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Quasi-two-dimensional Turbulence

Many fluid-dynamical systems met in nature are quasi-two-dimensional: they are constrained to evolve in approximately two dimensions with little or no variation along the third direction. This has a drastic effect in the flow evolution because the properties of three dimensional turbulence are fundamentally different from those of two dimensional turbulence. In three-dimensions energy is transferred on average towards small scales, while in two dimensions energy is transferred towards large scales. Quasi-two-dimensional flows thus stand in a crossroad, with two-dimensional motions attempting to self-organize and generate large scales while three dimensional perturbations cause disorder, disrupting any large scale organization. Where is energy transferred in such systems? It has been realised recently that in fact the two behaviors can coexist with a simultaneous transfer of energy both to large and to small scales. How the cascade properties change as the variations along the third direction are suppressed has lead to discovery of different regimes or phases of turbulence of unexpected richness in behavior. Here, recent discoveries on such systems are reviewed. It is described how the transition from three-dimensional to two-dimensional flows takes place, the different phases of turbulence met and the nature of the transitions from one phase to the other. Finally, the implications these new discoveries have on different physical systems are discussed.

Introduction

We live in a world of (at least) three spatial dimensions. However, for some physical systems a two dimensional description appears to provide a suitable approximation for the dynamics involved. This happens when one dimension is highly compactified like in thin films or due to some other physical mechanisms, like rotation or strong magnetic fields, that prevents variations along one dimension. In fluid dynamics such a dimensionreduction is met in a variety of systems from molecular to astrophysical scales. At the smallest scales, such a reduction is met in the dynamics of electrons in ultra-pure materials such as graphene that display two dimensional hydrodynamic behavior [START_REF] Boris | Hydrodynamic approach to two-dimensional electron systems[END_REF][START_REF] Aharon-Steinberg | Direct observation of vortices in an electron fluid[END_REF][START_REF] Denis A Bandurin | Fluidity onset in graphene[END_REF]. In an equally exotic case, two-dimensional flows are met in fluids of light [START_REF] Abobaker | Inverse energy cascade in two-dimensional quantum turbulence in a fluid of light[END_REF][START_REF] Tiago D Ferreira | Towards the experimental observation of turbulent regimes and the associated energy cascades with paraxial fluids of light[END_REF]. Two dimensional flows have also been observed in Bose-Einstein condensates in liquid Helium [START_REF] Seo | Observation of vortex-antivortex pairing in decaying 2d turbulence of a superfluid gas[END_REF][START_REF] Gauthier | Giant vortex clusters in a twodimensional quantum fluid[END_REF][START_REF] Johnstone | Evolution of large-scale flow from turbulence in a two-dimensional superfluid[END_REF]. Furthermore, two-dimensional dynamics are shown to be a good approximation for the motion of bacteria in films or thin layers [START_REF] Sokolov | Concentration dependence of the collective dynamics of swimming bacteria[END_REF][START_REF] Kurtuldu | Enhancement of biomixing by swimming algal cells in two-dimensional films[END_REF][START_REF] Wu | Particle diffusion in a quasi-two-dimensional bacterial bath[END_REF][START_REF] Wei | Scaling transition of active turbulence from two to three dimensions[END_REF] and for the flow in soap films [START_REF] Bk Martin | Spectra of decaying turbulence in a soap film[END_REF][START_REF] Rivera | Turbulence in flowing soap films: velocity, vorticity, and thickness fields[END_REF][START_REF] Vorobieff | Soap film flows: Statistics of two-dimensional turbulence[END_REF][START_REF] Kellay | Two-dimensional turbulence: a review of some recent experiments[END_REF]. Increasing in scale, plasma flows in the presence of strong magnetic fields, such as in Tokamak devices are also known to display close to two-dimensional dynamics [START_REF] Xia | Inverse energy cascade correlated with turbulent-structure generation in toroidal plasma[END_REF][START_REF] Fujisawa | A review of zonal flow experiments[END_REF]. Finally, at the planetary scale, flows are very often constrained to two dimensional motions due to the presence of rotation, stratification and geometrical constraints [START_REF] Young | Forward and inverse kinetic energy cascades in jupiter's turbulent weather layer[END_REF][START_REF] Byrne | Height-dependent transition from 3-d to 2-d turbulence in the hurricane boundary layer[END_REF][START_REF] Gregory P King | Upscale and downscale energy transfer over the tropical p acific revealed by scatterometer winds[END_REF][START_REF] Siegelman | Moist convection drives an upscale energy transfer at jovian high latitudes[END_REF].

In the systems above, despite being close to two-dimensional, variations along the third direction can not always be disregarded, and some times play an important role in the energy balance relation. This is in particular true for the turbulent case where the dynamics of the flow drastically differ in two and in three dimensions. Turbulence is realised both in three and in two dimensions when the Reynolds number Re (the ratio of the viscous time scale to the to eddy turn-over time) attains large values. In three dimensional turbulence, the self-interaction between eddies generates smaller and smaller eddies transferring energy towards the smallest scales where it is dissipated effectively by viscosity, independently of how small it is. In two dimensions, the opposite behavior is observed. Eddies self-organize to generate larger eddies and thus transfer energy to larger scales. Unlike the three-dimensional case, in two dimensions, because energy is transferred upscale, viscosity is not efficient at dissipating it and energy piles up at the largest scale of the system. The dynamics of flows in three and in two dimensions are thus fundamentally different. This brings out the question: what happens when a flow is only approximately two-dimensional and the flow lies between the two extreme situations? On the one hand, if two dimensional motions dominate energetically one can expect that flow dynamics will not be far from those of two dimensions and the transfer of energy will be towards the large scales. On the other hand, the inverse transfer of energy can be proved only if enstrophy (the mean square of vorticity) is conserved exactly, which is only true in two dimensional flows. Three dimensional perturbations, even if subdominant, will break enstrophy conservation and the upscale transfer of energy is questioned. This question for the behavior of quasi-two dimensional flows has been around for a long time [START_REF] Sergei | Quasi-two-dimensional turbulence[END_REF]. What has been revealed in the last years is that a hybrid state of turbulence exists where transfer to larger and to smaller scales coexist, building what is referred to as a bidirectional or split cascade.

