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Abstract—Distribution networks are likely to be significantly impacted
by the energy transition as numerous flexible agents will be connected
there. Management algorithms within these networks are therefore be-
coming more complex and must consider the physical constraints of
the network. However, line impedances in these networks cannot be
assumed to be perfectly known, leading to suboptimal management
and constraint violations. Considering the Optimal Power Flow as a
reference for optimal management, the consequences of these mises-
timations are here outlined on an illustrative test case. The performed
sensitivity studies indicate that the statistical distribution used to de-
scribe impedance errors does not influence the results. A combination
of decentralized generators and flexible consumers within the same
neighborhood limits the impact of misestimated impedances.

Index Terms—Optimal Power Flow, distribution networks, impedance
estimation, voltage limits, social welfare

1 INTRODUCTION

The energy transition requires the generalization of renew-
able productions [1]. These are mostly decentralized and
of small unitary power. Most of these installations are
therefore likely to be connected to distribution networks
– in terms of the number of installations, if not in terms
of connected power [2]. Besides, the issues of predictability
and intermittency raised by renewable energies require the
implementation of demand side management [3]. The joint
management of these decentralized productions and flexible
consumptions – both comprising many small power agents
– is a major challenge that leads to a rich and dynamic
literature [4]–[6].

These investigations are mainly carried out in the con-
text of distribution networks. The modeling of physical
quantities in each line and each bus is thus not usually
taken into account [7], [8]. Indeed, the design capacity of
these networks is currently much higher than the actual
flows. Congestion is therefore currently uncommon. The
limiting operational constraint is most often voltage limits
at the furthest buses from the connection point to a higher-
voltage network [9]. But in the future, downstream flows
will strongly increase due to electric mobility [10]. Upstream
flows will also grow because of distributed generators. In
such a context, the challenge will not only be to maintain the
power quality, but also to overcome congestion. According

to current state-of-the-art approaches, this evolution should
lead to a strengthening of distribution networks. This would
result in a considerable consumption of raw material, but
also in significant deployment costs. Moreover, such a revi-
sion of distribution networks would require extensive peri-
ods of work. An alternative to this consolidation would be to
apply mechanisms of distributed management that would
take into account the physical state of the network [11].
The aim would then be not only to match flexibilities with
renewable generation but also to limit network congestion
and voltage violations [12]. These mechanisms would then
be comparable to optimal power flow (OPF) problems [13],
[14].

Distribution networks are yet far more complex than
transmission networks in the sense that they include a
vast number of connected lines and agents. Moreover, their
topology is not perfectly known since they are constantly
evolving: it is not always possible to know with certainty on
which phase a device is connected. Wear and tear, degrada-
tions or weather variations can cause significant fluctuations
in the actual impedance of lines compared to their nominal
impedance. Furthermore, distribution networks are only
very sparsely monitored, compared to transmission net-
works [15]. This low observability is legitimate in the current
situation, as their design capacity is significantly larger than
the effective flows and because of the almost complete lack
of flexible resources in distribution neighborhoods. Research
on the observability of these networks is being developed
[16]. Nevertheless, it would appear to be certain that line
impedances cannot be considered as known for sure in a
distribution network: each node cannot be monitored in a
near future and estimators would still commit a residual
error [17].

However this lack of knowledge of line impedances
cannot but have repercussions on power flow (PF) and OPF
results. Consequences may include, in increasing order of
criticality, a suboptimality of the proposed management, an
increase in losses, non-compliance with voltage limits, or vi-
olations of line capacities. The purpose of the present contri-
bution is therefore to assess the consequences of impedance
estimation errors on the results of the OPF in distribution
networks. This publication is organized as follows: Section
2 will present the methodology and the formulation of
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the OPF used. Then section 3 will present the impact of
impedance estimation errors on an illustrative distribution
network test case. Section 4 will examine the sensitivity
of our previous findings by considering the impact of the
statistical distribution chosen to describe the impedance
estimation errors. It will also explore how the results vary
between predominantly consuming and predominantly pro-
ducing distribution areas.

