N

N

Sound Abstract Nonexploitability Analysis

Francesco Parolini, Antoine Miné

» To cite this version:

‘ Francesco Parolini, Antoine Miné. Sound Abstract Nonexploitability Analysis. 2023. hal-04268105

HAL Id: hal-04268105
https://hal.science/hal-04268105v1

Preprint submitted on 2 Nov 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04268105v1
https://hal.archives-ouvertes.fr

Sound Abstract Nonexploitability Analysis

i[0000700027107777812] 0000—0002—6375—3179]

Francesco Parolin and Antoine Minél

Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{francesco.parolini, antoine.mine}@lip6.fr

Abstract. Runtime errors that can be triggered by an attacker are sen-
sibly more dangerous than others, as they not only result in program
failure, but can also be exploited and lead to security breaches such as
Denial-of-Service attacks or remote code execution. Proving the absence
of exploitable runtime errors is challenging, as it involves combining clas-
sic techniques for safety with novel security analyses. While numerous
approaches to statically detect runtime errors have been proposed, they
lack the ability to classify program failures as potentially exploitable or
not. In this paper, we bridge the gap between traditional safety proper-
ties and security hyperproperties by putting forward a novel definition
of nonexploitability, which we leverage to propose a sound static analysis
by abstract interpretation to prove the absence of exploitable runtime
errors. While false alarms can occur, if our analysis determines that a
program is nonexploitable, then there is a strong mathematical guarantee
that it is smpossible for an attacker to trigger a runtime error. Further-
more, our analysis reduces the noise generated from false positives by
classifying each warning as security-critical or not. We implemented the
first nonexploitability analyzer for a subset of C, and we evaluated it on
a set of 77 real-world programs taken from the GNU Coreutils package
that are long up to 4,188 lines of code. Our analysis was able to prove
that more than 70% of the runtime errors previously reported (3,498 over
4,715) cannot be triggered by an attacker.

Keywords: Security and Privacy - Static Analysis - Abstract Interpre-
tation.

1 Introduction

Program failures that can be triggered by a malicious user are sensibly more
dangerous than others, as they can lead to security breaches. Attackers can ex-
ploit well-known runtime errors, such as index out-of-bounds and double free, to
perform dangerous attacks including Denial-of-Service (DoS) attacks or remote
code execution. Numerous companies identified such exploitable vulnerabilities
in their systems, including Meta [5], Apple [4], and Google [6]. Microsoft recently
published a report showing that consistently over 20 years, around 70% of the
security breaches that have been reported in their systems are due to exploitable
memory corruption [10]. As it is difficult to identify program errors with manual
inspection, static analysis is an invaluable tool to automatically detect them.

2 F. Parolini and A. Miné

While sound static analyzers can report all possible runtime errors, including
the exploitable ones, they often raise a high number of false positives. If the noise
generated by the false alarms is elevated, the report of the analyzer quickly
becomes unintelligible, and it is then difficult to identify the true exploitable
runtime errors. In order to filter out the warnings that do not concern security
issues, it is necessary to combine a traditional analysis for safety properties with
a security analysis for hyperproperties [21].

In this paper, we bridge the gap between classic safety and security. We
first formalize nonexploitability as a hyperproperty, and then we propose an
alternative characterization based on semantically tainted (i.e. user-controlled)
variables. We leverage such a characterization to put forward a sound analysis
by abstract interpretation [26] that can prove the absence of exploitable runtime
errors. Our analysis has the capability to classify each warning by its threat level
(security-related or not), which makes the report of the analyzer more intelligible.

We leverage an underlying abstract value domain to infer numeric invariants,
which we pair with a semantic taint analysis that tracks the set of user-controlled
variables. Combining the two is necessary in order to infer an overapproxima-
tion of the exploitable runtime errors. By taking advantage of the semantic
information inferred by the abstract numeric domain, our taint analysis achieves
enhanced precision compared to traditional methods. Furthermore, our frame-
work can handle programming language features that are essential to analyze
real-world programs, such as nondeterminism and runtime user input.

We implemented and evaluated the first analyzer for nonexploitability in the
Morsa [38] static analysis platform. The analysis targets a large subset of C
and it is fully automatic. We analyzed 77 real-world programs, each up to 4,188
lines long, taken from the GNU Coreutils package, to which we added 13,261
test cases taken from the Juliet test suite developed by NIST [9]. We found that
our tool can prove that more than 70% of the warnings previously raised by the
analyzer (3,498 over 4,715) cannot be triggered by an attacker, while incurring
a performance overhead of less than 16%.

In this paper, we claim the following contributions:

— We introduce a novel property, nonexploitability, and we give its semantic
characterization as a hyperproperty.

— We put forward an alternative characterization of nonexploitability in terms
of semantically tainted (i.e. user-controlled) variables.

— We introduce a new practical, modular analysis that combines a traditional
value analysis with a taint analysis to prove nonexploitabilty.

— We implement our analysis and evaluate it on a large set of real-world C
programs.

2 Motivation

Figure[l|represents an exploitable program where a buffer overflow can occur
depending on the user’s input. A malicious user can take advantage of this type
of vulnerability to execute sophisticated, dangerous attacks. There are numerous

Sound Abstract Nonexploitability Analysis 3

1 #include <stdio.h>

2 #include <string.h>

3

4 void use_input(const char* input) {
5 char dest [10];

6 strcpy (dest, input);

7

8

9 void main() {

10 char buff [100];

11 fgets (buff, sizeof (buff), stdin);
12 use_input (buff) ;

13}

Fig. 1: C program with exploitable buffer overflow

examples of well-known attacks that exploit runtime errors: among them we find
the Morris Worm [48], Code Red [19], SQL Slammer [54], and Heartbleed [29].
Many companies detected exploitable runtime errors in their products, for in-
stance Adobe [2], NVIDIA [3], Apple [4], Meta [5], and Google [6]. Microsoft
recently published a report that shows that around 70% of the security vul-
nerabilities that they found in their systems are due to exploitable memory
corruption [I0].

While techniques such as testing and human inspection by security experts
are useful to detect (exploitable) runtime errors, the only option to rule out their
existence is through formal methods. In particular, abstract interpretation [26]
has been effective in proving the absence of program failures in real-time avionics
software [23]. While analyses by abstract interpretation are sound, they can often
raise false positives. If the noise generated by the false alarms is too high, the
analyzer quickly becomes unusable.

Reducing the number of false alarms is usually achieved by employing more
precise abstract domains. This paper takes an orthogonal approach to the prob-
lem, reducing the number of alarms by reporting the subset of possible runtime
errors that can be triggered by an attacker. As these errors are comparatively
more dangerous than the others, the report of the analyzer becomes more intel-
ligible, enhancing the usefulness of sound static analysis tools. Girol et al. make
the same observation, leveraging the concept of robust reachability to identify
errors that are relatively more dangerous [31]. A bug is robustly reachable if there
exists a user input for which the bug is always reached, regardless of the value of
the uncontrolled input. The main difference with our concept of exploitability,
is that we require the user input to be actually used in triggering the bug, while
strong reachability does not (see Section [§] for a detailed comparison).

Taint analysis is a popular technique used in computer security to track the
flow of untrusted data within a program, and we leverage this method to prove
nonexploitability. While taint analyzers often rely on heuristics to track the flow
of unsafe data [13], our approach is semantic, namely grounded in a definition
based on the formal semantics of programs. While formal methods techniques
extensively studied the verification of security properties such as noninterfer-

4 F. Parolini and A. Miné

=3 (Programs)

= skip | x < input() | x < rand() |x — A (Statements)
|S; S| if (B) SelseS | while (B) S

= n| x|AcA(ce{+-,%/}) (Arithmetic Expressions)

B:=1tt |ff|A<A|-B|BoB (ce{&&|I}) (Boolean Expressions)

Fig. 2: Syntax of the WHILE language

ence [22I32133], the exploitability analysis is, to the best of our knowledge, unin-
vestigated (see Section [§]for a comparison). This paper bridges the gap between
classic safety properties analysis and security hyperproperties [2I] in order to
rule out the existence of exploitable runtime errors from a software system. Our
approach is closely related to [24], which proposes a technique that can prove
noninterference using the abstract interpretation framework. Nevertheless, our
technique supports features such as nondeterminism and dynamic user input
that are not considered in [24]. Furthermore, we leverage the values of the vari-
ables to enhance the precision of our analysis, which is an extension proposed
but not implemented in [24].

3 Syntax and concrete semantics

In this section, we define a reachability semantics that computes the set of reach-
able program states. As we are interested in program errors, the semantics also
collects the set of error states. The finite set of program variables is denoted as V,
and in Figure [2] we present the syntax of the WHILE language that we consider.

Expressions are deterministic, and nondeterminism is isolated in the language
in specific statements (rand, input) to simplify the presentation. We define the
set of program memories as M = V — Z. The value 4 represents a runtime
error, and Z, = Z u {4}. The arithmetic evaluation AJA] : M — Z. definition is
straightforward: it results in an error if there is a division by zero. For illustration
purposes, we consider only runtime failures arising from divisions by zero, but
our implementation supports all classic C arithmetic and memory errors. The set
Bis {tt,ff }, and B, = B u {4}. The boolean evaluation B[B] : M — B, results
in a runtime error if the arithmetic evaluation results in a runtime error. The
definitions of A[A] and B[B] are standard, and they are reported in Appendix [A]

The program states are triplets (m,i,r) € Mx Z¥ x Z* = S. The first element
is the program memory, the second is the unbounded sequence of inputs provided
by the user, and the third is the unbounded sequence of random numbers. We
explicitly represent states in which a runtime error occurred by setting a special
return variable to 1. All error-free states have the return variable, denoted as
ret, set to 0. Programs cannot read nor write explicitly to ret, as it cannot syn-

Sound Abstract Nonexploitability Analysis 5

tactically appear in statements. Our semantics relies on pairs of initial-reachable
states. A set of initial-reachable states is a relation R € p(S x S) = D.

In this section, we will define the reachability semantics of statements S[3] :
(D x D) — (D x D) by induction. The first element in the input pair is the set of
pre-post states that reach the current statement without encountering an error,
while the second is the set of pre-post states that previously resulted in an error.
S[S](R, &) outputs both the reachable and the error states after executing S.
The set of initial states is I = { ((m,i,r), (m,i,7)) | (m,i,r) € S,m[ret] = 0}.
We define the semantics of programs S[P] € D by merging the reachable states
at the end of the program with those that resulted in an error. Let P := S.

S[P] = let (R, &) = S[S](J, &) in R L &

We now define by structural induction the reachability semantics of state-
ments. As the definitions for skip and S;; Se are standard, we do not report
them. For the input read statement, we update the memory by assigning the
first number in the infinite input sequence to the assigned variable, and then we
shift the input sequence. The operator o denotes the relation composition, while
hd and t1 respectively extract the head and the tail of a sequence.