This review deals with when, how and in what sense can a flow transition from three dimensional to two dimensional behavior as a control parameter is varied. We will give a phenomenological description of the different phases of turbulence that are observed and describe their behavior close to the critical points where phase transitions are observed. The richness of behaviors observed in quasi-two-dimensional turbulence surpassed all expectations leading to the discovery in the last years of new phenomena that challenge our mathematical and physical understanding of fluid turbulence. These new discoveries are reviewed and categorized in order to give direction to future research. Furthermore, the appearance of quasi-two-dimensional turbulence in a variety of different systems is also reviewed by mentioning key works in the different systems. Finally, an attempt is made to note the many questions that are open in the field, stressing the need for further studies. Throughout the text, the mathematical formalism is made as light as possible in favor of readability and give references for more formal descriptions.

The rest of this review is structured as follows. In section 2, three and two dimensional turbulence are briefly reviewed. Then in section 3, thin layer turbulence is discussed and a detailed description of the transition from three-dimensional (3D) to two-dimensional (2D) dynamics is given. In section 4, some recent results in other quasi-2D systems like rotating and magneto-hydrodynamic flows are given. In section 5 conclusions are drawn and open questions in the field are presented.

Two and three dimensional turbulence

Turbulence in three and two dimensions has been a subject of study for well over a century, earning itself the title of the last unsolved problem of classical physics. Some excellent books on three dimensional turbulence can be found in [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF][START_REF] Stephen | Turbulent flows[END_REF][START_REF] Peter Alan | Turbulence: an introduction for scientists and engineers[END_REF][START_REF] Peter A Davidson | A voyage through turbulence[END_REF] while reviews on three and two dimensional turbulence can be found in [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF][START_REF] Zhou | Turbulence theories and statistical closure approaches[END_REF][START_REF] Tabeling | Two-dimensional turbulence: a physicist approach[END_REF][START_REF] Boffetta | Two-dimensional turbulence[END_REF][START_REF] Pandit | An overview of the statistical properties of two-dimensional turbulence in fluids with particles, conducting fluids, fluids with polymer additives, binary-fluid mixtures, and superfluids[END_REF]. The present review is limited in presenting some basic results that are indispensable for the discussion that follows and refer the reader to the former mentioned reviews for any further information.

Three dimensional turbulence

In its simplest form, turbulence in three and two dimensions of a unit density fluid, is described by the evolution of the incompressible velocity field u that follows the Navier-Stokes equation

∂tu + u • ∇u = -∇P + ν∇ 2 u -αu + f ( 1 
)
where P is the pressure imposing the incompressibility condition ∇ • u = 0, ν is the viscosity and f is an external force assumed to act on a lengthscale ℓ f and inject energy at a rate IE . The term -αu (where u stands for the vertically averaged velocity) is an additional drag term that models the effect of boundaries and is added here to make contact later on with 2D turbulence. We will consider as domain an orthogonal box of dimensions L × L × H with H being the height along the direction which fluctuations are suppressed. For simplicity, we consider here only periodic boundary conditions. For a given functional form of the forcing and non-dimensionalizing using ℓ f and IE the resulting non-dimensional numbers of the system are (i) the Reynolds number is given by Re = In what follows all quantities will be non dimensionalized using the forcing length-scale ℓ f and the energy injection rate IE (thus setting ℓ f = 1 and IE = 1). In three dimensions, the inviscid unforced system 1 for smooth flows, conserves two quadratic invariants. The first is energy E = 1 2 |u| 2 where the angular brackets stand for volume average. The second is helicity H = 1 2 ⟨u • w⟩ (where w = ∇ × u is the vorticity) that is not going to be discussed here but refer the reader to [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF][START_REF] Pouquet | Helical fluid and (hall)-mhd turbulence: a brief review[END_REF]. In the presence of a forcing and dissipation the following energy balance relation holds

IE = ϵν + ϵα (2) 
where IE = ⟨u • f ⟩ is the time and volume averaged energy injection rate, ϵν = ν |∇u| 2 is the energy dissipation rate due to viscosity and ϵα = α |u| 2 is the energy dissipation rate due to the drag term.

To express the notion of scale we are going to use the Fourier transformed fields ûk such that

ûk = e -ik•x u u = k e ik•x ûk (3) 
where ℓ = 1/k gives a natural definition of scale. Using this we can define the spherically averaged energy spectrum as

E(k) = L 2 k≤|q|<k+1/L |ûq| 2 (4) 
where the sum is over all wavenumbers q that satisfy k ≤ |q| < k + 1/L. Note that we have normalized E(k) by L so that it has dimensions of energy per unit of wavenumber. It was the pioneering work of last century that lead to the understanding that it is the flux of energy through scales that controls the statistical properties of high Re flows. Early work of Kolmogorov [START_REF] Nikolaevich | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF] argued for the existence of a constant flux of energy in scale space from the large to the small dissipative scales such that in the infinite Re, Reα limit (in our notation) ϵν = IE , and ϵα = 0 [START_REF] Alexakis | Rotating taylor-green flow[END_REF] so that all of the injected energy arrives at small scales and it is dissipated by viscosity. Further assuming that this process is self-similar in scale, led to the prediction of the famous Kolmogorov energy spectrum

E(k) = c K ϵ 2/3 ν k -5/3 , k f < k < kν (6) 
for wavenumbers larger than k f = 1/ℓ f where c K is a non-dimensional order one constant. His prediction is valid up to what is now known as the Kolmogorov wavenumber kν = 1/ℓν = ϵ

1/4 ν /ν 3/4 ≃ k f Re -3/4
. For wavenumbers smaller than k f since there is no flux of energy these scales are expected to reach a thermal equilibrium state with an equipartition of energy among modes leading to

E(k) = c T I 2/3 E ℓ 11/3 f k 2 , k < k f (7) 
where c T is an other non-dimensional constant [START_REF] Dallas | Statistical equilibria of large scales in dissipative hydrodynamic turbulence[END_REF][START_REF] Alexakis | On the thermal equilibrium state of large-scale flows[END_REF][START_REF] Gorce | Statistical equilibrium of large scales in three-dimensional hydrodynamic turbulence[END_REF].

