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Abstract

Many fluid-dynamical systems met in nature are quasi-two-dimensional: they are constrained to evolve in
approximately two dimensions with little or no variation along the third direction. This has a drastic effect
in the flow evolution because the properties of three dimensional turbulence are fundamentally different from
those of two dimensional turbulence. In three-dimensions energy is transferred on average towards small scales,
while in two dimensions energy is transferred towards large scales. Quasi-two-dimensional flows thus stand in
a crossroad, with two-dimensional motions attempting to self-organize and generate large scales while three
dimensional perturbations cause disorder, disrupting any large scale organization. Where is energy transferred
in such systems? It has been realised recently that in fact the two behaviors can coexist with a simultaneous
transfer of energy both to large and to small scales. How the cascade properties change as the variations along
the third direction are suppressed has lead to discovery of different regimes or phases of turbulence of unexpected
richness in behavior. Here, recent discoveries on such systems are reviewed. It is described how the transition
from three-dimensional to two-dimensional flows takes place, the different phases of turbulence met and the
nature of the transitions from one phase to the other. Finally, the implications these new discoveries have on
different physical systems are discussed.

1 Introduction

We live in a world of (at least) three spatial dimensions. However, for some physical systems a two dimensional
description appears to provide a suitable approximation for the dynamics involved. This happens when one
dimension is highly compactified like in thin films or due to some other physical mechanisms, like rotation
or strong magnetic fields, that prevents variations along one dimension. In fluid dynamics such a dimension-
reduction is met in a variety of systems from molecular to astrophysical scales. At the smallest scales, such
a reduction is met in the dynamics of electrons in ultra-pure materials such as graphene that display two
dimensional hydrodynamic behavior [77, 3, 10]. In an equally exotic case, two-dimensional flows are met in
fluids of light [1, 36]. Two dimensional flows have also been observed in Bose-Einstein condensates in liquid
Helium [93, 46, 52]. Furthermore, two-dimensional dynamics are shown to be a good approximation for the
motion of bacteria in films or thin layers [104, 62, 122, 121] and for the flow in soap films [72, 91, 120, 54].
Increasing in scale, plasma flows in the presence of strong magnetic fields, such as in Tokamak devices are also
known to display close to two-dimensional dynamics [125, 41]. Finally, at the planetary scale, flows are very
often constrained to two dimensional motions due to the presence of rotation, stratification and geometrical
constraints [129, 21, 56, 100].

In the systems above, despite being close to two-dimensional, variations along the third direction can not
always be disregarded, and some times play an important role in the energy balance relation. This is in particular
true for the turbulent case where the dynamics of the flow drastically differ in two and in three dimensions.
Turbulence is realised both in three and in two dimensions when the Reynolds number Re (the ratio of the
viscous time scale to the to eddy turn-over time) attains large values. In three dimensional turbulence, the
self-interaction between eddies generates smaller and smaller eddies transferring energy towards the smallest
scales where it is dissipated effectively by viscosity, independently of how small it is. In two dimensions, the
opposite behavior is observed. Eddies self-organize to generate larger eddies and thus transfer energy to larger
scales. Unlike the three-dimensional case, in two dimensions, because energy is transferred upscale, viscosity is
not efficient at dissipating it and energy piles up at the largest scale of the system. The dynamics of flows in
three and in two dimensions are thus fundamentally different.
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This brings out the question: what happens when a flow is only approximately two-dimensional and the flow
lies between the two extreme situations? On the one hand, if two dimensional motions dominate energetically
one can expect that flow dynamics will not be far from those of two dimensions and the transfer of energy will be
towards the large scales. On the other hand, the inverse transfer of energy can be proved only if enstrophy (the
mean square of vorticity) is conserved exactly, which is only true in two dimensional flows. Three dimensional
perturbations, even if subdominant, will break enstrophy conservation and the upscale transfer of energy is
questioned. This question for the behavior of quasi-two dimensional flows has been around for a long time [25].
What has been revealed in the last years is that a hybrid state of turbulence exists where transfer to larger and
to smaller scales coexist, building what is referred to as a bidirectional or split cascade.