2 METHODOLOGY AND TEST CASE

This section first introduces the methodology adopted to
evaluate the impact of line impedance estimation errors on
OPF results. Then, the test case will be presented.

2.1 Misestimation Impact Method
The chosen methodology is summarized in Figure 1. 1⃝ With
Z̃ being the estimated and inaccurate impedances, the first
step is to perform an OPF as a DSO might operationally do.
Only the active P̃ – and reactive Q̃ when applicable – power
injection plans are considered. Indeed, voltages and line
flows calculated by this first OPF are incorrect, since they
were based on incorrect impedances values. 2⃝ The actual
values of the network impedances Z are assumed to deviate
from Z̃ by an estimation error ∆Z . Since the estimated val-
ues can only worsen during the lifetime of the network, ∆Z
are strictly positive. They are randomly drawn according to
a probability distribution with support in R+. The conse-
quences of the choice of this distribution and its parameters
will be evaluated in section 4. 3⃝ These actual impedances
Z are then used to assess the physical state of the network,
when it is operated under the power injection plan P̃ , Q̃ of
the first OPF. This physical state is referred to as Ṽ Figure 1
in a concise manner, but refers to both the voltages and the
line flows. Social Welfare value S̃W is jointly assessed. Since
step 3⃝ gathers impedance values Z and an injection plan
calculated separately, there is no guarantee that the physical
values Ṽ comply with network limitations. Hence constraint
violations may occur. 4⃝ In parallel, these actual impedances
Z are used to perform an OPF. The latter being carried out
without bias on the estimation of the impedances, it jointly
establishes the optimal power injection plan P,Q and the
associated physical configuration V and social welfare SW .
These results are regarded as a reference since they relate
to the optimal management of the real network. Although
it cannot be performed operationally, it provides a reference
to evaluate the deviations of the injection plan P̃ , Q̃ and the
suboptimality of the solution S̃W .

Fig. 1. Methodology used to assess the impact of impedance misesti-
mation. Notations .̃ refers to inaccurate impedances or, any value based
upon it.

Since the methodology presented in Figure 1 involves
drawing random variables, a Monte Carlo approach is
mandatory. Steps 2⃝, 3⃝ and 4⃝ are therefore repeated
several times until observed deviations are statistically re-
producible.

During this study, only distribution networks will be
considered. Indeed, transmission networks are sufficiently
instrumented and monitored so that impedance estimation
errors can be considered negligible. Therefore, the following
formulation is used for the OPF problem [18].

min
s,S,v,l,s0

∑
i∈N

fi (Re(si)) (1a)

s.t. Sij = si +
∑

h:h→i

(Shi − zhilhi), ∀(i, j) ∈ E ; (1b)

0 = s0 +
∑

h:h→0

(Sh0 − zh0lh0); (1c)

vi − vj = 2Re(z̄ijSij)− |zij |2lij , ∀(i, j) ∈ E ; (1d)

lij = |Sij |2/vi, ∀(i, j) ∈ E ; (1e)

si ∈ Si, i ∈ N+; (1f)

vi ≤ vi ≤ vi, i ∈ N+. (1g)

where si is the complex injected power at the bus i, Sij is
the complex reverse power flow between bus i and j, zij
is the impedance, vi is the square of the magnitude of the
voltage and lij is the square of the magnitude of the current.
The reader is invited to refer to [19] for a complete analysis
of this formulation. Its significant features are to allow for
a relaxation of the voltage angle (1d) and of the equality
constraint determining the flow in the lines (1e) [20]:

lij ≥ |Sij |2/vi, ∀(i, j) ∈ E ; (2)

Substituting it by an inequality constitutes a relaxation on
a second order cone (SOC). Theses relaxations allow us to
compute the exact solution of the AC-OPF problem in the
case of non-mesh networks and when the reverse power
flow is only active or reactive, or none [19]. This happens in
most distribution networks and especially in our test case
– except when explicitly noted. This formulation will be
referred to as AC-OPF-SOC in the rest of this paper.