Later research showed that the forward cascade is not self-similar and the distributions of velocity differences develop stronger tails as smaller scales are examined. As a result there is a small correction to the exponent of the energy spectrum. This phenomenon referred to as intermittency has been the study of numerous studies in order to quantify and understand these corrections, that however is not going to be discussed here.

Two dimensional turbulence

Despite the fact that two dimensional flows obey the same equation as three dimensional flows they do not display the same dynamical properties. In two dimensions the Navier-Stokes equation 1 can be written in terms of the out-of-plane vorticity as ∂tw

+ u • ∇w = ν∇ 2 w -αw + fw (8) 
where w = ez • w (where ez is the unit vector along z taken to be the out-of-plane direction), fw = ez • ∇ × f and we have added the drag force -αw often met in two dimensional systems due to bottom friction. There are two quadratic invariants in two dimensions the energy E = 1 2 |u| 2 and the enstrophy Ω = 1 2 |w| 2 . Their balance relations read

IE = ϵν + ϵα, IΩ = ην + ηα ( 9 
)
where IE is again the energy injection rate, IΩ = ⟨wfw⟩ ≃ k 2 f IE is the enstrophy injection rate. The energy dissipation terms at small and large scales are given by ϵν = ν |w| 2 and ϵα = α |u| 2 respectively and the enstrophy dissipation rates by ην = ν |∇w| 2 and ηα = α |w| 2 .

It was first realized by Onsager [START_REF] Onsager | Statistical hydrodynamics[END_REF] using a point vortex model that in two-dimensions negative "temperature" states can exist where the flow self-organizes to generate large scale structures. Later on, the work of Kraichnan, Leith and Batchelor [START_REF] Robert H Kraichnan | Inertial ranges in two-dimensional turbulence[END_REF][START_REF] Robert H Kraichnan | Inertial-range transfer in two-and three-dimensional turbulence[END_REF][START_REF] Cecil E Leith | Diffusion approximation for two-dimensional turbulence[END_REF][START_REF] George | Computation of the energy spectrum in homogeneous two-dimensional turbulence[END_REF], lead to what is known as the KLB dual cascade picture of two dimensional turbulence. Their work argued that a constant forward flux of energy is incompatible with a constant flux of enstrophy. In spectral space the energy spectrum E(k) is related to the enstrophy spectrum EΩ(k) = k 2 E(k). This implies that a constant forward energy flux would imply an ever larger flux of enstrophy that is inconsistent with the enstrophy conservation. As a result, the only possibility is that enstrophy cascades forward towards the small scales while energy cascades inversely in the large scales. Therefore at infinite domains and in the infinite Re, Reα limit ϵα ≃ IE , ϵν ≃ 0 and ηα ≃ 0, ην ≃ IΩ.

The presence of this dual cascade picture has been verified in numerical simulations [START_REF] Boffetta | Evidence for the double cascade scenario in two-dimensional turbulence[END_REF][START_REF] Douglas | Numerical simulation of two-dimensional turbulence[END_REF][START_REF] Douglas | Numerical simulation studies of two-dimensional turbulence: I. models of statistically steady turbulence[END_REF] and experiments [START_REF] Byrne | Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid[END_REF][START_REF] Alexandra Von Kameke | Double cascade turbulence and richardson dispersion in a horizontal fluid flow induced by faraday waves[END_REF][START_REF] Douglas | Spatiotemporal persistence of spectral fluxes in twodimensional weak turbulence[END_REF]. Same arguments as in the three dimensional cascade lead to the prediction of an E(k) ∝ k -5/3 energy spectrum for the range of wavenumbers that an inverse cascade of energy is present kα ≪ k ≪ k f while the steeper spectrum E(k) ∝ k -3 is predicted for the range of wavenumbers k f ≪ k ≪ kν that a forward enstrophy cascade is observed. Here kν = η

1/6 ν /ν 1/2 ≃ k f Re 1/2 while kα = ϵ 1/2 α /α 3/2 = k f Re -3/2 α
. Note that the viscous wavenumber kν has a different scaling in 2D than 3D. We have also introduced a new cut-off wavenumber kα (and lengthscale Lα = 1/kα) such that wavenumbers with k < kα are severely damped by the drag force. The inverse cascade of energy is shown not to be intermittent [START_REF] Boffetta | Inverse energy cascade in two-dimensional turbulence: Deviations from gaussian behavior[END_REF] unless energy is injected in a fractal set [START_REF] Sofiadis | Inducing intermittency in the inverse cascade of two-dimensional turbulence by a fractal forcing[END_REF].

Unlike the the small scale viscous cut off ℓν = 1/kν that can become arbitrarily small as Re → ∞ the large scale cut of Lα = 1/kα is limited by the domain size L. Thus while for Lα ≪ L the aforementioned inverse cascade and power laws will be present, when L ≪ Lα the inverse cascade will reach the domain size scale before the drag coefficient α becomes effective. In the latter case energy that arrives at the large scales will pile-up at the domain size in what is known as a spectral condensate [START_REF] Falkovich | Inverse cascade and wave condensate in mesoscale atmospheric turbulence[END_REF]. In square periodic domains this condensate takes the form of two large counter rotating vortexes with large enough amplitude for the dissipation to balance the energy arriving from the small scales. This leads to the estimate for the energy of the condensate to be