This review deals with when, how and in what sense can a flow transition from three dimensional to two
dimensional behavior as a control parameter is varied. We will give a phenomenological description of the different
phases of turbulence that are observed and describe their behavior close to the critical points where phase
transitions are observed. The richness of behaviors observed in quasi-two-dimensional turbulence surpassed all
expectations leading to the discovery in the last years of new phenomena that challenge our mathematical and
physical understanding of fluid turbulence. These new discoveries are reviewed and categorized in order to give
direction to future research. Furthermore, the appearance of quasi-two-dimensional turbulence in a variety of
different systems is also reviewed by mentioning key works in the different systems. Finally, an attempt is made
to note the many questions that are open in the field, stressing the need for further studies. Throughout the
text, the mathematical formalism is made as light as possible in favor of readability and give references for more
formal descriptions.

The rest of this review is structured as follows. In section 2, three and two dimensional turbulence are briefly
reviewed. Then in section 3, thin layer turbulence is discussed and a detailed description of the transition from
three-dimensional (3D) to two-dimensional (2D) dynamics is given. In section 4, some recent results in other
quasi-2D systems like rotating and magneto-hydrodynamic flows are given. In section 5 conclusions are drawn
and open questions in the field are presented.

2 Two and three dimensional turbulence

Turbulence in three and two dimensions has been a subject of study for well over a century, earning itself the title
of the last unsolved problem of classical physics. Some excellent books on three dimensional turbulence can be
found in [39, 84, 27, 26] while reviews on three and two dimensional turbulence can be found in [6, 130, 107, 16, 81].
The present review is limited in presenting some basic results that are indispensable for the discussion that follows
and refer the reader to the former mentioned reviews for any further information.

2.1 Three dimensional turbulence

In its simplest form, turbulence in three and two dimensions of a unit density fluid, is described by the evolution
of the incompressible velocity field u that follows the Navier-Stokes equation

∂tu+ u · ∇u = −∇P + ν∇2u− αu+ f (1)

where P is the pressure imposing the incompressibility condition ∇ · u = 0, ν is the viscosity and f is an
external force assumed to act on a lengthscale ℓf and inject energy at a rate IE . The term −αu (where u
stands for the vertically averaged velocity) is an additional drag term that models the effect of boundaries and
is added here to make contact later on with 2D turbulence. We will consider as domain an orthogonal box
of dimensions L × L × H with H being the height along the direction which fluctuations are suppressed. For
simplicity, we consider here only periodic boundary conditions. For a given functional form of the forcing and
non-dimensionalizing using ℓf and IE the resulting non-dimensional numbers of the system are (i) the Reynolds

number is given by Re =
I1/3
E ℓ

4/3
f

ν
(ii) the large scale Reynolds number Reα =

I1/3
E

ℓ
2/3
f

α
(iii) the length scale ratio

L/ℓf and (iv) the normalized height H/ℓf . In what follows all quantities will be non dimensionalized using the
forcing length-scale ℓf and the energy injection rate IE (thus setting ℓf = 1 and IE = 1).

In three dimensions, the inviscid unforced system 1 for smooth flows, conserves two quadratic invariants.
The first is energy E = 1

2

〈
|u|2

〉
where the angular brackets stand for volume average. The second is helicity

H = 1
2
⟨u ·w⟩ (where w = ∇× u is the vorticity) that is not going to be discussed here but refer the reader to

[6, 89]. In the presence of a forcing and dissipation the following energy balance relation holds

IE = ϵν + ϵα (2)

where IE = ⟨u · f⟩ is the time and volume averaged energy injection rate, ϵν = ν
〈
|∇u|2

〉
is the energy dissipation

rate due to viscosity and ϵα = α
〈
|u|2

〉
is the energy dissipation rate due to the drag term.

2



To express the notion of scale we are going to use the Fourier transformed fields ûk such that

ûk =
〈
e−ik·xu

〉
u =

∑
k

eik·xûk (3)

where ℓ = 1/k gives a natural definition of scale. Using this we can define the spherically averaged energy
spectrum as

E(k) =
L

2

∑
k≤|q|<k+1/L

|ûq|2 (4)

where the sum is over all wavenumbers q that satisfy k ≤ |q| < k+1/L. Note that we have normalized E(k) by
L so that it has dimensions of energy per unit of wavenumber.