2.2 Test Case Description
The European Low Voltage Feeder (ELVF) test case [21] has
been selected to illustrate the consequences of impedance
misestimations. It is representative of European distribution
networks and is the framework for many studies [22], [23].

Fig. 2. Power flow example in the European Low Voltage Feeder with
distributed generation and flexible consumption.



3

Although its adoption here does not allow a direct general-
ization of the results presented, it is a relevant first step to
highlight the risks related to impedance estimation errors.

To achieve OPF resolutions, objective functions must
be specified for both producers and flexible consumers.
These only serve the purpose of creating solicitations on
the network used as an example. The remainder of this
section describes them for the sake of transparency and
reproducibility. The results presented in sections 3 and 4
are not affected by these chosen objective functions.

Energy can be exchanged with the external network,
considered of infinite power, either positive or negative. It
is connected to the slack bus, whose voltage is fixed to 1
p.u. A history of the EPEXSpot market prices1 is used for its
selling price to the distribution neighborhood. It is assumed
to purchase at a price arbitrarily set at 90% of the EPEXSpot
price. Not only is this discount representative of current
feed-in tariffs, but it also avoids ’speculative’ buying and
selling phenomena within the OPF resolution. The network
is randomly populated with production and consumption
profiles from the following database [24]. Selling prices
of distributed producers are randomly and individually
assigned according to a normal distribution with mean
value 6 c€/kWh and standard deviation 2 c€/kWh. Since
the database provides the power demand of each consumer
without any further differentiation between usages, we
choose to split the consumption profiles into a non-flexible
part and a flexible one. The non-flexible part is set to 90%
of the required power P0. Below this limit, the consumer is
assumed to be willing to pay threefold the grid price. Flex-
ibility bounds are then set at [0.9P0; 1.5P0] between which
the consumer assigns a purchase price drawn at random
according to a normal distribution of mean 15 c€/kWh and
standard deviation 5 c€/kWh. Two configurations will be
discussed regarding reactive power control. A first case will
consider that no reactive power is produced or consumed on
the network under study. This configuration is close to the
current operation of distribution networks. This will be the
configuration adopted in most of the studies presented here,
unless otherwise stated. In a second case, all distributed gen-
erators will be considered capable of exchanging positive
or negative reactive power, within the same limits as their
active power. No cost will be associated with this exchanged
reactive power. This would correspond to the systematic
control of reactive power by the inverters of the distributed
generators. This configuration does not correspond to cur-
rent networks, but is likely to become more widespread, in
particular to better handle voltage constraints far away from
the slack bus.

The resolution of OPFs and PFs in this study is per-
formed using the implementations proposed by PowerMod-
els [25] in Julia and PandaPower [26] in Python. In accordance
with an open and reproducible science approach, all sources
can be accessed on Gitlab2.

3 ASSESSMENT OF MISESTIMATION IMPACT

The methodology described in section 2.1 is applied in
this section to the test case described section 2.2. Initially,

1. https://ewoken.github.io/epex-spot-data/
2. https://gitlab.com/satie.sete/opf misestimation impedance
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Fig. 3. Sensitivity of AC-OPF-SOC results depending on the average of
impedance estimation errors. Top: repartition of voltages at each bus;
middle: repartition of power injection deviation; bottom: suboptimality
of social welfare. Permissible limits in red, deciles and percentiles in
colored areas, extreme values observed in dotted blue line. Results
observed on ELVF under a truncated normal distribution.

estimation errors are assumed to follow a truncated normal
distribution. Effective impedances Z are then deduced from
a random variable ε,

Z = Z̃ +∆Z = (1 + ε) · Z̃ (3)

This random variable being only positive, it will be charac-
terized by its distribution and its expectation, the standard
deviation being its consequence. Different draws are made
while shifting the mean of this law by steps of 10%. For
each considered mean value, 10 networks are randomly
generated, each of 130 lines, that is 1300 random variables
in total. For each of these networks, the OPF is simulated for
12 time steps over 36 days evenly distributed over the year.
The statistical variations of the obtained electrical quantities
are then represented Figure 3.