Input read statement (S :=x < input()).

S[SI(R, &) = (Ro {((m,i,r), (m[x —hd(i)], £1(:),7) | (m,i,7) € S) }, €)

The random read statement is similar to the input read statement, but uses
the infinite sequence of random numbers.

Random read statement (S := x « rand()).

SIS](R, &) = (Ro{((m,i,r), (m[x « hd(r)],i,t1(r)) | (m,i,r) €S)},E)

Assignments can result in errors, which in our semantics are represented
as states where ret is 1. If a runtime error occurs, the program sets ret to
1 and adds the state to the second element of the output pair. Error states
are collected throughout the execution, and are propagated at the end of the
program even in case of non-termination. Note, however, that non-termination
is not considered to be an error. We define ok[A] : D — D and err[A] : D — D
to collect respectively regular and error states in the evaluation of A.

ok[A]R = Ro {((m,i,r), (m[x — A[A]m],i,7)) | (m,i,r) € S, A[Alm # %}
err[A]R = Ro {((m,i,r), (m[ret — 1],4,7)) | (m,3,7) € S, A[A]m =%}

Assignment statement (S = x < A)

S[S](R, &) = (ok[A]R, & U err[A]R)

6 F. Parolini and A. Miné

We define test[B] : D — D to filter states according to a boolean condition B:
test[B]R = Ro {((m,i,r), (m,i,7)) | (m,i,7) € S, B[B]m = tt}. We abuse the
notation, and we use err[B] for the boolean evaluation of errors.

If statement (S := if (B) S;elseS,)
S[SI(R, &) = let (R, &) = 8[S¢](test[B]R, &) in
let (Re, Ec) = 8[Se](test[-B[R, E) in
(Rt U Re, €4 U Ec U err[B]R)

The semantics of while statements is a classic fixpoint definition. The oper-
ator U denotes the point-wise set union on pairs. For the rest of the paper, we
denote the point-wise lifting of operator ¢ to tuples as .

While statement (S := while (B) Sp)

S[SJ(R, &) = let (fRf, Sf) =Ifp F in (teStHﬂB]]fRf, Ef)
where F(Ry,&1) = (R, &) U §[if (B) Spelse skip](Ry, Eq)

4 Nonexploitability

In this section, we first give a formal definition of nonexploitability as a hyper-
property [2I]. Then, we put forward an alternative characterization based on
semantically tainted (i.e. user-controlled) variables, which we leverage to intro-
duce a sound, effective analysis for nonexploitability. The proofs of the theoretical
results are reported in Appendix [B]

Nonexploitability formalizes the idea that by modifying only the user input
at the beginning of a program, it is not possible to change whether the program
results in a runtime error or not. Since we designed our concrete semantics to
explicitly represent runtime errors as states with the return variable set to 1, we
use program memories to differentiate erroneous states from regular ones.

Definition 1 (Nonexploitability).

NE = {R e D|V((mo,io,T0), (m1,i1,71)), ((mg,ig,70), (M, i7,77)) € R :

mo = myg,io # 4,70 =1y = my[ret] = m)[ret]}

Example 1. Accordingly to our definition, the following program is exploitable:
x « input(); 1/x. This is because if we consider two initial states, one in
which the first element of the input sequence is zero, and the other in which
it is not, we observe that the value of ret changes. Conversely, the program
x «— rand(); 1/x is nonexploitable: even if there is a possible division by zero,
once we fix the sequence of random numbers, changing the user input does not
result in modifying the value of ret. If we did not compare pairs of initial states
with the same sequence of random numbers, the program would be exploitable,
even if the user input is never read.

Sound Abstract Nonexploitability Analysis 7

Ezample 2 (Comparison with robust reachability [31]). A bug is robustly reach-
able if there exists a user input for which the bug is always reached, regardless
of the value of the random input. Consider a program that always results in a
division by zero: 1/0. The program is nonexploitable: for any possible user input,
the value of ret will always be 1. Conversely, the error is robustly reachable,
as it is trivially reached for any user input. This highlights an important differ-
ence between the two concepts: nonexploitability requires the user input to be
effectively used in triggering program errors, while robust reachability does not.

In what follows, we show that nonexploitability can be expressed in terms of
semantically tainted variables. Intuitively, a variable is tainted if an attacker can
control its value. Taint analysis [39] is a well-known technique in computer secu-
rity to track the variables that are controlled by external users. However, many
existing approaches use heuristics and syntactic formulations of the problem,
which may be both imprecise and unsound. In contrast, we rely on a semantic
approach, which is grounded in the formal semantics of programs. The follow-
ing hyperproperty captures the set of semantics where the value of a variable x
depends on the user’s input, i.e. x is tainted. We compare pairs of executions
that in the initial states differ only for the user’s input, but then result in differ-
ent values for x. The definition formalizes the intuition that x is tainted if, by
modifying only the user input, it is possible to change the value of x.

Definition 2 (Taint). LetxeV.

7V - (D)
g(x) = {R eb | E'((mo,io,To), (mhil’rl))a ((m6ai65T6)a (mllvz/hr/l)) ER:

mo = my,ig # i, o = T : My [x] # my[x]}

We define abstraction and concretization functions for (V).

a; : (D) — p(V) Yt : (V) — p(D)
(%) = {xeV|Z< T(x)} W@ = (7
xeT

As it turns out, there is a Galois connection (p(D), <) ‘%—1> (p(V), 2) between
p(D) and p(V) defined by «; and ;. The order for the abstract domain p(V) is 2
because if we consider more relations, we obtain fewer tainted variables common
to all of these relations. Notice that this is different from observing that larger
relations present more tainted variables, which will be discussed later in this

section. A variable x is tainted in a program P if x € o ({S[P]}).

Ezample 8 (Implicit flows). If statements can generate implicit flows [28], namely
dependencies that arise from the program control flow. Consider the following:
X < input(); if (x==0) y < 1 else y <« 2. Depending on the user’s input, y
can be either 1 or 2, and accordingly to our semantic characterization of tainted
variables, y is tainted. Taint analyzers (e.g. [7I8II3I56]) often ignore implicit

8 F. Parolini and A. Miné

flows, considering only explicit flows (i.e. when tainting is propagated through
assignments only), which is unsound in our framework. In the analysis described
in Section[6] we develop an abstraction that does take implicit flows into account.

If the user cannot control the value of ret, then they cannot control whether
there is a runtime error, i.e. the program is nonexploitable. This is the funda-
mental observation used in the following alternative characterization of A&

ReNE < ret ¢ ar({R}) (1)

Equation is significant because it shows that nonexploitability can be veri-
fied with a taint analysis. In contrast to classic taint analyses, simply tracking
the set of user-controlled variables is not sufficient, as to infer whether ret is
tainted we also need to detect runtime errors. In fact, ret does not syntactically
appear in programs, and its value changes only when program failures occur.
To determine when this happens, is it important to consider the wvalues of the
variables. Without semantic information about the values of the variables, every
expression with a division should be considered dangerous in order to be sound,
and this would result in an unacceptable loss of precision. In Section [6] we put
forward a sound analysis by abstract interpretation that can prove programs to
be nonexploitable by combining a classic value analysis with a taint analysis.
The former detects program locations that potentially present runtime errors,
while the latter determines whether the user can trigger those errors.

Hyperproperties verification is challenging for analyses based on abstract
interpretation, because not every hyperproperty is subset-closed [21]: by com-
puting an overapproximation R; of Ry, the fact that R; respects an hyperprop-
erty does not, in the general case, imply that Ry respects the hyperproperty.
To overcome this problem, many works rely on hypersemantics [40/4TI42I5914]:
the concrete semantics of a program is a set of sets of states, in contrast to a
classic set of states. The main disadvantage of hypersemantics is that hyper-
domains [40J41142] are incompatible with regular abstract domains: the former
abstract hypersemantics, while the latter abstract regular semantics.

In this paper, we rely on the standard abstract interpretation framework.
In the rest of this section, we show that an overapproximation of the concrete
semantics is sufficient to prove nonexploitability. A significant benefit of using
the standard framework is that we can combine a taint analysis with any existing
over-approximating value domain, which leads to a modular design. Furthermore,
enhancing the precision of the numeric analysis improves the precision of the
taint analysis as well. Observe that, as discussed in this section, in our context,
it is important to rely on a classic safety analysis (and hence, on regular abstract
numeric domains) to identify expressions that potentially present runtime errors.

We observe that larger semantics have more tainted variables. This holds due
to the existential quantifier in Definition [2] Let Ro, Ry € D.

Ro € Ry = a({Ro}) € aur({Ra}) (2)

By using this result, we observe that if ret is not tainted in Rq, it cannot be
tainted in Ry. This implies that if R; is nonexploitable, then R is nonexploitable,
namely .#& is subset-closed.

Sound Abstract Nonexploitability Analysis 9

Theorem 1 (A& is subset-closed). Let Ry, Ry € D.

(:RogiRl andeleJV(g’) = Rge NE

Theorem [l is significant because it implies that by overapproximating the
semantics of a program, we can still prove that it is nonexploitable. This justifies
why the standard abstract interpretation framework is sufficient, and allows
using the large library of existing abstract value domains. The theorem formalizes
the intuition that if it is not possible for an attacker to trigger any runtime error,
by further reducing the semantics of the program—and hence the capabilities of
the attacker—he is still not able to make the program fail.

5 Taint concrete semantics

In this section, we define the non-computable concrete taint semantics that we
overapproximate in Section [6] The semantics associates the reachable states with
the set of semantically tainted variables using the abstraction function a;. As
the semantics is not structural (i.e. defined by induction on the program syntax),
we also develop a structural equivalent definition. This is necessary in order to
overapproximate the concrete taint semantics with an inductive and effectively
computable abstract semantics.

We first define the reachability taint semantics of statements 8,[S] : (D x
D) — (D x D x p(V)). This semantics associates each statement with its set of
truly tainted variables by relying on ay.

S:ISI(R, &) = let (Ry, €1) = S[S](R, &) in (Ry, &1, e ({ Ry }))

We then define the reachability taint semantics for programs 8;[P] € D x p(V).
As regular and erroneous states are merged at the end of programs, we use a;
to obtain the tainted variables in the union. Let P := S.

Si[P] = let (R, €,T) = 8,[S](J, @) in (RU &, T U ae({R U €}))

Observe that only at the end of the program ret can become tainted: regular
and erroneous states are partitioned in the semantics for statements, so that
ret is always constant (0 for the normal executions and 1 for the others). The
program P is then nonexploitable iff ret is not tainted in S;[P].