It was the pioneering work of last century that lead to the understanding that it is the flux of energy through
scales that controls the statistical properties of high Re flows. Early work of Kolmogorov [57] argued for the
existence of a constant flux of energy in scale space from the large to the small dissipative scales such that in
the infinite Re,Reα limit (in our notation)

ϵν = IE , and ϵα = 0 (5)

so that all of the injected energy arrives at small scales and it is dissipated by viscosity. Further assuming that
this process is self-similar in scale, led to the prediction of the famous Kolmogorov energy spectrum

E(k) = cK ϵ2/3ν k−5/3, kf < k < kν (6)

for wavenumbers larger than kf = 1/ℓf where cK is a non-dimensional order one constant. His prediction is valid

up to what is now known as the Kolmogorov wavenumber kν = 1/ℓν = ϵ
1/4
ν /ν3/4 ≃ kfRe−3/4. For wavenumbers

smaller than kf since there is no flux of energy these scales are expected to reach a thermal equilibrium state
with an equipartition of energy among modes leading to

E(k) = cT I
2/3
E ℓ

11/3
f k2, k < kf (7)

where cT is an other non-dimensional constant [24, 7, 49].
Later research showed that the forward cascade is not self-similar and the distributions of velocity differences

develop stronger tails as smaller scales are examined. As a result there is a small correction to the exponent of
the energy spectrum. This phenomenon referred to as intermittency has been the study of numerous studies in
order to quantify and understand these corrections, that however is not going to be discussed here.

2.2 Two dimensional turbulence

Despite the fact that two dimensional flows obey the same equation as three dimensional flows they do not
display the same dynamical properties. In two dimensions the Navier-Stokes equation 1 can be written in terms
of the out-of-plane vorticity as

∂tw + u · ∇w = ν∇2w − αw + fw (8)

where w = ez ·w (where ez is the unit vector along z taken to be the out-of-plane direction), fw = ez · ∇ × f
and we have added the drag force −αw often met in two dimensional systems due to bottom friction. There
are two quadratic invariants in two dimensions the energy E = 1

2

〈
|u|2

〉
and the enstrophy Ω = 1

2

〈
|w|2

〉
. Their

balance relations read
IE = ϵν + ϵα, IΩ = ην + ηα (9)

where IE is again the energy injection rate, IΩ = ⟨wfw⟩ ≃ k2
fIE is the enstrophy injection rate. The energy

dissipation terms at small and large scales are given by ϵν = ν
〈
|w|2

〉
and ϵα = α

〈
|u|2

〉
respectively and the

enstrophy dissipation rates by ην = ν
〈
|∇w|2

〉
and ηα = α

〈
|w|2

〉
.

It was first realized by Onsager [79] using a point vortex model that in two-dimensions negative “temperature”
states can exist where the flow self-organizes to generate large scale structures. Later on, the work of Kraichnan,
Leith and Batchelor [59, 60, 65, 12], lead to what is known as the KLB dual cascade picture of two dimensional
turbulence. Their work argued that a constant forward flux of energy is incompatible with a constant flux of
enstrophy. In spectral space the energy spectrum E(k) is related to the enstrophy spectrum EΩ(k) = k2E(k).
This implies that a constant forward energy flux would imply an ever larger flux of enstrophy that is inconsistent
with the enstrophy conservation. As a result, the only possibility is that enstrophy cascades forward towards the
small scales while energy cascades inversely in the large scales. Therefore at infinite domains and in the infinite
Re,Reα limit

ϵα ≃ IE , ϵν ≃ 0 and ηα ≃ 0, ην ≃ IΩ. (10)

The presence of this dual cascade picture has been verified in numerical simulations [17, 66, 67] and experi-
ments [20, 119, 55]. Same arguments as in the three dimensional cascade lead to the prediction of an E(k) ∝ k−5/3
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Figure 1: Visualisation of vorticity for the turbulent state L ≫ Lα (left) and for the condensate state Lα ≫ L
(right). In both cases the forcing scale ℓf was 80 times smaller than the domain size L.

energy spectrum for the range of wavenumbers that an inverse cascade of energy is present kα ≪ k ≪ kf while
the steeper spectrum E(k) ∝ k−3 is predicted for the range of wavenumbers kf ≪ k ≪ kν that a forward

enstrophy cascade is observed. Here kν = η
1/6
ν /ν1/2 ≃ kfRe1/2 while kα = ϵ

1/2
α /α3/2 = kfRe

−3/2
α . Note that the

viscous wavenumber kν has a different scaling in 2D than 3D. We have also introduced a new cut-off wavenumber
kα (and lengthscale Lα = 1/kα) such that wavenumbers with k < kα are severely damped by the drag force.
The inverse cascade of energy is shown not to be intermittent [14] unless energy is injected in a fractal set [103].