E ≃ IE α + νL 2 . ( 11 
)
This energy can be very large in particular in the α = 0 case that we will examine later on. The cascade picture described before is then altered and steeper power-laws are observed. The amplitude of the velocity fluctuations is so large that it brings the system to a quasi-equilibrium state that merits various equilibrium statistical approaches [START_REF] Onsager | Statistical hydrodynamics[END_REF][START_REF] Robert H Kraichnan | Statistical dynamics of two-dimensional flow[END_REF][START_REF] Robert | Statistical equilibrium states for two-dimensional flows[END_REF][START_REF] Naso | Statistical mechanics of two-dimensional euler flows and minimum enstrophy states[END_REF][START_REF] Bouchet | Statistical mechanics of two-dimensional and geophysical flows[END_REF][START_REF] Laurie | Universal profile of the vortex condensate in two-dimensional turbulence[END_REF][START_REF] Frishman | Turbulence statistics in a two-dimensional vortex condensate[END_REF][START_REF] Van Kan | Geometric microcanonical theory of twodimensional truncated euler flows[END_REF]. Figure 1 shows two vorticity visualisations of two-dimensional flows such that on the left Lα < L while on the right Lα ≫ L. The condensate state has been realized in various experiments [START_REF] Byrne | Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid[END_REF][START_REF] Francois | Inverse energy cascade and emergence of large coherent vortices in turbulence driven by faraday waves[END_REF]. The statistical properties of the inverse cascade case Lα ≪ L and the condensate case Lα ≫ L are so different that we are going to treat them separately for the quasi-2D case.

Thin Layer turbulence

Turbulent flows confined in thin layers is perhaps the simplest and most intuitive flows that can display split energy cascades. It is thus an optimal choice for the study of quasi-two-dimensional flows. Furthermore, such anisotropic domains are very relevant for the atmosphere whose horizontal direction is of the order of 1000 km, while the pressure scale height of the order of 10 km. As such they have been extensively studied in the literature. Here we will discuss how the cascade properties of thin layer turbulence change as the layer height is varied in the limit of large Re, Reα. We will distinguish between two cases: (i) cases that the drag is efficient at absorbing the large scale energy that arrives in the presence of an inverse cascade so that Lα ≪ L and (ii) cases that the a large scale drag is very weak or absent so that a condensate is formed so that Lα ≫ L. In the first case we will quantify the forward and inverse flux of energy using ϵα and ϵν (measured in units of IE ) that express the fraction of energy that is transferred in the large and the small scales respectively. In the infinite Re, Reα limit ϵα = 0, ϵν = 1 for three dimensional turbulence while ϵα = 1, ϵν = 0 for two dimensional turbulence.

In the condensate case we will typically consider α = 0 so that ϵα, ϵν are not suitable to quantify the state of the flow. Instead we will use the energy of the largest scale modes EC defined as

EC = 1 2 |k|<c/L |û k | 2 (12) 
with c > 2π an order one number. Finally we will also consider the energy of 3D fluctuations as

E3D = 1 2 |u -u| 2 . ( 13 
)
In what follows we describe the behavior of ϵα, ϵν , EC , E3D as the height of the layer is varied for the turbulent and the condensate case.

From 3D turbulence to 2D turbulence

First, the case Lα ≪ L (that no condensate forms) is considered. The first work that made the remark that flows in thin layers can cascade energy to both large and small scales was [START_REF] Leslie | Crossover from two-to three-dimensional turbulence[END_REF]. Since then a series of more systematic works followed that measured the fraction of energy that cascaded to that large scales as the height was varied [START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF][START_REF] Musacchio | Split energy cascade in turbulent thin fluid layers[END_REF][START_REF] Santiago | Critical transitions in thin layer turbulence[END_REF][START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF][START_REF] Poujol | Role of the forcing dimensionality in thin-layer turbulent energy cascades[END_REF]] whose results will be described in this section.

We begin the presentation of thin layer turbulence by considering first a layer of height H much larger than the forcing scale and then gradually decreasing it. For H ≫ ℓ f the flow displays three dimensional turbulence with only froward cascade observed at scales ℓ smaller than ℓ f forming a k -5/3 energy spectrum. At scales larger than ℓ f energy is expected to reach a thermal equilibrium state with equipartition of energy among modes. An argument can be made that if one considers horizontal scales ℓ ⊥ ≫ H ≫ ℓ f where the flow is constrained to move primarily in two dimensions an inverse cascade can build up. However the primary interactions at such scales are not with same scale two dimensional eddies but rather directly with the forcing scale modes that are more energetic and act as a turbulent diffusion. Thus even at these scales the cascade will be strictly forward. This is a conjecture however that needs to be verified.

The strictly forward cascade behavior changes as smaller layer heights are considered. Eventually a critical height H3D is reached such that for heights H < H3D a new phase of turbulence appears that a bidirectional cascade is present. Numerical simulations indicate that the fraction of the energy that cascades inversely ϵα is gradually increasing from zero as a power-law [START_REF] Santiago | Critical transitions in thin layer turbulence[END_REF][START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF] ϵα ∝ (H3D -H)

β 1 ( 14 
)
where β1 is measured to be close to unity but its precise value has yet to be determined. The presence of this critical point is not trivial nor fully understood. The only evidence we have are from numerical simulations [START_REF] Santiago | Critical transitions in thin layer turbulence[END_REF][START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF] that however can be questioned because unavoidably they suffer from limited resolution. Further investigations would be required both numerical and theoretical to investigate this point and conclude on its presence and on the universality class of this transition. As H is decreased further than H3D the fraction of energy that cascades to the small scales is decreased. For H ≪ H3D all scales ℓ > H have a two dimensional behavior with an inverse cascade of energy and a forward cascade of enstrophy. This however does not imply that no energy arrives at scales close to the height ℓ ∼ H. Along with the enstrophy cascade some energy has to be transported to the small scales as well, so at scale H the flux of energy is ϵν ∝ ην H 2 [START_REF] Boffetta | Shell model for quasi-two-dimensional turbulence[END_REF]. This energy is then transported to even smaller scales ℓ < H by three dimensional interactions. Note that at the limit H → 0 the fraction of energy transported to the small scales also goes to zero ϵν → 0 and 2D behavior is recovered. Given that ην ∼ IΩ ≃ IE /ℓ 2 f implies that

