models and four backbones for
music object recognition on printed scores. We highlight
the importance of page-level training and testing compared
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Figure 1: Illustrating exemplary detection results achieved
by the Cascade R-CNN - FocalNetB architectures on the
DeepScoresV2 and MUSCIMA++ datasets. The showcased
images are selectively cropped to ensure optimal readability
of the detected elements.

to cropping-based approaches. We also observe that the de-
tection performance is improved by reducing and grouping
music object categories. Nevertheless, specific objects, e.g.,
stems, still pose a challenge, even with the most successful
detectors. This emphasizes the need for future work inte-
grating syntactic musical score recognition with object de-
tectors to achieve a complete and functional optical music
recognition system.

Our findings also reveal the superiority of the Cascade R-
CNN model with the FocalNetB backbone, achieving state-
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of-the-art results across multiple evaluation metrics for both
printed and handwritten music scores on the DeepScoresV2
and MUSCIMA++ datasets. Despite promising results in
general object detection, we show that Transformers, e.g.,
DINO, does not perform as well as expected in detecting
small objects in high-resolution images, such as in music
score recognition.

This work not only contributes insights into music ob-
ject recognition but also suggests promising directions for
future research, including improving transformer-based de-
tectors for small object detection, extending our approach
to other music recognition datasets, and enhancing model
robustness.

Acknowledgments
This work was performed using HPC resources from GENCI-IDRIS

(Grant 2023-AD011012867R1) and funded by the French National Re-
search Agency (ANR), under Grant ANR CollabScore ANR-20-CE27-
0014.

References
[1] J. C. Zaragoza, A. Pertusa, J. Oncina, Staff-line detection

and removal using a convolutional neural network, Mach.
Vis. Appl. (2017). doi:10.1007/s00138-017-0844-4.

[2] J. C. Zaragoza, G. Vigliensoni, I. Fujinaga, A machine learn-
ing framework for the categorization of elements in images
of musical documents, in: Proc. TENOR, 2017, pp. 17–23.
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