Unlike the the small scale viscous cut off ℓν = 1/kν that can become arbitrarily small as Re → ∞ the large
scale cut of Lα = 1/kα is limited by the domain size L. Thus while for Lα ≪ L the aforementioned inverse
cascade and power laws will be present, when L ≪ Lα the inverse cascade will reach the domain size scale before
the drag coefficient α becomes effective. In the latter case energy that arrives at the large scales will pile-up
at the domain size in what is known as a spectral condensate [32]. In square periodic domains this condensate
takes the form of two large counter rotating vortexes with large enough amplitude for the dissipation to balance
the energy arriving from the small scales. This leads to the estimate for the energy of the condensate to be

E ≃ IE

α+ νL2
. (11)

This energy can be very large in particular in the α = 0 case that we will examine later on. The cascade picture
described before is then altered and steeper power-laws are observed. The amplitude of the velocity fluctuations
is so large that it brings the system to a quasi-equilibrium state that merits various equilibrium statistical
approaches [79, 61, 92, 78, 18, 64, 40, 112]. Figure 1 shows two vorticity visualisations of two-dimensional flows
such that on the left Lα < L while on the right Lα ≫ L. The condensate state has been realized in various
experiments [20, 38]. The statistical properties of the inverse cascade case Lα ≪ L and the condensate case
Lα ≫ L are so different that we are going to treat them separately for the quasi-2D case.

3 Thin Layer turbulence

Turbulent flows confined in thin layers is perhaps the simplest and most intuitive flows that can display split
energy cascades. It is thus an optimal choice for the study of quasi-two-dimensional flows. Furthermore, such
anisotropic domains are very relevant for the atmosphere whose horizontal direction is of the order of 1000 km,
while the pressure scale height of the order of 10 km. As such they have been extensively studied in the literature.

Here we will discuss how the cascade properties of thin layer turbulence change as the layer height is varied in
the limit of large Re,Reα. We will distinguish between two cases: (i) cases that the drag is efficient at absorbing
the large scale energy that arrives in the presence of an inverse cascade so that Lα ≪ L and (ii) cases that the
a large scale drag is very weak or absent so that a condensate is formed so that Lα ≫ L. In the first case we
will quantify the forward and inverse flux of energy using ϵα and ϵν (measured in units of IE) that express the
fraction of energy that is transferred in the large and the small scales respectively. In the infinite Re,Reα limit
ϵα = 0, ϵν = 1 for three dimensional turbulence while ϵα = 1, ϵν = 0 for two dimensional turbulence.
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In the condensate case we will typically consider α = 0 so that ϵα, ϵν are not suitable to quantify the state
of the flow. Instead we will use the energy of the largest scale modes EC defined as

EC =
1

2

∑
|k|<c/L

|ûk|2 (12)

with c > 2π an order one number. Finally we will also consider the energy of 3D fluctuations as

E3D =
1

2

〈
|u− u|2

〉
. (13)

In what follows we describe the behavior of ϵα, ϵν , EC , E3D as the height of the layer is varied for the turbulent
and the condensate case.

3.1 From 3D turbulence to 2D turbulence

First, the case Lα ≪ L (that no condensate forms) is considered. The first work that made the remark that
flows in thin layers can cascade energy to both large and small scales was [102]. Since then a series of more
systematic works followed that measured the fraction of energy that cascaded to that large scales as the height
was varied [23, 75, 13, 109, 87] whose results will be described in this section.

We begin the presentation of thin layer turbulence by considering first a layer of height H much larger than
the forcing scale and then gradually decreasing it. For H ≫ ℓf the flow displays three dimensional turbulence
with only froward cascade observed at scales ℓ smaller than ℓf forming a k−5/3 energy spectrum. At scales larger
than ℓf energy is expected to reach a thermal equilibrium state with equipartition of energy among modes. An
argument can be made that if one considers horizontal scales ℓ⊥ ≫ H ≫ ℓf where the flow is constrained to
move primarily in two dimensions an inverse cascade can build up. However the primary interactions at such
scales are not with same scale two dimensional eddies but rather directly with the forcing scale modes that are
more energetic and act as a turbulent diffusion. Thus even at these scales the cascade will be strictly forward.
This is a conjecture however that needs to be verified.