ϵν ∝ H 2 (15) 
This behavior was first predicted in [START_REF] Boffetta | Shell model for quasi-two-dimensional turbulence[END_REF] and verified using a shell model. This scaling however has never been tested using numerical simulations and it is something future research needs to confirm. The scaling in 15 does not continue for arbitrarily small H. If H ∼ ℓν then a new transition is observed towards a third phase of turbulence where all three dimensional perturbations are damped out. In particular in the case that the forcing is two-dimensional, the transition to exactly 2D behavior, occurs in a critical way: there is a second critical height H2D such that for all H < H2D the flow becomes exactly two dimensional. A very interesting dynamical behavior is observed for layer heights slightly larger than H2D. If we denote as E3D the energy contained in 3D modes alone then it is measured that close to this new critical height E3D scales like

E3D ∝ (H -H2D) β 2 ( 16 
)
where β2 is an exponent larger than one [START_REF] Santiago | Critical transitions in thin layer turbulence[END_REF][START_REF] Alexakis | Symmetry breaking in a turbulent environment[END_REF]. This exponent is linked to the fact that as H2D is approached from above 3D fluctuations grow or decay with growth that is randomly distributed in space and time. As a result not only the amplitude of 3D perturbations depends on H -H2D but also the fraction of area that is occupied by them. In [START_REF] Alexakis | Symmetry breaking in a turbulent environment[END_REF] this behavior was linked to the universality class observed in the presence of multiplicative noise in extended systems [START_REF] Tu | Systems with multiplicative noise: critical behavior from kpz equation and numerics[END_REF][START_REF] Genovese | Nonequilibrium transitions induced by multiplicative noise[END_REF] that is related to the KPZ equation [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF]. This leads to the prediction that β2 ≃ 1.7 . . . compatible with present data but further work is needed to draw firm conclusions.

Finally for H ≪ ℓν all three dimensional fluctuations are severely damped and the flow can be proven to become exactly two dimensional [START_REF] Gallet | Exact two-dimensionalization of low-magnetic-reynolds-number flows subject to a strong magnetic field[END_REF][START_REF] Gallet | Exact two-dimensionalization of rapidly rotating large-reynolds-number flows[END_REF] and thus all properties mentioned in section 2.2 are recovered. A sum-up of all the different phases of thin layer turbulence and their transitions in the Lα ≪ L case is sketched in fig 2 and reported in table 1. 

From 3D turbulence to a 2D condensate

In finite domains when the drag coefficient is very small (or even zero) even a weak inverse cascade will lead to the formation of a large scale condensate at long times. The study of condensates is costly with numerical simulations due to the very long times that are involved. For this reason such studies always come after studies without the condensate. Nonetheless various numerical studies of thin layer turbulence exist in the literature [START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF][START_REF] Musacchio | Condensate in quasi-two-dimensional turbulence[END_REF]. On the contrary to the numerical simulations, laboratory experiments do not have such time limitations and various studies of thin layer flows have been investigated in the literature although with limited separation between the forcing scale and the domain height [START_REF] Xia | Spectrally condensed turbulence in thin layers[END_REF][START_REF] Xia | Upscale energy transfer in thick turbulent fluid layers[END_REF][START_REF] Francois | Inverse energy cascade and emergence of large coherent vortices in turbulence driven by faraday waves[END_REF][START_REF] Shats | Turbulence decay rate as a measure of flow dimensionality[END_REF].

As in the previous section we begin with a layer that has a height H much larger than the forcing scale H ≫ ℓ f so that no inverse cascade and no condensate is formed, and gradually reduce this height. As H is reduced beyond the the critical height H3D (discussed in the previous section) a weak inverse cascade starts to build up leading to the formation of a condensate of energy EC . If the drag coefficient α is finite the increase of EC is gradual. For α = 0 however even a small inverse cascade can lead to a large value of EC . In fact studies very close to H3D showed that the transition to the condensate state is discontinuous [START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF]. In more detail it was shown that for H larger than H3D the large scale energy remained small EC = O(1/L 2 ), but as soon as it become slightly smaller than H3D a condensate formed and EC jumped to a finite value EC = O(1). Furthermore, it was shown in [START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF] that if H was gradually increased again to values larger than H3D the condensate state remained with EC = O(1) up to some second critical value H ′ 3D > H3D. Thus for values of H in the range H3D < H < H ′ 3D two steady states (two different attractors) exist for the same value of H and a hysteresis diagram was constructed [START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF] as shown in fig. 3.

Further investigations of this system [START_REF] Van Kan | Rare transitions to thin-layer turbulent condensates[END_REF] revealed that if run for a long time there are random jumps from one attractor to the other. The time distribution of these random jumps follows an exponential distribution indicating a memory-less process [START_REF] Van Kan | Rare transitions to thin-layer turbulent condensates[END_REF]. It was also shown that as the Reynolds number and the domain size are increased this range of H where both attractors are stable increases [START_REF] Xander M De Wit | Bistability of the large-scale dynamics in quasi-two-dimensional turbulence[END_REF]. This bistability is thus a behavior that is expected to survive in the large Re limit.

As H is decreased significantly from H3D so that ℓ f ≫ H the condensate becomes stable and its amplitude depends on the principal mechanism that saturates the inverse cascade. If the Reynolds number is moderate, viscous dissipation will provide the main saturation mechanism and EC ∝ IE L 2 /ν [START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF]. For large Reynolds numbers however a new mechanism for saturation is present that originates from an eddy-viscosity effect due to the small 3D eddies at scales ℓ < H. These 3D eddies extract energy from the condensate scales. A flux loop mechanism thus is present in which energy injected at ℓ f moves up scale to the condensate scale L through 2D motions and then back to smaller scales ℓ < H through interactions with the forcing scale 3D eddies. The condensate energy then in this case is not inversely proportional to viscosity but rather reaches a viscosity independent scaling EC ∝ (IE ℓ f ) 2/3 [START_REF] Musacchio | Condensate in quasi-two-dimensional turbulence[END_REF][START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF]. A simple model that captures this behavior was proposed in [START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF].

