
HAL Id: hal-04268058
https://hal.science/hal-04268058v1

Submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

PureLottery: Fair Leader Election without
Decentralized Random Number Generation

Jonas Ballweg, Zhuo Cai, Amir Kafshdar Goharshady

To cite this version:
Jonas Ballweg, Zhuo Cai, Amir Kafshdar Goharshady. PureLottery: Fair Leader Election without
Decentralized Random Number Generation. IEEE International Conference on Blockchain, Blockchain
2023, IEEE, Dec 2023, Hainan, China. �hal-04268058�

https://hal.science/hal-04268058v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

PureLottery: Fair Leader Election without
Decentralized Random Number Generation

Jonas Ballweg
Technical University of Munich

Munich, Germany
jonas.ballweg@tum.de

Zhuo Cai Amir Kafshdar Goharshady
Hong Kong University of Science and Technology

Hong Kong SAR, China
{zcaiam,goharshady}@cse.ust.hk

Abstract—Given n participants, leader election (LE) is the
process of designating one of them as the leader or coordinator.
LE is ubiquitous in distributed computing and blockchain and
has a wide variety of applications ranging from lotteries to proof-
of-stake (PoS) protocols and decentralized autonomous organi-
zations (DAOs). In a blockchain setting, we normally require
our LE protocol to be decentralized, lead to a consensus about
the elected leader, and be fair, i.e. elect each participant with
the same probability 1/n. Traditional blockchain LE solutions
reduce the problem to decentralized uniform sampling from
the set {1, 2, . . . , n}. This reduction leads to approaches which
are either vulnerable to manipulation, or fail to guarantee
fairness, or require inefficient procedures such as verifiable delay
functions (VDFs) and publicly-verifiable secret sharing (PVSS),
thus making them gas-inefficient and costly when implemented
as smart contracts.

In this work, we observe that fair leader election can be
achieved without explicit decentralized random number genera-
tion (RNG). In other words, the intuition behind our work is that
RNG is a strictly harder problem than LE. This is because every
LE participant is assumed to prefer to be chosen as the leader,
e.g. the participant prefers to win the lottery or be the miner
for the next PoS block. Thus, they will refrain from actions that
would reduce their chance of being selected. This game-theoretic
incentive can be exploited to design much simpler protocols for
LE in comparison to RNG, by ensuring that dishonest behavior
can only reduce the winning chances of the participant.

Specifically, we propose PureLottery, a protocol inspired by
single-elimination knockout tournaments in sports such as foot-
ball. We show that PureLottery selects the winner uniformly
at random and provides strong game-theoretic guarantees to
incentivize honest behavior. PureLottery is also strongly bias-
resistant in the sense that every honest participant is guaranteed
to win the lottery with probability at least 1/n, even if an
adversary controls all of the other n−1 players. In other words,
dishonest behavior will never increase an adversary’s chances
of being elected, even if the adversary controls all but one of
the participants. Finally, PureLottery is a simple protocol that
can be efficiently implemented as a smart contract and uses a
small amount of gas in practice. We provide an open-source
implementation of the protocol, dedicated to the public domain
with no copyright.

Index Terms—Leader Election, Blockchain, Decentralized Ran-
dom Number Generation, Mechanism Design

I. INTRODUCTION

Distributed Leader Election. Leader election (LE) protocols
have been a central research topic in distributed systems for

The research was partially supported by the Hong Kong Research Grants
Council ECS Project Number 26208122. Z. Cai was supported by the
Hong Kong PhD Fellowship Scheme. Authors are ordered alphabetically.

decades [1], [2]. Given a set {1, 2, . . . , n} of participants, the
goal of LE is to choose one of them as the designated leader.
In this work, we focus on LE in the context of blockchain. In
this context, three major applications of LE are as follows:
• Proof-of-Stake (PoS): Currently, the most viable solution

to replace Proof-of-work (PoW) and avoid its catastrophic
costs and environmental damage is PoS [3]. In PoS
protocols, a miner’s chance of being chosen to add the
next block is proportional to their stake in the currency
or, in some variants, to the amount of money that they
have locked for PoS. Currently, there are many functional
PoS protocols [4]–[8] and Ethereum, the second largest
cryptocurrency by market cap, has already switched to
PoS [9], [10]. What all these protocols have in common
is that they need a mechanism to choose the next block’s
miner in a fair, transparent and decentralized manner. Thus,
they all have their own LE protocols.

• Lotteries: Lotteries are the quintessential leader election
procedures in the real world. n people take part in a
lottery by buying tickets and our goal is to elect one
winner in a fair manner, ensuring that each participant
has the same 1/n probability of being chosen. Lotteries
are a large industry and had a market value of more
than $300 billion in 2021 [11]. Traditional lotteries are
centralized and the winner is chosen by the organizers.
However, this is highly unreliable. For example, in the
Hot Lotto fraud scandal of 2017, an IT director abused
his power to tamper with the random number generator
and successfully helped his friend win the $783,000 first
prize. Therefore, lotteries should be implemented in a
decentralized system, such as on a blockchain.

• DAOs: Decentralized Autonomous Organizations (DAOs)
are organizations that are mainly or partly managed by
smart contracts [12]. In such organizations, the members
have voting powers and exercise them on the blockchain.
Although all members have the same voting power, to
propose new actions or investments and to initiate the
voting process, it is necessary to first elect a coordinator
among the members. Thus, virtually all real-world DAOs
require LE protocols.