The strictly forward cascade behavior changes as smaller layer heights are considered. Eventually a critical
height H3D is reached such that for heights H < H3D a new phase of turbulence appears that a bidirectional
cascade is present. Numerical simulations indicate that the fraction of the energy that cascades inversely ϵα is
gradually increasing from zero as a power-law [13, 109]

ϵα ∝ (H3D −H)β1 (14)

where β1 is measured to be close to unity but its precise value has yet to be determined. The presence of this
critical point is not trivial nor fully understood. The only evidence we have are from numerical simulations
[13, 109] that however can be questioned because unavoidably they suffer from limited resolution. Further
investigations would be required both numerical and theoretical to investigate this point and conclude on its
presence and on the universality class of this transition.

As H is decreased further than H3D the fraction of energy that cascades to the small scales is decreased. For
H ≪ H3D all scales ℓ > H have a two dimensional behavior with an inverse cascade of energy and a forward
cascade of enstrophy. This however does not imply that no energy arrives at scales close to the height ℓ ∼ H.
Along with the enstrophy cascade some energy has to be transported to the small scales as well, so at scale H
the flux of energy is ϵν ∝ ηνH

2 [15]. This energy is then transported to even smaller scales ℓ < H by three
dimensional interactions. Note that at the limit H → 0 the fraction of energy transported to the small scales
also goes to zero ϵν → 0 and 2D behavior is recovered. Given that ην ∼ IΩ ≃ IE/ℓ

2
f implies that

ϵν ∝ H2 (15)

This behavior was first predicted in [15] and verified using a shell model. This scaling however has never been
tested using numerical simulations and it is something future research needs to confirm.

The scaling in 15 does not continue for arbitrarily small H. If H ∼ ℓν then a new transition is observed
towards a third phase of turbulence where all three dimensional perturbations are damped out. In particular
in the case that the forcing is two-dimensional, the transition to exactly 2D behavior, occurs in a critical way:
there is a second critical height H2D such that for all H < H2D the flow becomes exactly two dimensional. A
very interesting dynamical behavior is observed for layer heights slightly larger than H2D. If we denote as E3D

the energy contained in 3D modes alone then it is measured that close to this new critical height E3D scales like

E3D ∝ (H −H2D)β2 (16)

where β2 is an exponent larger than one [13, 8]. This exponent is linked to the fact that as H2D is approached
from above 3D fluctuations grow or decay with growth that is randomly distributed in space and time. As a result
not only the amplitude of 3D perturbations depends on H −H2D but also the fraction of area that is occupied
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by them. In [8] this behavior was linked to the universality class observed in the presence of multiplicative
noise in extended systems [108, 48] that is related to the KPZ equation [53]. This leads to the prediction that
β2 ≃ 1.7 . . . compatible with present data but further work is needed to draw firm conclusions.

Finally for H ≪ ℓν all three dimensional fluctuations are severely damped and the flow can be proven to
become exactly two dimensional [44, 42] and thus all properties mentioned in section 2.2 are recovered. A sum-up
of all the different phases of thin layer turbulence and their transitions in the Lα ≪ L case is sketched in fig 2
and reported in table 1.

Figure 2: A sketch of the qualitative behavior of ϵα (top panel, blue line), ϵν (top panel red line) and E3D (bottom
panel red line) as a function of the layer height H.

3.2 From 3D turbulence to a 2D condensate

In finite domains when the drag coefficient is very small (or even zero) even a weak inverse cascade will lead
to the formation of a large scale condensate at long times. The study of condensates is costly with numerical
simulations due to the very long times that are involved. For this reason such studies always come after studies
without the condensate. Nonetheless various numerical studies of thin layer turbulence exist in the literature
[109, 76]. On the contrary to the numerical simulations, laboratory experiments do not have such time limitations
and various studies of thin layer flows have been investigated in the literature although with limited separation
between the forcing scale and the domain height [123, 124, 38, 99].

As in the previous section we begin with a layer that has a height H much larger than the forcing scale
H ≫ ℓf so that no inverse cascade and no condensate is formed, and gradually reduce this height. As H is
reduced beyond the the critical height H3D (discussed in the previous section) a weak inverse cascade starts to
build up leading to the formation of a condensate of energy EC . If the drag coefficient α is finite the increase of
EC is gradual. For α = 0 however even a small inverse cascade can lead to a large value of EC . In fact studies
very close to H3D showed that the transition to the condensate state is discontinuous [109]. In more detail it
was shown that for H larger than H3D the large scale energy remained small EC = O(1/L2), but as soon as it
become slightly smaller than H3D a condensate formed and EC jumped to a finite value EC = O(1). Furthermore,
it was shown in [109] that if H was gradually increased again to values larger than H3D the condensate state
remained with EC = O(1) up to some second critical value H ′

3D > H3D. Thus for values of H in the range
H3D < H < H ′

3D two steady states (two different attractors) exist for the same value of H and a hysteresis
diagram was constructed [109] as shown in fig.3.