At even smaller layer heights, such that H ∼ ℓν , a new transition appears again towards a state where 3D perturbations are damped as in the previous section. The case of the condensate however is significantly different from the turbulent case. While in the former turbulence was unstructured and uniform in space allowing 3D perturbations to grow anywhere in the domain, in the condensate state the flow is still chaotic but self-organized in coherent structures of high concentration of vorticity and strain in small regions of space. In [START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF][START_REF] Shekhar Lohani | Effect of confinement on the transition from 2d to 3d fast rotating flows[END_REF] the evolution of infinitesimal 3D perturbations in a two dimensional flow in the condensate state were followed. This study revealed that E3D in this limit followed a random behavior with long periods of decay and very short periods of very large exponential increase. The periods of increase were shown to appear when the extreme of vorticity or the strain of a flow crossed a certain threshold. The statistics of these extremes were studied in detail recently in [START_REF] Seshasayanan | Spatial extreme values of vorticity and velocity gradients in two-dimensional turbulent flows[END_REF]. Using a point vortex model that was coupled to point like 3D perturbations in [START_REF] Van Kan | Intermittency of three-dimensional perturbations in a point-vortex model[END_REF] showed that the instantaneous growth-rate of the energy of the 3D perturbations displayed power-law distributions that were linked to the power-law distribution of strain in space. As such the logarithm of the energy of the perturbations followed a Lévy random walk that explains the sudden jumps in the growth of energy observed in [START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF]. This lead to a new type of intermittency the Lévy-On-Off intermittency that was described and studied in detain in [START_REF] Van Kan | Lévy on-off intermittency[END_REF][START_REF] Van Kan | 1/f noise and anomalous scaling in lévy noise-driven on-off intermittency[END_REF]. This also leads to new power-law behavior for the 3D energy

E3D ∝ (H -H * 2D ) β 3 (17) 
where H * 2D is the critical value of H bellow which all 3D perturbation are damped and β3 is an other exponent that depends on the Lévy noise parameters (see [START_REF] Van Kan | Lévy on-off intermittency[END_REF][START_REF] Van Kan | 1/f noise and anomalous scaling in lévy noise-driven on-off intermittency[END_REF]). This behavior suggested by the model has yet to be confirmed by direct numerical simulations.

Finally, for H ≪ ℓν all 3D perturbations are dumped and the systems recovers its exact two dimensional behavior. The different stages of thin layer condensates are shown in figure 3 and summed up in table 1 along with the turbulent case.

Other examples of Quasi-2D flows

Similar transitions to the ones observed in thin layer turbulence are expected to be found in other quasi-twodimensional flows. However due to the increased numerical cost or the technical difficulties in constructing laboratory experiments has limited their study. In what follows we mention a few of these systems focusing on the additional phenomena that are present.

H&L

Turbulent cascade Condensate

L α ≪ L L α ≫ L H > ℓ f 3D Forward No condensate Cascade of Energy ϵ α = 0, ϵ ν = 1 E C ∝ L -2 Criticality Discontinuous transition H = H 3D ∼ ℓ f ϵ α ∝ (H 3D -H) β1
hysterisis and β 1 ≃ 1.

"rare event" jumps 2D and 3D Flux-loop

ℓ f ≫ H ≫ ℓ ν Bidirectional cascade condensate ϵ ν ∝ H 2 E C ∝ 1 H ∼ ℓ ν Extended Multiplicative noise Lévy flight E 3D ∝ (H -H 2D ) β2 on-off Intermittency β 2 ∼ 1.7 E 3D ∝ (H -H * 2D ) β3 H ≪ ℓ ν 2D Inverse 2D condensate energy cascade ϵ α = 1, ϵ ν = 0 E C ∝ L 2 /ν
Table 1: Table with the different phases and critical behaviors observed in thin layer turbulence. The left column gives the range of H, the middle gives the characteristics of the flow for the turbulent case and the right column gives the characteristics of the flow for the condensate state.

Rotating turbulence

Rotating turbulence is perhaps the simplest system after thin layers that displays quasi-2D behavior and split cascades. It deals with turbulence in a rotating reference frame of rotation Ω quantified here by the Rossby number Ro = I 1/3 E /(Ωℓ f ) 2/3 . The transition from 3D turbulence to a 2D inverse cascade has been investigated in [START_REF] Deusebio | Dimensional transition in rotating turbulence[END_REF] and [START_REF] Pestana | Regime transition in the energy cascade of rotating turbulence[END_REF]. The critical layer height H3D was shown to increase with the rotation rate from the weak rotation value H3D ∝ ℓ f to a value that was shown to increase as

H3D ∝ ℓ f /Ro. ( 18 
)
This scaling was confirmed in [START_REF] Van Kan | Critical transition in fast-rotating turbulence within highly elongated domains[END_REF] using an asymptotic model of the rotating Navier-Stokes equation for fastrotating turbulence within highly elongated domains.