Ezxample 4. The statement x < rand() can taint x if there are two executions
in which the sequence of random numbers is out-of-sync due to a user action.
This is because in the definition of .7 we compare pairs of execution with the
same sequence of random numbers. Consider the following program:

x —input(); if (x '= 00 { y < rand() }; z < rand()

The user can control whether z is assigned to the first or the second number in
the random sequence. If we fix as random sequence 1,2, ..., we can observe that
z can be either 1 or 2 at the end of the program, depending on the user’s input.

10 F. Parolini and A. Miné

1 void main() {

2 if (getchar() == ’a’)
3 rand () ;

4 int z = rand();

5

}

Fig. 3: C program that reads pseudo-random numbers

Observe that this behaviour is relevant in scenarios where the attacker has
partial knowledge about the uncontrolled random input. For instance, consider
the program in Figure where the application first reads a character from
standard input. If the character is a, the program reads the first pseudo-random
number, and then it assigns z to rand (). As the sequence of random numbers has
not been initialized, it does not change and could be predicted across different
executions. The user can make the program assign z to the first or second number
in the sequence, being able to influence the assigned value. Another relevant
case is when a program reads a file with unmodifiable but public content. If an
attacker can control which bytes are read, then they can influence the execution
of the program without even modifying the contents of the file.

The fact that random read statements can potentially taint the assigned
variable directly derives from our semantic definition of 7. By changing the
definition of .77, it is possible to choose whether random read statements can
taint assigned variables. We make the choice to use random read statements as
potential sources of tainted data because, in a context in which an attacker has
(partial) knowledge about the unmodifiable pseudo-random input, such state-
ments can be exploited to influence the execution of the program. While it would
be possible to support the classic model where the attacker has no knowledge
about the random input, this is less interesting in a context where security is
considered fundamental.

As we want to overapproximate the concrete taint semantics by induction on
the program structure, we give a structural equivalent definition of 8;[S]. The
non-computable semantics $;[S] : (D x D x p(V)) — (D x D x p(V)) inductively
collects the truly tainted variables. The semantics takes as additional input pa-
rameter the set of previously tainted variables, which are used to infer the set of
tainted variables after the execution of the statement. Due to space constraints,
here we present only the definition for assignments. The full definition of the
structural taint semantics is reported in Appendix [C]

Sound Abstract Nonexploitability Analysis 11

Assignment statement (S = x < A)

8:[S)(R, &,T) =
let (Ry,&1) = S[S](R, &) in
let Ty ={yeT|y#x}u
{x]3((mo, o, 70), (m1,i1,71)), (Mg, i, 75), (M3, 8,71)) € R:
mo = my, o # i, To = 14 : 5 # A[A]my # A[A]m) # 4} in
(Re, €1,7T1)

We define the concrete inductive taint semantics for program P := S as follows.
8$:[P] = let (R,&,T) = 8[8](J, &, &) in (RUETua({RUEY}))

The following result formalizes that $;[P] and 8;[P] are equivalent.

Theorem 2 (Correctness of 8;[P]). 8,[P] = 8,[P]

6 Taint abstract semantics

In this section, we introduce a computable sound overapproximation of the taint
semantics presented in Section[5] This abstraction of the concrete non-computable
semantics is parametric in the underlying abstract domain used to overapproxia-
mate the values of the variables. In contrast to traditional techniques, we leverage
numeric invariants to improve the precision of the taint analysis.

Let D! be the abstract domain used to overapproximate D, and 74 : Df — D
be the concretization functionﬂ The domain D! is equipped with partial or-
der QZ and abstract join ufl, while Lﬁd is the bottom element. We assume
Sg[[S]] . (D* x D¥) — (D¥ x D) given by the numeric domain to be a sound com-
putable abstraction of S[S]: VRY, &% € D¥ : S[S](Ja(RY, &1)) & 4a(S%[S](RY, €)).
The abstract value domain also exposes the abstract functions test?[B] and
errﬁ[Bﬂ to overapproximate the concrete ones.

In the rest of the section, we structurally define the abstract taint semantics
84[8] : (DF x Df x p(V)) — (D x D* x p(V)). The semantics collects an overap-
proximation of the reachable states, the error states, and the tainted variables.
The concretization function 7 : (D¥ x Df x p(V)) — (D x D x p(V)) is defined
as Y(RE EL TH) 2 (7q(R), v4(EF), TH). The soundness criterion states that the
abstract semantics exhibits more tainted variables than those in the concrete
semantics 8;[S]. Let R¥, &F € D¥ T¥ € p(V).

Si[ST(v(R?, €F,T%)) S y(SE[S](R?, €%, 7)) (3)

1 While the concrete semantics is defined as a set of input-output relations to express
nonexploitability, in the numeric abstraction it is possible to use numeric domains
that abstract sets of states by abstracting only the image of the relations, and then
consider each possible state as initial in the concretization.

12 F. Parolini and A. Miné

In our abstract semantics, we taint ret every time there is a possible runtime
error due to user input. This ensures that if ret is untainted in Sg [8], it will
be untainted at the end of the program, i.e. the program is nonexploitable. Let
P := S, and let % € D! be an overapproximation of the set of initial states, namely
J < va(9%). Let (RY, &4, 7%) = S¥[s] (%, L%, &).

ret ¢ T8 — S§[P] € A& (4)

In the rest of this section, we define by structural induction S:[S]. The
abstract semantics collects an overapproximation of the tainted variables, and
specifically taints ret whenever a runtime error potentially caused by the user
occurs. We will take advantage of the helper function taint®[A] : (Dfx p(V)) — B
that returns £f only if the result of the evaluation of A definitely does not de-
pend on tainted variables. Standard value-insensitive taint analyses ignore the
values of the variables and simply return tt if a tainted variable syntactically
appears in A. This is sound, but imprecise. For instance, consider the program
X « input () ; y < x; z < x-y. The user cannot control the value of z, as it is al-
ways 0. By using a relational abstract domain such as polyhedra or octagons [43],
it is possible to determine that z is constant, and therefore that it is not tainted.
The actual definition of taint#[A] depends on the underlying abstract value do-
main, presenting numerous opportunities to improve the function’s precision. In
this section, we will take advantage of numerous helper functions that depend
on the value domain, and in Appendix [D] we show a concrete instantiation of
these functions for the interval abstract domain.

The abstract semantics for skip and S;; S; are standard, and we do not
report them. As variables read from user input are the main sources of tainted
data, we always taint variables read from input statements.

Input read statement (S := x < input())

SHIS](RE, 5, T#) = let (R], £}) = S5[S](R?, €¥) in
(Rji?EtLTﬁ Y {X})

As observed in Section [5| (see Example , random read statements can taint
the assigned variable in case the user controls the position of the value which
is read in the random input sequence. For the abstract semantics, it would be
sound to always taint the assigned variable. Nevertheless, this is too coarse, and
we propose an abstraction that improves the precision. The idea is to represent
the sequence of random numbers as a queue: programs read from it at index i,
and then increment i. In this model, x < rand() is syntactically substituted
with x <— rand[i]; i « i+1. We assume that the abstract semantics 82 [8] can
handle reading from the queue. The special index variable i is then handled by
the numeric domain as any other variable. We taint the result of x < rand()
only if i is tainted: this happens when the user can control which number is read
from the random sequence.

Sound Abstract Nonexploitability Analysis 13

Random read statement (S = x < rand())

SIST(RE, €, T%) = let (RE, &%) = 8% [x — rand[i]; i « i+1](R}, &) in
let T8 = {ye T |y #x} U {x | taint![i] (R}, 7% } in
(R}, €5,7%)

Assignments can present runtime errors, so that we need to taint ret in
case the user can trigger a program failure. To determine if there is an ex-
ploitable runtime error in the evaluation of an expression, we rely on the function
exploitf[A] : (D¥ x p(V)) — B. The function returns tt if there is a possible run-
time error when evaluating A, and such an error can be triggered by the user. We
assume the existence of a function zerof[A] : Df — B, which is provided by the
numeric domain and returns tt if the evaluation of A is possibly zero. Let x € V.
We define exploit?[x] and exploit?[n] as £f, while for binary expressions we
need to consider the values of the variables.

tt if o =/, zerof[A;]R¥, taint[Ao](R¥, T%)
exploit?[A; o Ap](R¥, T%) = { tt if exploit![A;](R,T%) or exploiti[A,](RY, T¥)
ff otherwise

Assignment statement (S = x < A)

SISI(RY, €, 7F) =
let (RE, &%) = SL[S](R?, &%) in
let’J'g —{yeT|y#x}u
{x | taint?[A](R*, T%) } U {ret | exploit?[A](R*, T%) } in
(i, 1, 77)

As discussed in Section (see Exaumple7 if statements can generate implicit
flows [28], namely dependencies that originate from the program control flow.
When an attacker can control which branch of an if statement is executed, and
in that branch a variable is assigned, then the variable could be tainted.

The set of variables that become tainted as a result of a tainted condition
is traditionally overapproximated (when conditions are handled at all) with the
variables that syntactically appear in the assignments of the branches. This is a
coarse overapproximation, and we can improve this result by using the values of
the variables. For instance, consider the program x <« y; if (y<x) {z « 10}.
The assignment is never executed, and a relational analysis can deduce that
z is never assigned. The traditional syntactic approach is not sufficient to in-
fer this information. We rely on the function assigned[S] : D¥ — (V) that
returns an overapproximation of the set of variables that are semantically as-
signed when executing S. If there is a state in the concretization of the abstract

14 F. Parolini and A. Miné

input R¥ in which a variable x changes value during the execution of S, then
x € assigned?[S]R¥. Observe that in case an exploitable runtime error occurs,
assigned®[S]R* includes ret, which does not syntactically appear in the pro-
gram. A straightforward implementation can run the regular value analysis and
inductively collect the variables that are assigned. While doing this, the function
discards unreachable code and assignments that do not modify the state, such
as x < 0 when x is already 0, being effectively more precise than a syntactic
approach. We define the following function to compute the set of variables that
are tainted due to implicit flows.

diff*[if (B) S;elseS,J(RF, TF) =
{x € assigned®[if (B) S; else SR’ | taint*[B](R*, T%)}

Tainted variables can also become untainted due to conditionals. For instance,
the variable x is not tainted inside of the then branch in the following program:
x < input () ; if (x==0) {...}. The reason is that x equals zero when entering
the first branch, and constants are by definition not controlled by the user. Clas-
sic methods ignore this, and do not filter tainted variables after conditionals. This
is sound, but we can again achieve better precision by taking into account the
values of the variables. We define the function refine®[B] : (Df x p(V)) — p(V)
as refinef [B](R¥, T%) = T%\const!(test[B]R?), where const! returns the set of
constant variables in the abstract state in its argument. The function refine?[B]
filters out the variables that are definitely constant after the execution of the
test B, improving the precision of the analysis. We can now give the definition
of the abstract semantics for if statements.