On the left end of Figure 3, impedances are perfectly
known. Thus, the OPF resolution allows setting voltages
of the most solicited buses to the admissible limit values
– the test case being designed to activate these limits. In
contrast, moving to the right means impedances are more
and more poorly estimated. More and more buses violate
voltage limits, with several deciles passing one after the
other the tolerated limits, indicated in red. Simultaneously,
a global decrease in network voltages can be noticed while
impedances increase. This is due to the test case including
more consumers than producers: the energy flow being then
overall consumed, the impedance increase leads to a voltage
decrease at the end of lines.

Besides the allocation between consumers and decen-
tralized producers adopted for this study, the voltage de-
crease is also the consequence of the choice to consider
here only impedance errors causing degradations rather
than improvements. Typically, this refers to the case of a
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DSO estimating its impedances Z̃ by their nominal values
before wear. In contrast, impedance values provided by a
data assimilating estimator would generate a positively and
negatively distributed error. Here, when the impedances are
incorrectly estimated by an average of 40%, the average
voltage is reduced to 0.97p.u. and a third of the buses
violate the specified limits. It should be noted that extreme
values can be observed in the experimental statistical distri-
bution, both positively and negatively.

All voltages are thus affected by fluctuations of vary-
ing magnitude. The observation is, however, very different
concerning the injected powers – middle panel of Figure
3. Here are shown the deviations between the injected
powers calculated by an OPF using the true impedance
values Z (block 4⃝ on Figure 1) and those from an OPF
using erroneous values Z̃ (block 1⃝). Only a few percent
of the injected powers show deviations, although these are
rapidly very significant. Actually, the only agents likely to
modify their injection plans between these two OPFs are
those concerned by the activation of a voltage constraint. In
particular, these limits may compel distributed generators
not to inject all their available power. This must then be
compensated by the external network, whose purchase price
is significantly more expensive. The impact of these few
percentiles of deviation is therefore critical on the fluctu-
ations of the social welfare – visible on the third panel.
Comparing social welfare S̃W − SW (according to Figure
1 notations) does not make sense when the constraints of
a problem are not fully respected. Here with misestimated
impedances, no configuration resulted in an improved social
welfare taking advantage of constraint violation. Under this
clarification, the suboptimality is represented to illustrate
that severe decreases come along with impedance errors.
With minimal deviations in injected power leading to large
shifts in voltages and social welfare, a misestimated network
appears to behave as an uncertainty amplifier that magnifies
errors.

Figure 3 does not display line flows for two reasons.
First, the limiting constraint within the ELVF case is the
voltage limit, which is consistent with current distribution
networks. Regardless of the load imposed on the network,
power constraints on the lines cannot be activated be-
cause the power flows would be beforehand limited to
comply with voltage constraints. Besides, the network has
been completely controlled by power set points. Therefore,
impedance fluctuations cannot cause any modification of
the flows, which are imposed by end-of-line producers and
consumers. Only the value of the losses can be impacted: it
is assumed here that the external network compensates for
any disequilibrium.

Four modifications are therefore made to the test case
for the rest of this section. First, consumers are no longer
specified by cost functions depending on their power con-
sumption, but rather by load impedances (wards according
to PandaPower formalism). These impedances are set so
that the rated power consumed by each load is equal to the
previous case. Second, decentralized generators are allowed
to exchange reactive power. Third, all power exchanges
are multiplied by 30. Finally, AC-OPF-SOC may lead to
unfeasible solution since reverse active and reactive PF of
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Fig. 4. Sensitivity of line flows computed by an AC-OPF depending on
the average of impedance estimation errors.

may occur. Thus, we will use the AC-OPF formulation. It is
then possible to reach line capacity constraints, as illustrated
on the left end of Figure 4. When consumers are specified by
impedances, the deviation of the power consumed will vary
with the squared voltage. Voltage fluctuations then affect
the line flows. This effect is measurable but statistically very
marginal. Nonetheless, the risk of a line being in overca-
pacity is real, as illustrated by the most heavily loaded line.
We notice that the evolution of the flow in this line is not
monotonous with the increase of the impedance estimation
error. Indeed, when using a Monte Carlo approach, it is
much more difficult to estimate extreme events than average
behaviors. Due to the high computational cost, the number
of draws performed here cannot ensure the accurate estima-
tion of extreme events.