Further investigations of this system [115] revealed that if run for a long time there are random jumps from
one attractor to the other. The time distribution of these random jumps follows an exponential distribution
indicating a memory-less process [115]. It was also shown that as the Reynolds number and the domain size are
increased this range of H where both attractors are stable increases [29]. This bistability is thus a behavior that
is expected to survive in the large Re limit.

As H is decreased significantly from H3D so that ℓf ≫ H the condensate becomes stable and its amplitude
depends on the principal mechanism that saturates the inverse cascade. If the Reynolds number is moderate,
viscous dissipation will provide the main saturation mechanism and EC ∝ IEL

2/ν [109]. For large Reynolds
numbers however a new mechanism for saturation is present that originates from an eddy-viscosity effect due

6



Figure 3: A sketch of the qualitative behavior of EC (blue line), and E3D (red line) as a function of the layer height
H in the condensate state.

to the small 3D eddies at scales ℓ < H. These 3D eddies extract energy from the condensate scales. A flux
loop mechanism thus is present in which energy injected at ℓf moves up scale to the condensate scale L through
2D motions and then back to smaller scales ℓ < H through interactions with the forcing scale 3D eddies. The
condensate energy then in this case is not inversely proportional to viscosity but rather reaches a viscosity
independent scaling EC ∝ (IEℓf )

2/3 [76, 109]. A simple model that captures this behavior was proposed in [109].
At even smaller layer heights, such that H ∼ ℓν , a new transition appears again towards a state where 3D

perturbations are damped as in the previous section. The case of the condensate however is significantly different
from the turbulent case. While in the former turbulence was unstructured and uniform in space allowing 3D
perturbations to grow anywhere in the domain, in the condensate state the flow is still chaotic but self-organized
in coherent structures of high concentration of vorticity and strain in small regions of space. In [98, 68] the
evolution of infinitesimal 3D perturbations in a two dimensional flow in the condensate state were followed. This
study revealed that E3D in this limit followed a random behavior with long periods of decay and very short
periods of very large exponential increase. The periods of increase were shown to appear when the extreme of
vorticity or the strain of a flow crossed a certain threshold. The statistics of these extremes were studied in detail
recently in [94]. Using a point vortex model that was coupled to point like 3D perturbations in [113] showed that
the instantaneous growth-rate of the energy of the 3D perturbations displayed power-law distributions that were
linked to the power-law distribution of strain in space. As such the logarithm of the energy of the perturbations
followed a Lévy random walk that explains the sudden jumps in the growth of energy observed in [98]. This
lead to a new type of intermittency the Lévy-On-Off intermittency that was described and studied in detain in
[114, 116]. This also leads to new power-law behavior for the 3D energy

E3D ∝ (H −H∗
2D)β3 (17)

where H∗
2D is the critical value of H bellow which all 3D perturbation are damped and β3 is an other exponent

that depends on the Lévy noise parameters (see [114, 116]). This behavior suggested by the model has yet to
be confirmed by direct numerical simulations.

Finally, for H ≪ ℓν all 3D perturbations are dumped and the systems recovers its exact two dimensional
behavior. The different stages of thin layer condensates are shown in figure 3 and summed up in table 1 along
with the turbulent case.

4 Other examples of Quasi-2D flows

Similar transitions to the ones observed in thin layer turbulence are expected to be found in other quasi-two-
dimensional flows. However due to the increased numerical cost or the technical difficulties in constructing
laboratory experiments has limited their study. In what follows we mention a few of these systems focusing on
the additional phenomena that are present.
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H&L Turbulent cascade Condensate
Lα ≪ L Lα ≫ L

H > ℓf 3D Forward No condensate
Cascade of Energy

ϵα = 0, ϵν = 1 EC ∝ L−2

Criticality Discontinuous transition
H = H3D ∼ ℓf ϵα ∝ (H3D −H)β1 hysterisis and

β1 ≃ 1. “rare event” jumps
2D and 3D Flux-loop

ℓf ≫ H ≫ ℓν Bidirectional cascade condensate
ϵν ∝ H2 EC ∝ 1

H ∼ ℓν Extended Multiplicative noise Lévy flight
E3D ∝ (H −H2D)β2 on-off Intermittency

β2 ∼ 1.7 E3D ∝ (H −H∗
2D)β3

H ≪ ℓν 2D Inverse 2D condensate
energy cascade
ϵα = 1, ϵν = 0 EC ∝ L2/ν

Table 1: Table with the different phases and critical behaviors observed in thin layer turbulence. The left column
gives the range of H, the middle gives the characteristics of the flow for the turbulent case and the right column
gives the characteristics of the flow for the condensate state.