If statement (S = if (B) S;elseS,)

SH[S](RY, €%, 7%) =
let (RE, &8 TF) = 8¥[s,] (test?[B]R?, &%, refine! [B] (R, T%)) in
let (RE, &8, T%) = 8¥[8,] (test![-B]R!, &%, refine[-B] (R, T%)) in
let 77, = diff*[if (B) S, else S J(R%, T%) in
(R ugl RE, & ufi &t ug err![B]R:, TF L TF U TH)

Ezample 5. The program in Figure [fa] demonstrates various ways in which our
analysis differs from other taint analyses. First, we can infer that the program
is exploitable: if the user inputs zero, then there is the possibility, depending on
the sequence of random numbers, that a runtime error is triggered. The value
analysis is important to infer that x is zero when performing the division, so that
we can deduce that there is a division by zero. Second, we can use the semantic
information inferred by the numeric domain to deduce that y is not tainted.
Even if y is assigned inside of a branch that depends on the user’s input, the
variable y does not change, as it is still 1 after the execution of the statement.
An interval analysis is sufficient to deduce this. Third, we can infer that the

Sound Abstract Nonexploitability Analysis 15

X « input ()
X « input ()

y<1

if (x==0) { if(x <=0) {x« 17}
z <« rand () while (tt) {
if (z==0) { 1/x } 1/ x
if(z==1) {y«<—2z 1} x « rand ()

} }

w < rand()

(a) (b)

Fig. 4: Programs that read values from the user and the random queue

variable w is tainted: depending on user input, it is assigned either to the first
or the second value in the sequence of random numbers.

Further precision improvements can be implemented. For instance, consider
the program if (x<10) {y « 0} else{y « 1}. If the abstract value domain
can determine that before the execution of the statement the value of x is less
than 10, the statement is semantically equivalent to y «<— 0. This implies that,
even if x is tainted, the user cannot control the value of y. When the analysis
can infer that one of the two branches is never executed, the if statement can be
substituted with the other branch, ignoring the implicit flows that are generated
by the condition, and improving again the precision.

The abstract semantics for while statements is a classic limit computation
that relies on the widening operator V to guarantee convergence in a finite
number of iterations. As the number of variables is finite, p(V) has finite height,
so that the widening operator for p(V) is simply the set union. The operator
(RE, e T4 OF (RY, €4, T%) denotes (R? ungg, et ugﬁg, 7% UT4), and the operator
(RE, &8 THV(RE, €8, T%) denotes (RIVRY, efvel T8 U Th).

While statement (S := while (B) S;)

SEISI(R?, %, T%) = let (R%, €%, T%) = lim F"(L%, 1%, &) in
(test?[-B]R%, &%, refine[-B](R%, T%))
where
F(RE, % T8 = let (RE, €5, T%) = 8¥[if (B) S else skip](R, &%, 7%) in
(R, €5, T5) V (R, €F,7%) OF (RS, €5, T5))

Ezample 6. In principle, it is possible to first run a value analysis, and then
use the inferred numeric invariants in a taint analysis to prove nonexploitability.

16 F. Parolini and A. Miné

Nevertheless, as shown by the program in Figure [AD] executing the two together
achieves strictly superior precision by leveraging the reduction between the do-
mains. The invariant inferred at statement 1/x entails that x can be zero, so
that there is a potential runtime error. Furthermore, a taint analysis infers that
X is tainted at the same program location. By combining these information, the
division by zero is exploitable. However, if we execute the value and the taint
analyses together, we can observe that it is never true at the same time that x
is 0 and tainted, so that the program failure cannot be triggered by an attacker.
Our framework runs the two analyses together, and is thus able to prove that
the program is nonexploitable. The reduction between the two domains can also
refine the taint information using the value information, and this can improve
subsequent results.

7 Experimental evaluation

Implementation. We propose MOPSA-NEXP, the first analyzer dedicated to
nonexploitability. We implemented our analysis for a large subset of C in the
Mopsa framework [38], which is a modular platform to build static analyz-
ers based on abstract interpretation. MOPSA offers an extensive collection of
ready-to-use abstract domains for analyzing C and Python, providing the flexi-
bility to tune the tradeoff between precision and performance. MOPSA is imple-
mented in 120,000 lines of OCaml code, and our exploitability analysis accounts
for around 10,000 of them. Thanks to MOPSA’s modular design, we were able to
use most of the C analysis with minimal modifications.

In our implementation, we maintain taint information at the level of memory
blocks, i.e. we perform a field-insensitive taint analysis. While this can result
in a loss of precision, the implementation is simple and efficient. Proposing an
enhanced field-sensitive taint analysis for C is out of the scope of this paper,
and it is left as future work. As MOPSA performs dynamic expression rewriting
to encourage a design based on layered semantics, to retrieve sources of tainted
data, during the analysis we have to consider the expressions’ rewriting history.

Our analysis can detect a wide variety of runtime errors, including double
free, index-out-of-bounds, and null pointer dereference. While the formal pre-
sentation in this article, for the sake of simplicity, only supports division-by-zero
errors, it was trivial to adapt our analysis to identify different types of failures.
The complete list of errors detected by our tool is reported in Appendix[E] In the
report of the analyzer each warning is classified as possibly exploitable or not,
and we infer a sound overapproximation of both the regular runtime errors and
the exploitable ones. All the warnings that are not labelled as exploitable are
thus proved to be nonexploitable. If the analyzer does not report any exploitable
warning, then this is a proof that the program is nonexploitable.

The functions that read data from the user are part of the C standard library.
They include, for instance, getchar, scanf, and recv. MOPSA provides a stub
modeling language to specify the behaviour of library functions [49]. We have
extended this language to support the fact that some functions generate tainted

Sound Abstract Nonexploitability Analysis 17

data, and then we annotated our stubs for the C standard library to take into
account the taint information. This model makes it trivial to update the list
of dangerous sources, and the user of the analyzer does not have to annotate
the source code to run the exploitability analysis, which is fully automatic. The
complete list of functions that generate tainted data is reported in Appendix [E]

Performance and Precision Evaluation. To assess the usefulness of our
tool, we have analyzed real-world C programs from the GNU Coreutils package,
which is a collection of command-line utilities. The test suite is composed of 77
programs that are long up to 4,188 lines of code. To them, we added a large set of
short C programs taken from the Juliet test suite developed by NIST [9]. These
programs contain examples of various runtime errors that can trigger well-known
security vulnerabilities. In fact, Juliet is based on the CVE database [I], which
enumerates vulnerabilities and focusses on security. The tested runtime errors
include double frees, index out-of-bounds, and null pointer dereferences. The test
cases are specifically designed to assess the precision of static analysis tools, and
use a large set of features from the C standard. For Juliet, we considered 13,261
different test cases that amount to a total of 2,861,980 lines of code. Each test
case comes with two versions: one that triggers a runtime failure, and one where
the error is fixed. We run our analysis on both versions. An artifact to reproduce
our experimental evaluation is available on Zenodo [50].

We compare the performance and number of alarms between MoOPSA-NEXP
and MoPsA. The analyses are parametric in the underlying abstract numeric
domain, and we consider intervals, octagons [43], and polyhedra. Observe that
to compare only the number of alarms raised by the two analyzers it is not
necessary to run both tools, as MOPSA-NEXP can report all warnings raised
by MopsA. Notice that while the ground truth about the errors provided with
Juliet can be used to evaluate the precision of a classic safety analysis, this is
not the case for nonexploitability. In fact, the benchmarks categorize the test
cases as either dangerous or not, but they do not include any information about
whether an attacker can trigger the errors. We ran our experiments on a server
with 128GB of RAM, with 48 Intel Xeon CPUs E5-2650 v4 @ 2.20GHz and
Ubuntu 18.04.5 LTS. In Table [I] we report the results of our experiments.

For Coreutils, in the case of intervals, our analysis was able to prove that
3,498 over 4,715 runtime errors previously reported by the analyzer cannot be
triggered by an attacker. For octagons and polyhedra, our analysis proved that
respectively 3,464 and 3,458 potential runtime errors over 4,673 and 4,651 are not
exploitable. Overall, this results in filtering out 74.13%-74.35% of the warnings.
We found similar results for Juliet, where MOPSA-NEXP was able to prove that
71.75%-72.16% of the warnings are not exploitable. For Coreutils, MOPSA-NEXP
raises 1,193 to 1,217 warnings, which are those that can be potentially triggered
by an attacker. The user of the analyzer could prioritize those alarms over the
regular ones, as they are comparatively more dangerous.

The exploitability analysis incurs a performance overhead ranging from 13.89%
to 15.05% for Coreutils and 2.4% to 3.5% for Juliet. During the analysis we con-

18 F. Parolini and A. Miné

Table 1: Evaluation results.

Test suite Domain Analyzer Alarms Time
Coreutils Intervals Moprsa 4,715 1:17:06
Mopsa-NEXP 1,217 1:28:42

Octagons Moprsa 4,673 2:22:29

Moprsa-NEXP 1,209 2:43:06

Polyhedra Mopsa 4,651 2:12:21

MoprsA-NEXP 1,193 2:30:44

Juliet Intervals Mopsa 49,957 11:32:24
MoprsA-NEXP 13,906 11:48:51

Octagons Mopsa 48,256 13:15:29

Mopsa-NEXP 13,631 13:41:47

Polyhedra Mopsa 48,256 12:54:21

Mopsa-NEXpP 13,631 13:21:26

sider expressions’ rewriting history to preserve taint information, and this history
is sensibly larger in real-world programs, which justifies the performance over-
head difference between Coreutils and Juliet. Observe that we found octagons to
be less efficient than polyhedra. This is due to the fact that MoOPSA relies on the
APRON [37] library, which uses a sparse representation for polyhedra, and can
be very efficient if the number of variables is low and there are few constraints.
As octagons use a dense representation, even if their algorithmic complexity is
better, they are slightly slower for our case.

Discussion. We observed that MopPsa-NEXP is able to consistently filter out
more than 70% of the warnings raised by the regular analyzer, while imposing
low performance overhead. The Juliet test cases show that MOPSA-NEXP can
handle almost the whole C specification, while the Coreutils experiments confirm
that our analysis is effective even for real-world programs. The significant advan-
tage of being able to classify each warning as security-critical or not outweighs
the reasonable performance cost overhead. Observe that the alarms raised by
MoprsA-NEXP are a subset of those reported by MOPSA. This implies that the
exploitability analysis is, in the worst case, as precise as the regular analysis.

While it would be desirable to determine how many truly exploitable alarms
are raised by MOPSA-NEXP, this cannot be done automatically. In fact, there is
no ground truth that classifies program errors as nonexploitable or not, so that
human inspection is the only option. In future work, we would like to conduct
such an inspection.