4 SENSITIVITY AND DISCUSSIONS

The previous section highlighted the risks associated with
incorrect estimation of line impedances when using an OPF.
The purpose of this section is to discuss the various param-
eters which have been used arbitrarily so far. Specifically
section 4.1 will consider the sensitivity to the probability
density describing the estimation errors. Section 4.2 will
describe the differences between high-consuming and high-
producing distribution networks.

4.1 Impact of the Probability Distribution
With no real large-scale experimental data, it is relatively
difficult to motivate the adoption of one distribution rather
than another. Hence the adopted approach is to compare
results obtained using several different distributions. A
truncated normal distribution, a Weibull distribution and
an exponential distribution are used here. They are adjusted
to have the same mean – 160% of nominal impedance
values, corresponding to the right end of Figure 3. The top
panel of Figure 5 shows voltages experimental density –
histogram normalized to make its integral unitary. On all
configurations, a peak is observed at 1p.u.: in the time series
used for this test case, some periods present little to no
power exchanges, at night for instance. Voltages are thereby
not disturbed at all. The distribution based on perfectly
known impedances – in purple – reads on the right side
as the density reaches much higher values. As explained
for Figure 3, the test case involves more consumption than
production. Voltages are therefore pulled down. An OPF
with perfect knowledge of the impedances manages to
activate the voltage constraint of numerous buses. However,
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Fig. 5. Experimental distributions of bus voltages (top) and suboptimality
of the social welfare (bottom) according to the probability distribution
used to describe impedance misestimations. Mean impedance errors
are set at 160%. AC-OPF-SOC formulation is used.

when impedances become poorly known, this distribution
is spread over a wider voltage range. Peaks corresponding
to initially active constraints can still be identified, around
0.9p.u. and 1.1p.u. On the bottom panel, the distribution of
social welfare suboptimalities is represented in logarithmic
scale for better visualization. A significant part of the tested
configurations do not show any suboptimality, although
significant values can be obtained infrequently. It can be
observed that the three probability laws produce very sim-
ilar outcomes. The choice of a particular distribution does
not seem to have any impact on the state of the network,
characterizing the average error is enough.

4.2 Producers versus consumers share

To obtain the previous results, the ELVF test case has been
populated with production and consumption time series.
However, these results are significantly impacted by the
ratio between producers and consumers. These impacts are
depicted Figure 6: with a 160% mean impedance error, a
scaling factor is applied on all productions of the test case –
scale gen – and another one on all consumptions – scale load.

The point (0,0) means that no production or consump-
tion is exchanged. The point (1,1) refers to the configuration
used in all previous studies. 400 points constitute this grid
which is represented Figure 6 as pixels without interpola-
tions. 15 random networks were sampled for each pixel. On
the top panel, the frequency of voltage constraint violation
is displayed in color scale. Under full load without any
production – (1,0) bottom right corner – 70% of all studied
buses have a voltage violating the power quality constraints.
Since these results are obtained using a Monte Carlo ap-
proach, non-monotonic fluctuations can be observed. Al-
though, trends are clearly marked. Starting from the ori-
gin point (0,0), an increase in consumption (right shift) or
in production (up shift) are both associated with voltage
violations. The increase is sharper for consumption due to
the selected time series: the max to average ratio is greater
for the consumption profiles, resulting in more frequent
violations. The coexistence of generation and consumption
appears not to be the worst configuration with respect to
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Fig. 6. Impact of the production-consumption ratio – x-axis: consump-
tion, y-axis production – on the frequency of voltage violation (top) and
on the welfare suboptimality (bottom) using an AC-OPF-SOC.

the frequency of voltage violations. This is an uplifting
indication as this configuration is the most likely to become
widespread in the future. For each scale load value, there is
an optimal scale gen value for which voltage violations are
less frequent – although this needs to be confirmed as this
case study may not represent all distribution networks.