Although, rotating turbulence appeared to have the same phenomenological description as in thin layers for the 3D to 2D transition in the large Ro and small Ro limit, at intermediate values of Ro a new state of turbulence was discovered in [START_REF] Clark | Phase transitions and flux-loop metastable states in rotating turbulence[END_REF] at which the flow formed a crystal of co-rotating vortexes at scales larger than the forcing scale. This state of turbulence occurs close to the H3D transition height at which the co-rotating 2D vortexes are stable while counter-rotating 2D vortexes decay due to 3D fluctuations. The remaining co-rotating vortexes form crystals as have been seen in point vortex models [START_REF] Aref | Point vortices exhibit asymmetric equilibria[END_REF] and experiments on magnetized electron columns [START_REF] Ks Fine | Relaxation of 2d turbulence to vortex crystals[END_REF]. This new state of turbulence is supported by a flux loop mechanism and was shown to be metastable that reduced to an inverse cascade if a strong perturbation is applied. Such vortex crystals have been observed in the North pole of Jupiter by the Juno spacecraft mission [START_REF] Adriani | Clusters of cyclones encircling jupiter's poles[END_REF] and have been interpreted by quasi-geostrophic dynamics in a curved domain [START_REF] Siegelman | Polar vortex crystals: Emergence and structure[END_REF]. The results of [START_REF] Clark | Phase transitions and flux-loop metastable states in rotating turbulence[END_REF] could provide an alternative explanation. We note that in both models a segregation between co-rotating and counter rotating vortexes has lead to the formation of the crystal.

Condensates in rotating turbulence have been studied in [START_REF] Seshasayanan | Condensates in rotating turbulent flows[END_REF][START_REF] Alexakis | Rotating taylor-green flow[END_REF][START_REF] Yokoyama | Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence[END_REF] where a discontinuous transition and hysteresis were also found close to H3D, however the significant larger complexity of rotating turbulence did not allow for a thorough investigation. However, recently new experimental platforms have been build that have been able to quantify the formation of large scales in rotating turbulence and disentangle the forward and inverse transfers as well as the presence of wave turbulence [START_REF] Lamriben | Direct measurements of anisotropic energy transfers in a rotating turbulence experiment[END_REF][START_REF] Campagne | Direct and inverse energy cascades in a forced rotating turbulence experiment[END_REF][START_REF] Gallet | Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment[END_REF][START_REF] Machicoane | Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid[END_REF][START_REF] Yarom | Experimental observation of steady inertial wave turbulence in deep rotating flows[END_REF][START_REF] Kolvin | Energy transfer by inertial waves during the buildup of turbulence in a rotating system[END_REF][START_REF] Brunet | Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability[END_REF][START_REF] Monsalve | Quantitative experimental observation of weak inertial-wave turbulence[END_REF]. These experiments are very suitable in studying the long term behavior of rotating turbulence close to critical points and future work is expected to verify numerical observations as well as reveal new interesting physics.

Stratified turbulence

By stratified we refer to turbulence in the presence of gravity -ezg and a mean stable density gradient S = -ρ -1 0 dρ/dz. Unlike rotation, stratification works against the two dimensionalization of turbulence by leading to the formation of strong vertical gradients, despite the fact that it suppresses vertical motions it. In [START_REF] Sozza | Dimensional transition of energy cascades in stably stratified forced thin fluid layers[END_REF] it was shown that the critical height H3D that the inverse cascade appears is decreased with stratification as

H3D ∝ ℓ f F r, (19) 
where F r = I

1/3 E /(gS) 1/2 ℓ 2/3 f
is the Froude number. As a result in strongly stratified flows deviations from two dimensional turbulence can appear at much thinner layers than in the absence of stratification.

Little or no work has been done for the other critical points in strongly stratified turbulence or in the presence of a condensate.

Rotating and stratified turbulence

Rotating and stratified turbulence provides perhaps the simplest model of a dry atmosphere and various studies have been devoted to its cascade properties directly from the Navier-Stokes [START_REF] Bartello | Geostrophic adjustment and inverse cascades in rotating stratified turbulence[END_REF][START_REF] Marino | Inverse cascades in rotating stratified turbulence: fast growth of large scales[END_REF][START_REF] Pouquet | Dual constant-flux energy cascades to both large scales and small scales[END_REF][START_REF] Herbert | Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation[END_REF] or from reduced models [START_REF] Xie | Downscale transfer of quasigeostrophic energy catalyzed by near-inertial waves[END_REF]. It combines both the effect of two-dimensionalization of rotation and the suppression of vertical motions of stratification. The resulting complexity however is larger than the sum of its parts. In [START_REF] Van Kan | Energy cascades in rapidly rotating and stratified turbulence within elongated domains[END_REF] using an asymptotic model for strong rotation and long boxes it was shown that in this limit the parameter space split in three different phases, one with no inverse cascade, one rotating dominated regime with an inverse cascade due to a two-dimensionalization and a third strongly stratified regime with an inverse cascade corresponding to quasi-geostrophic dynamics. It seems thus the phase space of rotating and stratified turbulence is far more complex than anticipated and a careful exploration of it and its asymptotic limits is needed.

Convection

Although convection involves inherently 3D motions in the presence of strong rotation or vertical confinement it can lead to quasi-2D behavior. There have been numerous reports in the last years of an inverse cascade and the formation of coherent large scale quasi-2D vortices in rotating Rayleigh-Benard convection that coexists with 3D eddies that extract energy from the unstable stratification [START_REF] Guervilly | Large-scale vortices in rapidly rotating rayleighbénard convection[END_REF][START_REF] Favier | Inverse cascade and symmetry breaking in rapidly rotating boussinesq convection[END_REF][START_REF] Maffei | On the inverse cascade and flow speed scaling behaviour in rapidly rotating rayleigh-bénard convection[END_REF]. The behavior of the large scale vortices form resemble the ones observed in thin layer turbulence and rotating turbulence displaying a discontinuous transitions and a hysteresis [START_REF] Favier | Subcritical turbulent condensate in rapidly rotating rayleigh-bénard convection[END_REF][START_REF] Xander M De Wit | Discontinuous transitions towards vortex condensates in buoyancy-driven rotating turbulence[END_REF].

Finally, inverse cascade has been reported in [START_REF] Philipp | Inverse cascades of kinetic energy and thermal variance in three-dimensional horizontally extended turbulent convection[END_REF] for very horizontally extended domains even in the absence of rotation.