8 Related work

Secure information flow. In [28] the authors propose the first mechanism to
verify the secure flow of information in a program, namely checking that a pro-
gram cannot cause supposedly nonconfidential results to depend on confidential

Sound Abstract Nonexploitability Analysis 19

input data. Their formulation of the problem is based on the syntax of a program,
and does not take into account its semantics. The concept of secure information
flow is related to noninterference [22I32133], which is a semantic definition. A
program is noninterferent if its public output data does not depend on private
input data. Checking that a program cannot cause nonconfidential results to
depend on confidential input data has been widely studied through type sys-
tems [A7H46I60B555I6TITTIS3I62IT6I52]. Because these works perform only syn-
tactic checks without taking into account semantic information, the results are
generally very imprecise. In contrast, our approach tracks the flow of data gen-
erated by the user through a semantic taint analysis, which achieves enhanced
precision by leveraging an overapproximation of the values of the variables.

Noninterference and nonexploitabilty are closely related: nonexploitability
can be seen as a type of noninterference where the only public output variable
is ret. Nevertheless, we do not rely on the static partitioning of variables into
public and private, as our definition supports dynamic user input reads. Our
framework can be used to prove noninterference: it is sufficient to read all private
input variables at the beginning of the program, and then verify that the public
output variables are not tainted. On the contrary, traditional methods to prove
noninterference cannot prove nonexploitability, as they do not take the values of
the variables into account.

Hyperproperties verification. Clarkson and Schneider [2I] put forward the
framework of hyperproperties, namely program properties that relate different
sets of executions. Hyperproperties are able to express security policies, such
as secure information flow. K-hypersafety properties [21] can be verified with
traditional techniques for safety properties on the k-times self-composed sys-
tem [I857], even though this can be computationally expensive [12]. HyperLTL
and HyperCTL/CTL* [30J20] define extensions of temporal logic able to quantify
over multiple traces to address the verification of hyperproperties.

Noninterference verification by abstract interpretation. Cousot [24] put
forward a semantic definition of dependencies in the abstract interpretation
framework. He proposes a sound analysis of dependencies, capable of proving
noninterference. Similarly to us, he does not rely on hypersemantics, using stan-
dard abstract interpretation techniques. Nevertheless, the abstract dependency
semantics is not structural (i.e. defined by induction on the program syntax), as
it does not take the values of variables into account. The author proposes lever-
aging the values of the variables to give a structural definition of the semantics,
and this paper attempts to implement such an extension. Since his definition of
the dependency semantics does not take into account the values of the variables,
it is not possible to define an analysis that leverages numeric abstract domains
to enhance the precision of the dependency analysis. Another significant differ-
ence is that the dependencies are relative to the initial values of variables. Our
analysis computes dynamic tainting, which is the dependency of a variable from

20 F. Parolini and A. Miné

any input statement (including those within conditionals and loops), so that it
generalizes the dependency analysis from the beginning of the program.

There are numerous papers that use an alternative version of the abstract
interpretation framework based on hypersemantics [T4/40/414259], where the
concrete domain is a set of sets of states, rather than a set of states. This is
to overcome the difficulties related to the fact that not every hyperproperty is
subset-closed, and classic overapproximation techniques seem to fail. However, as
argued in this paper and [24], this is not the case for standard noninterference and
nonexploitability. Relying on the classic abstract interpretation framework allows
using the large library of existing abstract domains, and leveraging the semantic
information inferred by such domains is not only essential for nonexploitabilty,
but also enhances the precision of the taint analysis. Another approach to nonin-
terference verification is introduced in [58], where the authors combine abstract
interpretation with symbolic execution to define a sound analysis.

INFER [7], Pysa [8], and JULIA [56] are static analyzers based on abstract
interpretation that support taint analysis. All these tools do not detect implicit
Sflows, being effectively unsound in our framework. The analyzers can track taint
information, but they cannot classify runtime errors as exploitable or not. To the
best of our knowledge, MOPSA-NEXP is the first analyzer to have such capability.

Errors classification. In [3I] the authors put forward the concept of robust
reachability. A runtime error is robustly reachable if a controlled input can make
it so the bug is reached whatever the value of uncontrolled input. The authors
use symbolic execution and bounded model checking techniques to find robustly
reachable bugs. Similarly to this paper, [31] classifies runtime failures by their
dangerousness and filters out less interesting alarms that do not concern security
issues. Nevertheless, the concept of robustly reachable runtime error is different
from nonexploitability: a bug is considered robustly reachable even if it is trig-
gered for all possible user input, while such an error is not exploitable according
to our formal definition of exploitability. In fact, we require the user input to be
actually involved in triggering an error to consider a program exploitable.
Other techniques relying on probability theory to differentiate classes of bugs
have been proposed. They include probabilistic model checking [I5I34], probabilis-
tic abstract interpretation [2744A5I5T], quantitative robust reachability [17], and
quantitative information flow analysis [36]. An interesting extension of this pa-
per would be to use ideas from these approaches to put forward a quantitative
exploitability analysis to classify more finely the level of threat caused by alarms.

9 Conclusions

In this paper, we introduced the novel definition of nonexploitability, which we
leveraged to put forward a sound analysis by abstract interpretation. The frame-
work supports constructs that are essential to analyze real-world programs, such
as nondeterminism and dynamic user input reads. Our analysis performs a se-
mantic taint analysis that achieves superior precision through a modular reduc-

Sound Abstract Nonexploitability Analysis 21

tion with existing numeric abstract domains. The theoretical framework bridges
the gap between traditional safety properties and security hyperproperties, and
our analysis can rule out the existence of exploitable runtime errors in programs.

We implemented our analysis in the MOPSA-NEXP tool, the first analyzer
dedicated to nonexploitability. The tool is fully automatic, and to assess its ef-
fectiveness, we evaluated it on a large set of real-world C programs. The analyzer
can consistently prove that more than 70% of the previously raised warnings can-
not be triggered by an attacker, all while incurring less than 16% performance
overhead. While usually the number of false positives is lowered by increasing the
precision of the abstract domains, we take an orthogonal approach by reporting
only the alarms that can be triggered by an attacker. By leveraging the funda-
mental observation that security-related warnings are more dangerous than the
others, our technique dramatically reduces the noise generated by false alarms,
enhancing the usefulness of the analyzer.

In future work, we would like to extend our analysis to prove the absence
of other classes of exploitable bugs. A promising path forward is to leverage
probability theory to perform a quantitative exploitability analysis capable of
further reducing the number of alarms. Another interesting extension of this
paper is to adapt our framework to rule out the existence of exploitable liveness
errors, such as exploitable deadlocks in multithreaded programs.

Acknowledgments We would like to thank the anonymous reviewers for their com-
ments. This work was supported by the SECURVAL project. The SECUREVAL project
was funded by the “France 2030” government investment plan managed by the French
National Research Agency, under the reference ANR-22-PECY-0005.

References

1. Common vulnerabilities and exposures (CVE) database, |https://cve.mitre.org/}
accessed: 2023-08-30
2. CVE-2016-7869. Available from NIST, CVE-ID CVE-2016-7869., https://nvd.nist.
gov/vuln/detail/CVE-2016-7869, accessed: 2023-08-30
3. CVE-2019-5699. Available from NIST, CVE-ID CVE-2019-5699., https://nvd.nist.
gov/vuln/detail/CVE-2019-5699, accessed: 2023-08-30
4. CVE-2019-8745. Available from NIST, CVE-ID CVE-2019-8745., |https://nvd.nist.
gov/vuln/detail/CVE-2019-8745, accessed: 2023-08-30
5. CVE-2022-36934. Available from NIST, CVE-ID CVE-2022-36934., https://nvd.
nist.gov/vuln/detail/ CVE-2022-36934, accessed: 2023-08-30
6. CVE-2022-4135. Available from NIST, CVE-ID CVE-2022-4135., |https://nvd.nist.
gov/vuln/detail/CVE-2022-4135, accessed: 2023-08-30
7. The Infer static analyzer, https://fbinfer.com/
The Pysa static analyzer, https://engineering.tb.com/2020/08/07 /security /pysa/
9. Juliet C/C++ test suite (2017), https://samate.nist.gov/SARD /test-suites/112,
accessed: 2023-08-30
10. Microsoft: A proactive approach to more secure code (2019), https:
/ /msrc.microsoft.com /blog/2019/07 /a-proactive-approach-to-more-secure-code/,
accessed: 2023-08-30

o

https://cve.mitre.org/
https://nvd.nist.gov/vuln/detail/CVE-2016-7869
https://nvd.nist.gov/vuln/detail/CVE-2016-7869
https://nvd.nist.gov/vuln/detail/CVE-2019-5699
https://nvd.nist.gov/vuln/detail/CVE-2019-5699
https://nvd.nist.gov/vuln/detail/CVE-2019-8745
https://nvd.nist.gov/vuln/detail/CVE-2019-8745
https://nvd.nist.gov/vuln/detail/CVE-2022-36934
https://nvd.nist.gov/vuln/detail/CVE-2022-36934
https://nvd.nist.gov/vuln/detail/CVE-2022-4135
https://nvd.nist.gov/vuln/detail/CVE-2022-4135
https://fbinfer.com/
https://engineering.fb.com/2020/08/07/security/pysa/
https://samate.nist.gov/SARD/test-suites/112
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

22

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

F. Parolini and A. Miné

Agat, J.: Transforming out timing leaks. In: Principles of Programming Languages,
POPL. pp. 40-53. ACM (2000). [https://doi.org/10.1145/325694.325702
Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: De-
composition instead of self-composition for proving the absence of timing channels.
In: Conference on Programming Language Design and Implementation, PLDI. pp.
362-375. ACM (2017). https://doi.org/10.1145/3062341.3062378

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.D.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: Programming Language
Design and Implementation, PLDI. pp. 259-269. ACM (2014). jhttps://doi.org/10.
1145/2594291.2594299

Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting se-
mantics and its application to static analysis of information flow. In: Principles of
Programming Languages, POPL (2017). |https://doi.org/10.1145/3009837.3009889
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov
chains. In: Computer Aided Verification, CAV. Lecture Notes in Computer Science,
vol. 1102, pp. 269-276. Springer (1996). https://doi.org/10.1007/3-540-61474-5
7

Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in
a java-like language. In: Computer Security Foundations Workshop CSFW. p. 253.
IEEE Computer Society (2002). https://doi.org/10.1109/CSFW.2002.1021820
Bardin, S.; Girol, G.: A quantitative flavour of robust reachability. CoRR
abs/2212.05244 (2022). [https://doi.org/10.48550 /arXiv.2212.05244

Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Mathematical Structures in Computer Science 21(6), 1207-1252 (2011). https:
//doi.org/10.1017/S0960129511000193