The bottom panel represents the average suboptimality
of the obtained solution. Similar trends can be observed, al-
though the comparison of social welfare cannot be straight-
forward when constraints are not respected as previously
mentioned. Yet configurations with only generators – the
left side of the figure – show significant suboptimalities that
diminish as soon as some consumers are involved. Indeed,
voltage constraints restrict exports from the distribution
neighborhood. Local consumption prevents producers from
being compelled to curtail their production. Here again, the
effects of the lack of knowledge regarding impedances seem
to be limited by the coexistence of producers and consumers
in the same distribution neighborhood.

5 CONCLUSION AND PERSPECTIVES

This contribution sought to estimate the impact of misesti-
mated impedances on the results of an OPF in distribution
networks. Indeed, such networks include a large number of
lines and are sparsely instrumented, while their production
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and consumption flows are likely to increase in the future.
The proposed methodology has shown on a case study
that non-compliance with voltage constraints could appear
across the network while only a few agents modify their
injection plan. Lines as a whole are much less affected,
although dangerous configurations can quickly appear on
the most stressed lines. The statistical distribution chosen to
describe the impedance errors does not seem to impact the
observed results, characterizing the average error is enough.
However, the proportion of producers and consumers in
the distribution neighborhood significantly affects the fre-
quency of constraint violations and suboptimalities. The
coexistence of distributed consumers and producers seems
to be an element to mitigate the hazards of impedance
misestimations in distribution networks.

This contribution needs to be pursued in several di-
rections. First, it is crucial to overcome the dependence
of the obtained results to a specific case. A generalization
to any distribution network – characterized by metrics to
be identified – would be a powerful tool to anticipate the
sensitivity of a neighborhood to impedance misestimations.
The local control, or the distributed instrumentation, could
then be adapted. Furthermore, impedance estimation errors
are an additional source of uncertainty in the OPF literature.
Already investigated in areas where the stochastic distribu-
tion of uncertainties is available –renewable generation, line
failure–, the development of a robust or chance constraint
approach on line impedances would allow to optimally de-
fine the margins necessary to respect the operating limits of
the network. If necessary, a generalization to a distribution-
ally robust optimization approach could be implemented.
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[6] R. Le Goff Latimier, G. Chérot, and H. Ben Ahmed, “Online
learning for distributed optimal control of an electric vehicle fleet,”
Electric Power Systems Research, vol. 212, p. 108330, 2022.

[7] R. Le Goff Latimier, B. Multon, and H. Ben Ahmed, “Distributed
optimisation with restricted exchanges of information: Charging
of en electric vehicle fleet,” in CIRED Workshop, 2018.

[8] M. A. F. Ghazvini, G. Lipari, M. Pau, F. Ponci, A. Monti, J. Soares,
R. Castro, and Z. Vale, “Congestion management in active dis-
tribution networks through demand response implementation,”
Sustainable Energy, Grids and Networks, vol. 17, p. 100185, 2019.

[9] H. Sun, Q. Guo, J. Qi, V. Ajjarapu, R. Bravo, J. Chow, Z. Li,
R. Moghe, E. Nasr-Azadani, U. Tamrakar, et al., “Review of chal-
lenges and research opportunities for voltage control in smart
grids,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2790–
2801, 2019.

[10] F. G. Venegas, M. Petit, and Y. Perez, “Active integration of
electric vehicles into distribution grids: Barriers and frameworks
for flexibility services,” Renewable and Sustainable Energy Reviews,
vol. 145, p. 111060, 2021.

[11] I. Bouloumpasis, D. Steen, et al., “Congestion management using
local flexibility markets: Recent development and challenges,”
2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-
Europe), pp. 1–5, 2019.
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