4.1 Rotating turbulence

Rotating turbulence is perhaps the simplest system after thin layers that displays quasi-2D behavior and split
cascades. It deals with turbulence in a rotating reference frame of rotation Ω quantified here by the Rossby
number Ro = I1/3

E /(Ωℓf )
2/3. The transition from 3D turbulence to a 2D inverse cascade has been investigated in

[30] and [82]. The critical layer height H3D was shown to increase with the rotation rate from the weak rotation
value H3D ∝ ℓf to a value that was shown to increase as

H3D ∝ ℓf/Ro. (18)

This scaling was confirmed in [110] using an asymptotic model of the rotating Navier-Stokes equation for fast-
rotating turbulence within highly elongated domains.

Although, rotating turbulence appeared to have the same phenomenological description as in thin layers for
the 3D to 2D transition in the large Ro and small Ro limit, at intermediate values of Ro a new state of turbulence
was discovered in [31] at which the flow formed a crystal of co-rotating vortexes at scales larger than the forcing
scale. This state of turbulence occurs close to the H3D transition height at which the co-rotating 2D vortexes
are stable while counter-rotating 2D vortexes decay due to 3D fluctuations. The remaining co-rotating vortexes
form crystals as have been seen in point vortex models [9] and experiments on magnetized electron columns
[37]. This new state of turbulence is supported by a flux loop mechanism and was shown to be metastable that
reduced to an inverse cascade if a strong perturbation is applied. Such vortex crystals have been observed in
the North pole of Jupiter by the Juno spacecraft mission [2] and have been interpreted by quasi-geostrophic
dynamics in a curved domain [101]. The results of [31] could provide an alternative explanation. We note that
in both models a segregation between co-rotating and counter rotating vortexes has lead to the formation of the
crystal.

Condensates in rotating turbulence have been studied in [96, 5, 128] where a discontinuous transition and
hysteresis were also found close to H3D, however the significant larger complexity of rotating turbulence did not
allow for a thorough investigation. However, recently new experimental platforms have been build that have
been able to quantify the formation of large scales in rotating turbulence and disentangle the forward and inverse
transfers as well as the presence of wave turbulence [63, 22, 43, 69, 127, 58, 19, 73]. These experiments are very
suitable in studying the long term behavior of rotating turbulence close to critical points and future work is
expected to verify numerical observations as well as reveal new interesting physics.

4.2 Stratified turbulence

By stratified we refer to turbulence in the presence of gravity −ezg and a mean stable density gradient S =
−ρ−1

0 dρ/dz. Unlike rotation, stratification works against the two dimensionalization of turbulence by leading to
the formation of strong vertical gradients, despite the fact that it suppresses vertical motions it. In [105] it was
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shown that the critical height H3D that the inverse cascade appears is decreased with stratification as

H3D ∝ ℓfFr, (19)

where Fr = I1/3
E /(gS)1/2ℓ

2/3
f is the Froude number. As a result in strongly stratified flows deviations from two

dimensional turbulence can appear at much thinner layers than in the absence of stratification.
Little or no work has been done for the other critical points in strongly stratified turbulence or in the presence

of a condensate.

4.3 Rotating and stratified turbulence

Rotating and stratified turbulence provides perhaps the simplest model of a dry atmosphere and various studies
have been devoted to its cascade properties directly from the Navier-Stokes [11, 71, 88, 51] or from reduced
models [126]. It combines both the effect of two-dimensionalization of rotation and the suppression of vertical
motions of stratification. The resulting complexity however is larger than the sum of its parts. In [111] using an
asymptotic model for strong rotation and long boxes it was shown that in this limit the parameter space split
in three different phases, one with no inverse cascade, one rotating dominated regime with an inverse cascade
due to a two-dimensionalization and a third strongly stratified regime with an inverse cascade corresponding
to quasi-geostrophic dynamics. It seems thus the phase space of rotating and stratified turbulence is far more
complex than anticipated and a careful exploration of it and its asymptotic limits is needed.