Magnetohydrodynamic turbulence

Like strong rotation for ordinary fluids a strong uniform magnetic field is also capable of bi-dimensionalizing electrically conducting fluids. Within the Magneto-Hydro-Dynamic (MHD) approximation two particular limits are of interest. First, the high conductivity limit (corresponding to the large magnetic Reynolds number limit) relevant to astrophysical plasmas and tokamak devices. The transition to a two-dimensional behavior in this limit has been investigated in [START_REF] Alexakis | Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field[END_REF][START_REF] Nicolás | Tridimensional to bidimensional transition in magnetohydrodynamic turbulence with a guide field and kinetic helicity injection[END_REF] see also the review of [START_REF] Oughton | Reduced mhd in astrophysical applications: Two-dimensional or three-dimensional?[END_REF]. Second, for low magnetic Reynolds numbers (low conductivity) the magnetic field acts as a damping mechanism for all velocity fluctuations varying along the direction of the magnetic field. This so called quasi-static MHD with relation to the transition to 2D flow has been studied in [START_REF] Favier | Quasistatic magnetohydrodynamic turbulence at high reynolds number[END_REF][START_REF] Reddy | Strong anisotropy in quasi-static magnetohydrodynamic turbulence for high interaction parameters[END_REF][START_REF] Mahendra | Anisotropy in quasi-static magnetohydrodynamic turbulence[END_REF]. This limit is suitable for liquid metals and has been investigated in some innovating experiments [START_REF] Pothérat | Why, how and when mhd turbulence at low rm becomes three-dimensional[END_REF][START_REF] Pothérat | An effective two-dimensional model for mhd flows with transverse magnetic field[END_REF][START_REF] Xia | Upscale energy transfer in thick turbulent fluid layers[END_REF][START_REF] Xia | Inverse energy cascade correlated with turbulent-structure generation in toroidal plasma[END_REF][START_REF] Gallet | Reversals of a large-scale field generated over a turbulent background[END_REF].

Just like in the previous examples in MHD transitions from a three dimensional forward cascade to a bidirectional cascade and two dimensional cascade are observed. However the presence of additional invariants both in 3D and 2D make the phase space of MHD turbulence sufficiently more complex such that even in pure 2D MHD such transitions can be observed [START_REF] Seshasayanan | On the edge of an inverse cascade[END_REF][START_REF] Seshasayanan | Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow[END_REF].

Quantum turbulence

Quantum turbulence refers to turbulent flow of quantum fluids, where vortex are quantized. There are various models used to describe such flows that is beyond the purpose of this work to describe. We will however mention the experiments in [START_REF] Seo | Observation of vortex-antivortex pairing in decaying 2d turbulence of a superfluid gas[END_REF][START_REF] Johnstone | Evolution of large-scale flow from turbulence in a two-dimensional superfluid[END_REF][START_REF] Gauthier | Giant vortex clusters in a twodimensional quantum fluid[END_REF] where quasi-two dimensionalization in super-fluids is observed and the formation of large scale vortices. Numerically such bi-dimensionalization has been observed in thin superfluid layers [START_REF] Nicolás P Müller | Abrupt transition between three-dimensional and two-dimensional quantum turbulence[END_REF] using the Gross-Pitaevskii equation and in the two fluid description of superfluid turbulence in the presence of a counter-flow [START_REF] Polanco | Counterflow-induced inverse energy cascade in threedimensional superfluid turbulence[END_REF].

expectations for homogeneous and isotropic turbulence for which a universal behavior is expected, in the presence of confinement and anisotropy distinct phases of turbulence are present such that in one phase there is large scale energy transfer and self-organization while in the other disorder and efficient energy dissipation. These phase are separated by critical points that display continuous or discontinuous phase transitions. Near these critical points, novel dynamical behaviors are observed that include the appearance of hysteresis diagrams and new critical exponents that are summed up in the table 1. As the complexity of the system is increased further new phases are discovered like the vortex-crystal meta-stable phase observed in rotating turbulence.

Recent research has only scratched the surface of these new phenomena and a lot of further work is required. In particular, investigating the behavior of the flows close to criticality and classifying them in universality classes is a much needed direction for the field. Theoretical, numerical and experimental investigations need to proceed in parallel in this direction in order to establish a clear and quantitative understanding of these transitions.

Furthermore, expanding the system complexity including more physical effects would allow to make contact with with physical and industrial systems. Here, only idealized situations were examined with a well defined injection and dissipation scale. Reality is far more complex, with forcing mechanisms that span a wide range of scales (like convection, planetary scale baroclinic instabilities, etc) and large scale dissipation much more complex than the linear drag force assumed here. However, if we can not understand this behavior in the idealised models what hope do we have to understand the more complex physical systems. Progress in both directions and a connection between the the idealized and more physical case would be required in order to obtain accurate predicting models.

Finally I would would like to note that, we live in a world that climate gradually changes and an atmosphere belongs in the wider class of quasi-two-dimensional flows. It is thus important to understand how this system responds to variations of parameters. For this reason studies of fundamental questions along the directions reviewed in this work are imperative.

A peer-reviewed version of this article can be found at Reviews of Modern Plasma Physics volume 7, Article number: 31 (2023) https://doi.org/10.1007/s41614-023-00134-3

  the length scale ratio L/ℓ f and (iv) the normalized height H/ℓ f .

Figure 1 :

 1 Figure 1: Visualisation of vorticity for the turbulent state L ≫ L α (left) and for the condensate state L α ≫ L (right). In both cases the forcing scale ℓ f was 80 times smaller than the domain size L.

Figure 2 :

 2 Figure 2: A sketch of the qualitative behavior of ϵ α (top panel, blue line), ϵ ν (top panel red line) and E 3D (bottom panel red line) as a function of the layer height H.

Figure 3 :

 3 Figure 3: A sketch of the qualitative behavior of E C (blue line), and E 3D (red line) as a function of the layer height H in the condensate state.

ConclusionsIf something is kept from this review, it should be the plethora of new dynamical phenomena that appear in quasi-2D turbulence when it is pushed to the right limits. To begin with, even in the simplest case of a thin layer flow, different phases of turbulence are observed in the infinite Re limit. Unlike the commonly accepted