Berghel, H.: The code red worm. Commun. ACM 44(12), 15-19 (2001). https:
//doi.org/10.1145/501317.501328

Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N.; Sanchez,
C.: Temporal logics for hyperproperties. In: Principles of Security and Trust,
POST. Lecture Notes in Computer Science, vol. 8414, pp. 265-284. Springer (2014).
https://doi.org/10.1007/978-3-642-54792-8 15

Clarkson, M.R., Schneider, F.B.: Hyperproperties. 21st IEEE Computer Security
Foundations Symposium pp. 51-65 (2008)

Cohen, E.S.: Information transmission in computational systems. In: Symposium
on Operating System Principles, SOSP. pp. 133-139. ACM (1977). https://doi.
org/10.1145/800214.806556

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: The Astrée analyzer. In: European Symposium on Programming
ESOP. Lecture Notes in Computer Science (LNCS), vol. 3444, pp. 21-30.
Springer (2005). https://doi.org/10.1007,/978-3-540-31987-0 3, |http://www-apr.
lip6.fr/ “mine/publi/esop05 astree.pdf

Cousot, P.: Abstract semantic dependency. In: Static Analysis Symposium,
SAS. wvol. 11822, pp. 389-410. Springer (2019). https://doi.org/10.1007/
978-3-030-32304-2 19

Cousot, P.: Principles of Abstract Interpretation. The MIT Press (2022), https:
/ /mitpress.mit.edu/9780262044905 /principles-of-abstract-interpretation

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. Principles of
Programming Languages, POPL (1977)

https://doi.org/10.1145/325694.325702
https://doi.org/10.1145/325694.325702
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1109/CSFW.2002.1021820
https://doi.org/10.1109/CSFW.2002.1021820
https://doi.org/10.48550/arXiv.2212.05244
https://doi.org/10.48550/arXiv.2212.05244
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1145/501317.501328
https://doi.org/10.1145/501317.501328
https://doi.org/10.1145/501317.501328
https://doi.org/10.1145/501317.501328
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1145/800214.806556
https://doi.org/10.1145/800214.806556
https://doi.org/10.1145/800214.806556
https://doi.org/10.1145/800214.806556
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
http://www-apr.lip6.fr/~mine/publi/esop05_astree.pdf
http://www-apr.lip6.fr/~mine/publi/esop05_astree.pdf
https://doi.org/10.1007/978-3-030-32304-2_19
https://doi.org/10.1007/978-3-030-32304-2_19
https://doi.org/10.1007/978-3-030-32304-2_19
https://doi.org/10.1007/978-3-030-32304-2_19
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Sound Abstract Nonexploitability Analysis 23

Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: European Sym-
posium on Programming, ESOP. Lecture Notes in Computer Science, vol. 7211,
pp. 169-193. Springer (2012). https://doi.org/10.1007/978-3-642-28869-2 9
Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504-513 (1977). [https://doi.org/10.1145/359636.359712
Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., Paxson, V.: The matter of heartbleed. In:
Internet Measurement Conference, IMC. pp. 475-488. ACM (2014). |https://doi.
org/10.1145/2663716.2663755

Finkbeiner, B., Rabe, M.N., Sanchez, C.: Algorithms for model checking hyper-
Itl and hyperctl “*. In: Computer Aided Verification, CAV. Lecture Notes in
Computer Science, vol. 9206, pp. 30—48. Springer (2015). https://doi.org/10.1007/
973-3-319-21690-4 3

Girol, G., Farinier, B., Bardin, S.: Not all bugs are created equal, but robust
reachability can tell the difference. In: Computer Aided Verification, CAV. vol.
12759, pp. 669-693. Springer (2021). https://doi.org/10.1007/978-3-030-81685-8
32

Goguen, J.A., Meseguer, J.: Security policies and security models. In: Security and
Privacy. pp. 11-20. IEEE Computer Society (1982). https://doi.org/10.1109/SP.
1982.10014

Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Security and
Privacy. pp. 75-87. IEEE Computer Society (1984). https://doi.org/10.1109/SP.
1984.10019

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512-535 (1994). https://doi.org/10.1007/BF01211866
Heintze, N., Riecke, J.G.: The slam calculus: Programming with secrecy and
integrity. In: Principles of Programming Languages, POPL. pp. 365-377. ACM
(1998). |https://doi.org/10.1145/268946.268976

Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Annual
Computer Security Applications Conference, ACSAC. pp. 261-269. ACM (2010).
https://doi.org /10.1145/1920261.1920300

Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: Computer Aided Verification, CAV. Lecture Notes in
Computer Science (LNCS), vol. 5643, pp. 661-667. Springer (2009). https:
//doi.org/10.1007/978-3-642-02658-4 52, |http://www-apr.lip6.fr/ mine/publi/
article-mine-jeannet-cav09.pdf

Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of reusable
abstract domains for a multilingual static analyzer. In: Proc. of the 11th
Working Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE19). Lecture Notes in Computer Science (LNCS), vol. 12031, pp. 1-18.
Springer (2019). https://doi.org/10.1007,/978-3-030-41600-3 1, |http://www-apr.
lip6.fr/ “mine/publi/article-mine-al-vsttel9.pdf

Li, L., Bissyandé, T.F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D., Klein,
J., Traon, Y.L.: Static analysis of android apps: a systematic literature review. Inf.
Softw. Technol. 88, 67-95 (2017). https://doi.org/10.1016/j.infsof.2017.04.001
Mastroeni, 1., Pasqua, M.: Hyperhierarchy of semantics - A formal framework for
hyperproperties verification. In: Static Analysis Symposium, SAS. vol. 10422, pp.
232-252 (2017). |https://doi.org/10.1007/978-3-319-66706-5 12

Mastroeni, 1., Pasqua, M.: Verifying bounded subset-closed hyperproperties. In:
Static Analysis Symposium, SAS. vol. 11002, pp. 263-283 (2018). https://doi.org/
10.1007/978-3-319-99725-4 17

https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-030-81685-8_32
https://doi.org/10.1007/978-3-030-81685-8_32
https://doi.org/10.1007/978-3-030-81685-8_32
https://doi.org/10.1007/978-3-030-81685-8_32
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866
https://doi.org/10.1145/268946.268976
https://doi.org/10.1145/268946.268976
https://doi.org/10.1145/1920261.1920300
https://doi.org/10.1145/1920261.1920300
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
http://www-apr.lip6.fr/~mine/publi/article-mine-jeannet-cav09.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-jeannet-cav09.pdf
https://doi.org/10.1007/978-3-030-41600-3_1
https://doi.org/10.1007/978-3-030-41600-3_1
http://www-apr.lip6.fr/~mine/publi/article-mine-al-vstte19.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-al-vstte19.pdf
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1007/978-3-319-66706-5_12
https://doi.org/10.1007/978-3-319-66706-5_12
https://doi.org/10.1007/978-3-319-99725-4_17
https://doi.org/10.1007/978-3-319-99725-4_17
https://doi.org/10.1007/978-3-319-99725-4_17
https://doi.org/10.1007/978-3-319-99725-4_17

24

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

F. Parolini and A. Miné

Mastroeni, 1., Pasqua, M.: Statically analyzing information flows: an abstract
interpretation-based hyperanalysis for non-interference. In: Symposium on Applied
Computing, SAC. pp. 2215-2223 (2019). https://doi.org/10.1145/3297280.3297498
Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
(HOSC) 19(1), 31-100 (2006). https://doi.org/10.1007 /s10990-006-8609-1, http:
/ /www-apr.lip6.fr/“mine/publi/article-mine- HOSCO06.pdf

Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Static Anal-
ysis Symposium, SAS. Lecture Notes in Computer Science, vol. 1824, pp. 322-339.
Springer (2000). https://doi.org/10.1007,/978-3-540-45099-3 17

Monniaux, D.: An abstract analysis of the probabilistic termination of programs.
In: Static Analysis Symposium, SAS. Lecture Notes in Computer Science, vol. 2126,
pp. 111-126. Springer (2001). https://doi.org,/10.1007/3-540-47764-0 7

Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
Symposium on Operating System Principles, SOSP. pp. 129-142. ACM (1997).
https://doi.org/10.1145/268998.266669

Orbek, P., Palsberg, J.: Trust in the lambda-calculus. J. Funct. Program. 7(6),
557-591 (1997). https://doi.org/10.1017/s0956796897002906

Orman, H.K.: The morris worm: A fifteen-year perspective. IEEE Secur. Priv. 1(5),
35-43 (2003). |https://doi.org/10.1109/MSECP.2003.1236233

Ouadjaout, A., Miné, A.: A library modeling language for the static analysis of C
programs. In: Static Analysis Symposium, SAS. Lecture Notes in Computer Sci-
ence (LNCS), vol. 12389, pp. 223-246. Springer (2020). https://doi.org/10.1007/
978-3-030-65474-0 11|, http://www-apr.lip6.fr/” mine/publi/ouadjaout-al-sas20.
pdf

Parolini, F., Miné, A.: Sound Abstract Nonexploitability Analysis Artifact (Sep
2023). https://doi.org/10.5281 /zenodo.8334112

Pierro, A.D., Wiklicky, H.: Probabilistic abstract interpretation: From trace se-
mantics to dtmc’s and linear regression. In: Semantics, Logics, and Calculi - Es-
says Dedicated to Hanne Riis Nielson and Flemming Nielson on the Occasion of
Their 60th Birthdays. Lecture Notes in Computer Science, vol. 9560, pp. 111-139.
Springer (2016). https://doi.org/10.1007,/978-3-319-27810-0 6

Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program.
Lang. Syst. 25(1), 117-158 (2003). [https://doi.org/10.1145/596980.596983
Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Computer Security Foundations Workshop, CSFW. pp. 200-214. IEEE Com-
puter Society (2000). https://doi.org/10.1109/CSFW.2000.856937

Schultz, E., Mellander, J., Peterson, D.: The MS-SQL slammer worm. Net-
work Security 2003(3), 10-14 (2003). https://doi.org/https://doi.org/10.1016/
S1353-4858(03)00310-6

Smith, G., Volpano, D.M.: Secure information flow in a multi-threaded imperative
language. In: Principles of Programming Languages, POPL. pp. 355-364. ACM
(1998). |https://doi.org/10.1145/268946.268975

Spoto, F., Burato, E., Ernst, M.D., Ferrara, P., Lovato, A., Macedonio, D., Spiri-
don, C.: Static identification of injection attacks in java. ACM Trans. Program.
Lang. Syst. 41(3), 18:1-18:58 (2019). https://doi.org/10.1145 /3332371

Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Static
Analysis Symposium, SAS. Lecture Notes in Computer Science, vol. 3672, pp.
352-367 (2005). lhttps://doi.org/10.1007/11547662 24