4.4 Convection

Although convection involves inherently 3D motions in the presence of strong rotation or vertical confinement it
can lead to quasi-2D behavior. There have been numerous reports in the last years of an inverse cascade and the
formation of coherent large scale quasi-2D vortices in rotating Rayleigh-Benard convection that coexists with 3D
eddies that extract energy from the unstable stratification [50, 35, 70]. The behavior of the large scale vortices
form resemble the ones observed in thin layer turbulence and rotating turbulence displaying a discontinuous
transitions and a hysteresis [34, 28].

Finally, inverse cascade has been reported in [118] for very horizontally extended domains even in the absence
of rotation.

4.5 Magnetohydrodynamic turbulence

Like strong rotation for ordinary fluids a strong uniform magnetic field is also capable of bi-dimensionalizing
electrically conducting fluids. Within the Magneto-Hydro-Dynamic (MHD) approximation two particular limits
are of interest. First, the high conductivity limit (corresponding to the large magnetic Reynolds number limit)
relevant to astrophysical plasmas and tokamak devices. The transition to a two-dimensional behavior in this
limit has been investigated in [4, 106] see also the review of [80]. Second, for low magnetic Reynolds numbers
(low conductivity) the magnetic field acts as a damping mechanism for all velocity fluctuations varying along
the direction of the magnetic field. This so called quasi-static MHD with relation to the transition to 2D flow
has been studied in [33, 90, 117]. This limit is suitable for liquid metals and has been investigated in some
innovating experiments [85, 86, 124, 125, 45].

Just like in the previous examples in MHD transitions from a three dimensional forward cascade to a bidi-
rectional cascade and two dimensional cascade are observed. However the presence of additional invariants both
in 3D and 2D make the phase space of MHD turbulence sufficiently more complex such that even in pure 2D
MHD such transitions can be observed [97, 95].

4.6 Quantum turbulence

Quantum turbulence refers to turbulent flow of quantum fluids, where vortex are quantized. There are various
models used to describe such flows that is beyond the purpose of this work to describe. We will however mention
the experiments in [93, 52, 47] where quasi-two dimensionalization in super-fluids is observed and the formation
of large scale vortices. Numerically such bi-dimensionalization has been observed in thin superfluid layers [74]
using the Gross–Pitaevskii equation and in the two fluid description of superfluid turbulence in the presence of
a counter-flow [83].

5 Conclusions

If something is kept from this review, it should be the plethora of new dynamical phenomena that appear in
quasi-2D turbulence when it is pushed to the right limits. To begin with, even in the simplest case of a thin
layer flow, different phases of turbulence are observed in the infinite Re limit. Unlike the commonly accepted
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expectations for homogeneous and isotropic turbulence for which a universal behavior is expected, in the presence
of confinement and anisotropy distinct phases of turbulence are present such that in one phase there is large
scale energy transfer and self-organization while in the other disorder and efficient energy dissipation. These
phase are separated by critical points that display continuous or discontinuous phase transitions. Near these
critical points, novel dynamical behaviors are observed that include the appearance of hysteresis diagrams and
new critical exponents that are summed up in the table 1. As the complexity of the system is increased further
new phases are discovered like the vortex-crystal meta-stable phase observed in rotating turbulence.

Recent research has only scratched the surface of these new phenomena and a lot of further work is required.
In particular, investigating the behavior of the flows close to criticality and classifying them in universality classes
is a much needed direction for the field. Theoretical, numerical and experimental investigations need to proceed
in parallel in this direction in order to establish a clear and quantitative understanding of these transitions.

Furthermore, expanding the system complexity including more physical effects would allow to make contact
with with physical and industrial systems. Here, only idealized situations were examined with a well defined
injection and dissipation scale. Reality is far more complex, with forcing mechanisms that span a wide range of
scales (like convection, planetary scale baroclinic instabilities, etc) and large scale dissipation much more complex
than the linear drag force assumed here. However, if we can not understand this behavior in the idealised models
what hope do we have to understand the more complex physical systems. Progress in both directions and a
connection between the the idealized and more physical case would be required in order to obtain accurate
predicting models.

Finally I would would like to note that, we live in a world that climate gradually changes and an atmosphere
belongs in the wider class of quasi-two-dimensional flows. It is thus important to understand how this system
responds to variations of parameters. For this reason studies of fundamental questions along the directions
reviewed in this work are imperative.

A peer-reviewed version of this article can be found at Reviews of Modern Plasma Physics volume 7, Article
number: 31 (2023) https://doi.org/10.1007/s41614-023-00134-3
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