Tiraboschi, I., Rezk, T., Rival, X.: Sound symbolic execution via abstract inter-
pretation and its application to security. In: Verification, Model Checking, and

https://doi.org/10.1145/3297280.3297498
https://doi.org/10.1145/3297280.3297498
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
http://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf
http://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf
https://doi.org/10.1007/978-3-540-45099-3_17
https://doi.org/10.1007/978-3-540-45099-3_17
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1145/268998.266669
https://doi.org/10.1145/268998.266669
https://doi.org/10.1017/s0956796897002906
https://doi.org/10.1017/s0956796897002906
https://doi.org/10.1109/MSECP.2003.1236233
https://doi.org/10.1109/MSECP.2003.1236233
https://doi.org/10.1007/978-3-030-65474-0_11
https://doi.org/10.1007/978-3-030-65474-0_11
https://doi.org/10.1007/978-3-030-65474-0_11
https://doi.org/10.1007/978-3-030-65474-0_11
http://www-apr.lip6.fr/~mine/publi/ouadjaout-al-sas20.pdf
http://www-apr.lip6.fr/~mine/publi/ouadjaout-al-sas20.pdf
https://doi.org/10.5281/zenodo.8334112
https://doi.org/10.5281/zenodo.8334112
https://doi.org/10.1007/978-3-319-27810-0_6
https://doi.org/10.1007/978-3-319-27810-0_6
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/596980.596983
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/10.1109/CSFW.2000.856937
https://doi.org/https://doi.org/10.1016/S1353-4858(03)00310-6
https://doi.org/https://doi.org/10.1016/S1353-4858(03)00310-6
https://doi.org/https://doi.org/10.1016/S1353-4858(03)00310-6
https://doi.org/https://doi.org/10.1016/S1353-4858(03)00310-6
https://doi.org/10.1145/268946.268975
https://doi.org/10.1145/268946.268975
https://doi.org/10.1145/3332371
https://doi.org/10.1145/3332371
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/11547662_24

59.

60.

61.

62.

A

Sound Abstract Nonexploitability Analysis 25

Abstract Interpretation, VMCAI. Lecture Notes in Computer Science, vol. 13881,
pp. 267-295. Springer (2023). https://doi.org/10.1007/978-3-031-24950-1 13

Urban, C., Miiller, P.: An abstract interpretation framework for input data usage.
In: European Symposium on Programming, ESOP. vol. 10801, pp. 683-710 (2018).
https://doi.org/10.1007,/978-3-319-89884-1 24

Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. Journal of Computer Security 4(2/3), 167-188 (1996). https://doi.org/10.
3233/JCS-1996-42-304

Volpano, D.M., Smith, G.: Probabilistic noninterference in a concurrent language.
J. Comput. Secur. 7(1) (1999). https://doi.org/10.3233/jcs-1999-72-305, https://
doi.org/10.3233/jcs-1999-72-305

Zdancewic, S., Myers, A.C.: Secure information flow and CPS. In: European Sym-
posium on Programming, ESOP. Lecture Notes in Computer Science, vol. 2028,
pp. 46—61. Springer (2001). https://doi.org/10.1007/3-540-45309-1 4

Expression Semantics

AfA] M — Z,
An]m = n
Afx]m = m[x]
2 if A[A1]m =4, or AA2]m =4,
AlA; o Ax]m = or o =/ and AfA2]m =0

AfA1]m o AJA2]m otherwise

B[B] : M — B,
Bltt]m = tt
Blff]m = £f

S

if A[Ai]m =4 or AJAz]m =%
A[A1]m < A[A2]m otherwise

{@ if B[B1]m =4 or B[Bz]m =5

'B[[Al < Az]]m =

B[B1 ¢B e
[B1 o BeJm B[B1]m o B[B2]m otherwise

4 if B[B1]m =%
aB[B1]m otherwise

I

B[[-!Bl]]m

https://doi.org/10.1007/978-3-031-24950-1_13
https://doi.org/10.1007/978-3-031-24950-1_13
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/jcs-1999-72-305
https://doi.org/10.3233/jcs-1999-72-305
https://doi.org/10.3233/jcs-1999-72-305
https://doi.org/10.3233/jcs-1999-72-305
https://doi.org/10.1007/3-540-45309-1_4
https://doi.org/10.1007/3-540-45309-1_4

26 F. Parolini and A. Miné

B Proofs

Tt

Proof ((p(D),<C) == (p(V),2)). Let Z € p(D) and T € p(V).

at

at(%) DT Tgat(%)

«— Tc{xeV|Z<S T(x)}
— VxeT:Z< J(x)
— VxeT:VReZ:Re T (x)
— VYReZ:VxeT:Re T (x)
= Z<{R|VxeT:Re T (x)}
= 2 ()7

xeT
— Z<v(7)

Before proving Equation , we give an alternative characterization of A&

Theorem 3.

NE ={ReD|ret¢ ar({R})}

Proof.

NE
= {R e D | ¥((mo,io,70), (M1,i1,71)), (Mo, i0,70), (M1,41,71)) € R :

mo = mg, 0 # 9,70 = ry = my[ret] = m}[ret]}

(definition of AE&)

= {Re D | #((mo,io, 7o), (m1,i1,71)), (M0, i6,70), (MY, 41,71)) € R :

mo = mg,i0 # 19,70 = o : m1[ret] # mi[ret]} (negation of V)
={ReD|reteca:({R})} (definition of o)
={ReD|ret¢ a:({R})} (vt defines a partition over V)

Proof (Equation (1))). Follows immediately from Theorem

Sound Abstract Nonexploitability Analysis 27

Proof (Equation (2)).
ar({Ro})
—{xeV|{Ro} = T(x))
={xeV|Roe T(x)}
={xeV|Roe{ReD|
3((mo, 40, 70), (M1,11,71)), (MG, 6, 70), (M1,31,71)) € R :
mo = mg, o # 9,70 = o : mi[x] # mi[x]}} (definition of 7 (x))
= {x e V| 3((mo,i0,70), (M1,i1,71)), (MG, 50, 75), (M1,31,71)) € Ro :
Mo = Mo, io # 0,70 = 10 : ma[x] # mi[x]}
€ {xe V| 3((mo,io,0), (m1,i1,71)), ((Mb, i, 70), (1,71, 71)) € Ra -
mo = my, o # ig,To = 1o : ma[x] # mi[x]} (Ro € R1)

= a({Ri})

Proof (Theorem).

RieNE <> ret¢ {x|R1e T(x)} (Equation ()
= ret¢ {x|Roe T(x)} (Ro € R1 and Equation)
— Roe NE (Equation ()

Before proving Theorem [2] we have to prove the following result. Theorem [4] states
that if the argument T of the concrete structural semantics is the set of truly tainted
variables in R, then 8;[S] exactly corresponds to 8;[S].

Theorem 4 (Correctness of 8;[S]). Let R,& €D and T e p(V).

T=a:({R}) = S[S](R, &) = & [S](R, &, T)

Proof (Theorem. By structural induction. For the definition of the inductive concrete
taint semantics, see Appendix [C] Some cases are trivial, and we do not report them.
The correctness of x « input() follows from the fact that the variable x is the only
one that assumes a different value, and hence can become tainted after the execution of
the statement. For this reason, {y € T | y # x } exactly corresponds the set of tainted
variables after the execution of the statement using the hypothesis T = a:({ R }). Using
the definition of ay, we can observe that x is tainted if and only if the first element in
the sequence of input can be controlled by the user, namely there are two executions
whose initial states differ only in the user input and end in different first values for the
input sequence. Random read statements are analogous.

Assignments are similar. Again, the only variable that can assume a different value
is x, so that it is the only one that can become possibly tainted. For this reason,
{y € T |y # x} exactly corresponds to the set of other tainted variables after the
execution of the statement using the hypothesis 7 = a;({ R }). Using the definition of
at, we observe that x is tainted iff there are two executions that differ in the initial
states only in the input sequence, and result in different (non-error) values for the
arithmetic evaluation in the input memory. This exactly corresponds to our definition.

By using «a:, we can observe that the tainted variables after the execution of
if statements are: 1) those tainted in the then branch; 2) those tainted in the else

28 F. Parolini and A. Miné

branch; 3) those that assume different values in the two branches, in case which one
of the two branches is executed depends on the user input. The first two cases are
simple, and follow by inductive hypothesis. The third is covered by the definition of
diff[if (B) S;elseS.], as it considers all possible pairs of execution that in the ini-
tial state differ only in the user input, explore different branches, and then result in
different values for some variables. For while statements it is sufficient to observe that
AR1,E1,T1) . (R, E,T) U St[[if (B) Sy else skip]|(Ry, €1,7T1) is monotonic, and by us-
ing the correctness for if statements, it is possible to prove the correctness of while
statements.

Proof (Theorem @) We observe that there are no tainted variables in the set of initial
states J. Then, the theorem follows immediately from Theorem

Proof (Equation (3)). By structural induction. The soundness of the abstract taint
semantics is proved with respect the structural concrete taint semantics, which is re-
ported in Appendix [C] Some cases are trivial, and we do not report them. For input
read statements, it is sound to always taint the variable x, which is the only variable
that possibly assumes a different value.

For random read statements, the only variable that can assume a different value
is x, so that x is the only variable that can become tainted after the execution of
x « rand(). By considering the definition of §;[x « rand()], we observe that this
happens only if the user can control which number in the sequence of random numbers
is read. The soundness then follows by inductive hypothesis observing that if the user
can control the value of the index variable i, then i is tainted. If i is tainted, then we
taint x.

Similarly to the previous cases, x is the only variable that can become tainted after
the execution of assignment x <« A. Then, the soundness of the abstract semantics
immediately follows from the soundness of taint?[A], which returns ff only if the
result of the arithmetic evaluation is definitely not influenced by user input.

For if statements, the fact that the tainted variables computed in the branches
are an overapproximation of the truly tainted ones follows by inductive hypothe-
sis. Then, we observe that diff’j[[if (B) S¢ elseS.] is a sound overapproximation of
diff[if (B) S; elseS.], namely YR*, &% : VR € y4(R*), € € 7a(E?) : diff[if (B) S;elseS.](R, &) <
Aiffif (B) 8¢ else S [(R?, €%). If a variable x is in diff[if (B) S;elseS.], then the
user can control the outcome of B[B], and x is definitely assigned in at least one of
the branches. We can conclude by using the soundness of assigned*[S] and taint[B].
Since while statements are defined in terms of if statements, the soundness of the former
follows from the soundness of the latter.

The following result is useful to observe the connection between the $;[S] and 8![S].
a({1a(®)}) € T = 8i[s](va(RF), 7a(€)) S (SEISD(R?, €%, %)) ()
Proof (Equation (5)).

8:[S1(va(R*), 7a(€%)) = 8:[S)(va(RF), va(€%), e ({ra(RF)})) (Theorem W)
6.l

S](va(®%), ya(€F), T%) R
(s ({7a(RM}) € T* and monotonicity of 8;[S])

< ~(SU[S)(RF, &%, T%) (Equation (B))

Sound Abstract Nonexploitability Analysis 29

In order to prove Equation , we need to prove two intermediate results. We first
define the abstract taint semantics for programs. Then, we define the abstract taint
semantics for programs 85 [P], where P := S, as follows.

SUIP] = let (R*, &%, T%) = $¥[s](7%, LY, &) in
(R* U5 P, (V\ {ret}) uTH

At the end of the program we taint all regular program variables but ret. This
is a sound overapproximation of the variables that are tainted due to runtime errors
controlled by the user. For instance, consider the following program: x < input () ; y <
1;z « 1/x;y < 2. Depending on the user input, the variable y can be either 1 or
2 at the end of the program when we merge errors states with the others. As these
dependencies are not useful to prove nonexploitability, overapproximating them with
all the non-return variables does not interfere with our objective.

The only variable that can be added from T* is then ret, which will be collected
during the analysis. In fact, while in the concrete semantics ret can result tainted only
at the end of the program, in our abstract semantics we taint ret every time there is
a possible runtime error due to user input. This guarantees that if ret is not tainted
in 8¥[S], it will not be tainted at the end of the program. Let (R*,T*) = 8![P]. The
abstract semantics for programs is sound with respect to the following.

$:[P] < (va(R), T¥) (6)

Proof (Equation @). The soundness for the values follows from the soundness of the
abstract numeric domain. For the tainted variables, tainting all program variables but
ret overapproximates the set of truly tainted variables excluding ret. The fundamental
observation to prove that if ret is tainted in the concrete semantics, then it is tainted
in the abstract semantics is that if ret is tainted in the concrete, then there is at least
one statement in which a runtime error occurs, and such error can be triggered by the
user. Since the abstract semantics taints ret every time there is a possible runtime error
that could be triggered by the user input, if ret is tainted in the concrete semantics,
it will definitely be tainted in the abstract semantics.

Since $[P] finds more tainted variables than the concrete semantics 8;[P], if S¢[P] =
(R*,T%) determines that ret is not tainted, ret is definitely not tainted in 8:[P]. In
other words, there is a proof that P is nonexploitable.

ret ¢ ¥ — S[P] € A& (7)
Proof (Equation (7))). Let (R,T) = 8.[P].
ret ¢ T" = ret¢ T (Equation @)
< ret ¢ o ({S[P]}) (Definition of 8;[P])
<~ §[P] € NE (Equation ()

Proof (Equation (4)). Follows immediately from Equation

C Structural taint semantics

In this section, we give an equivalent structural definition of the concrete reachability
taint semantics 8¢[[S].

30 F. Parolini and A. Miné

Skip statement (S := skip)
Si[SI(R,€,7) = (R, €,7)

Input read statement (S := x < input())

Se[SI(R,€,T) =
let (R1,€1) = 8[SJ(R, &) in
let Ty ={yeT|y#x}u
{x | 3((mo,i0,70), (M1,31,71)), (Mo, 39, 70), (M,31,71)) € R :
mo = my, o # 19,70 = o : hd(i1) # hd(é}) } in
(R1,E1,T1)

Random read statement (S := x « rand())

Si[S](R,&,T) =
let (R1,€&1) = 8[S](R, &) in
let Ti ={yeT|y#x}u
{x [3((mo,io,70), (m1,i1,m1)), ((mo,40,70), (M, 71,71)) € R :
mo = My, o # 40,70 = 7o : hd(r1) # hd(r}) } in
(R1,&1,T1)

Observe that the scenario where x becomes tainted after the execution of x « rand ()
can only occur if there exist two executions that only differ in the input sequence,
resulting in one of the two reading from the random sequence at least one additional
time. This happens when the user can control how many times there is a read from
the sequence of random numbers.

Statement composition (S = S;; S2)

Su[S1; S2](R, &, T) = 8:[S2](Se[S1](R, €,T))

As discussed in the paper, if statements can generate implicit flows [28]. We define
a helper function to compute the set of variables that are tainted due to implicit flows.
This function considers pairs of executions that initially differ only by the user input. If
two executions follow different branches and yield different values for a variable, such a
variable is tainted. This happens when the evaluation of the boolean condition depends

Sound Abstract Nonexploitability Analysis 31

on the user input.

diff[if (B) SielseS.]: (D x D) — p(V)
diff[if (B) S;elseS. (R, &) =
{x eV |3((mo,io, 7o), (mM1,41,71)), (Mg, 39, 70), (M1,31,71)) € R :

let (R¢, &) = S[S¢](test[B]{((mo,i0,70), (m1,%1,71))}, &) in
let (Re, Ec) = 8[Se] (test[-B]{((mo, i0,70), (m1,41,71))}, €) in
I(ma, iz, 72) : ((Mo,%0,70), (M2,i2,72)) € Ry :
3(mi, i5,75) 1 ((mo,i0, 7o), (M, i5,75)) € Re :
mo = my,io # iy, 7o = o : B[B]m1 = tt, B[B]m] = £f :
malx] # milx])

If statement (S := if (B) S; elseS.)
S:[SI(R, &, T) =
let (Re, &, Ty) = st[[St]](test[[B]]ﬂl, &, a:({test[B]R})) in
let (Re, Ec, Te) = 8:[Se] (test[-B]R, &, ar({test[-B]R})) in
let Tie = diff[if (B) S;elseS.J(R, &) in
(R U Re, €4 U Ec Uerr[B]R, T U Te U Tie)

Observe that since the boolean evaluation is filtering R, a¢({test[B]R}) is always a
subset of a;({R}). This follows immediately from the monotonicity of a; (see Equa-
tion (2))), which implies that T is a sound overapproximation of o ({test[B]R}). The
taint semantics for while statements is expressed as a least fixpoint.

While statement (S := while (B) Sp)

Si[S](R,&,T) = let (Ry,E&f,T4) = Up F in
(test[-B]Ry, Ef, e ({test[-B]Rs}))
where F(R1,81,T1) = (R,&,7) Qgt[[if (B) Sy else skip](Ri1, &1,T1)

D Interval analysis helper functions

In this section, we define the helper functions used in the analysis proposed in Section@
An interval is an element in | = {[[,h] |le Zu{—w},he Zu {4+w},l < h}u{Ll;}. An
interval abstract map is an element R? € D? = (V — 1) U {1#}. We denote the interval
abstract semantics of statements as S?[[s]] : DE — Dg. To simplify the presentation,
we ignore the abstract semantics for errors. The concretization function v; and the
arithmetic abstract evaluation .AE [A] : Dg — | are standard. The domain is assumed to
be equipped with standard functions 257 u§7 m?, and testﬁ[A]] [25]. We first define the
function isconst? : | — B which returns tt if the interval is a singleton.

isconst?(L;) = tt isconst!([l,h]) =1 =h

i

32 F. Parolini and A. Miné

The initial map % is simply Ax . [—00, +00]. We can then proceed to define taint![A] :
(D? x p(V)) — B. The extension to boolean expressions is trivial.

taint?[A] (LY, T%) = ££

taint/[n](RY, T9) = ££
£f if isconst?(R[x])

taint![x] (R, T) = {tt if x e T
ff otherwise
£f if isconst?(A%[A; o Ao RY)

taint![A; o A](RE, T = { £t if taint?[A (RS, T¥) or taint?[As](RE, TF)

ff otherwise

The function zero’[A] : D! — B is defined as follows.

zero! [A](RY) = [0,0] =¥ AZ[A]R]

The evaluation of an element in the random sequence rand[i] is simply [—o0, +00].
We define a helper function haserrorg [A] : DE — B to determine whether the evaluation
of A possibly results in an error. The extension to boolean expressions is trivial.

haserror[A] L% = ff
haserror! [n]R? = £f
haserror’[x]R% = ff
tt if o =/, zero![As](RY)
haserrori[A; o AR = { ¢t if haserror?[A;]R? or haserror’[As]R?

ff otherwise

The function assigned’[S] must be sound with respect to the following:

{x | 3((mo, i0,70), (m1,i1,71)) € v (RY) : I(ma,ia, r2) :
((mo,d0,70), (M2, i2,72)) € S[S]({((mo, i0, 0), (M1,41,71))}, &) :
mi[x] # ma[x]} S assigned*[S]R*

Sound Abstract Nonexploitability Analysis 33

For intervals, we define the function assigned?[s] : D! — p(V) as follows.

assigned?[[S]]J_g e %]
assignedg [skip]R? = ¢
assigned? [S1; S2]RE = assigned? [$1]R? U assigned?[Sa](S/[S1]R?)
assigned’[x «— input OJR? = {x}
assigned’[x «— rand O]R? = {x,1}
assigned’[x «— A]R? = {ret | haserror’[A]R?} U
{x | ~(isconst}(R![x]) and R[x] = A![A]R!) }
assignedg[[if (B) Sy else se]]ﬂzﬁ = {ret | haserrorf [[B]]RE bu
assignedg [[St]](test5 [[B]]Rf) V)
assigned;[S.] (test![-B]R})
assigned’[while (B) S,]R? = let (:R?c,Xf) = lim F" (L% &) in X
where F(R, X1) = let R = RE ¥, (R? U? 8¥[if (B) Sy else skip]RY) in
let Xo = X7 U assignedg[[if (B) Sp else skip]]JQ§ in
(R, X3)

The function const? : Df — (V) is defined as follows.

const?(RY) = {x | isconst?(R¥[x])}

E Analysis Sources and Runtime Errors

In this section, we report the list of runtime errors detected by our analysis, and the
list of sources of tainted data. Our analysis can detect the following runtime errors:

— Null pointer dereference

— Invalid pointer dereference

— Index-out-of-bounds

— Dangling pointer dereference

— Use after free

— Modification of read-only memory

— Division by zero

— Integer overflow

— Invalid bit shift operation

— Invalid pointer comparison

— Invalid pointer subtraction

— Double free

— Insufficient number of variadic arguments
— Insufficient number of format arguments
— Invalid format argument type

— Floating point division by zero

— Floating point invalid operation

— Floating point overflow

34 F. Parolini and A. Miné

— Violation of a stub language requirement. See [49] for more information about the
stub modeling language.

The following functions in the C standard library generate tainted data:

— getchar

— getchar_unlocked
— fgetc

— fgetc_unlocked
— getc

— getc_unlocked
— getw

— fgets

— fgets_unlocked
— gets

— getline

— getdelim

— fread

— fread_unlocked
— recv

— recvfrom

— scanf

— fscanf

— sscanf

	Sound Abstract Nonexploitability Analysis