Of course, LE has many other applications as well, both in
blockchain and in other distributed settings.
Leader Election on the Blockchain. There are many LE/lottery
schemes for blockchains in the literature [4]–[6], [13]–[19],

[19], [20], [20]–[26]. See Section II for an overview of the
techniques used in these approaches. To the best of our
knowledge, all existing LE schemes select the winners based
on decentralized random number generation (RNG). Indeed,
they do not distinguish between LE and RNG even when the
protocol is explicitly constructed for a lottery. The random
number is either (i) produced by a pseudo-random number
generator or verifiable random functions using blockchain states,
block hashes or transaction data as seeds, or (ii) taken from an
independent distributed protocol that outputs random numbers
using a combination of commitment schemes, verifiable delay
functions and secret sharing.

Despite being in wide use, both solutions have significant
limitations. In the former, the security and fairness of the LE
rely on the assumption that blockchain states and real-time
transaction data are unpredictable and random, so that they are
eligible to serve as seeds for pseudo-random number generators.
However, this assumption might not hold, especially when a
lottery can deliver a huge prize that incentives powerful miners
and transaction owners to bias the seeds. In the latter, efficiency
is sacrificed to solve a much harder problem, i.e. secure and
tamper-proof RNG. Distributed randomness protocols usually
require a committee of n participants to jointly contribute to
the creation of the resulting random number. In order to ensure
bias-resistance and other desired properties, these protocols
either have a high communication complexity, e.g. Θ(n2) or
more for protocols that use publicly-verifiable secret sharing
schemes, or assume that a significant proportion of participants
are honest. In short, their techniques are too complicated and
an overkill for a simple problem such as LE.
Our Contribution. In contrast to all existing LE protocols for
blockchain which use decentralized random number generation
(RNG), we propose PureLottery, a simple and novel alternative
approach to LE which does not require the decentralized
generation of an explicit random number that is subject to
consensus. Instead of RNG, PureLottery selects the winner
through a tree-shaped process which resembles knockout
tournaments in games such as football. Our approach achieves
the following desired properties:

1) Fairness and Uniform Randomness: If all participants
honestly follow the protocol, every participant has an
equal probability 1/n of being chosen as the winner.
Note that, in contrast to our approach, there is no
rigorous guarantee that pseudo-random number generators
output numbers whose distribution is exactly uniform.
Therefore, most previous approaches cannot guarantee
strictly uniform randomness in winner selection as we do.

2) Strong Bias-resistance: Even with arbitrary malicious
collusion, any subset of t ≤ n − 1 participants cannot
increase their overall probability to win the prize. More
precisely, if t participants act honestly, the probability that
the winner is among them is t/n. We guarantee that no
set of t participants can collude and act dishonestly so as
to increase their overall winning probability to t/n + ε
for any ε > 0. Similarly, we guarantee that any honest
participant has at least a 1/n probability of being chosen
as the winner, even in the presence of n − 1 colluding

adversaries, i.e. even if every other participant is dishonest
and maliciously trying to make the honest participant lose.
In contrast, previous approaches that use blockchain data
as seeds are vulnerable to tampering by the miners.

3) Liveness: No subset of t < n participants can collaborate
to terminate the protocol prematurely.
Liveness is closely related to bias-resistance. For exam-
ple, in random number generators using commitment
schemes [24], adversaries can bias the output by leaving
the protocol before completing the reveal phase. Other
random number generators use publicly-verifiable secret
sharing (PVSS) to ensure that the protocol cannot be
terminated halfway [21]. However, PVSS requires a
majority of participants to be honest. Therefore, the
liveness in such protocols is preserved only against a
minority of t < n/2 adversaries.

PureLottery achieves the aforementioned guarantees without
verifiable delay functions, PVSS or other complicated primi-
tives. It thus avoids operations that use huge amounts of gas and
can therefore be easily implemented as a cost-efficient smart
contract. Indeed, we provide an open-source implementation
in Solidity at https://zenodo.org/doi/10.5281/zenodo.10065782.
This implementation is dedicated to the public domain with
no copyright.

PureLottery has a Θ(log n) worst-case communication
complexity between each lottery participant and the smart
contract, i.e. a participant has to pay Θ(log n) units of gas in
the worst case. However, the expected complexity is O(1).
More specifically, each participant sends 4 messages to the
smart contract in expectation.

Intuition. The main intuition behind our work is the realization
that LE is generally a simpler problem than RNG due to
the existence of natural incentives for the participants to
maximize their chances of being selected. For example, an
RNG participant might choose to leave the protocol prematurely,
thus tampering with the distribution of the generated random
number. However, an LE participant can be forced to choose
between completing the protocol or not being elected. These
incentives can be exploited in mechanism design to develop
much more straightforward solutions for LE than the existing
RNG techniques. We emphasize that the concept that explicit
RNG is unnecessary for LE is itself a new and important
realization. This critical distinction between LE and RNG was
overlooked by previous blockchain-based LE schemes.

Organization. We review the necessary cryptographic prelimi-
naries and related works about RNG and lottery schemes in
Section II. In Section III, we present our PureLottery protocol.
This is then followed by a security and complexity analysis in
Section IV.

II. RELATED WORKS

A. Distributed Random Number Generation

Distributed random number generation (RNG) considers a
network of n participants who want to jointly sample a uniform
random number and reach consensus regarding the sampled
output. The participants do not trust each other, so the protocol

https://zenodo.org/doi/10.5281/zenodo.10065782

must ensure no party can tamper with the value or bias its
distribution. A secure distributed RNG protocol immediately
provides a solution to distributed LE, but the opposite direction
does not necessarily hold.

Naive Solution. A naive solution for RNG is to have every
participant i ∈ {1, . . . , n} choose her own random value, e.g. a
random string xi ∈ {0, 1}l. Then, they all broadcast their values
and compute y = x1 ⊕ x2 ⊕ · · · ⊕ xn as the common output.
Here, ⊕ is the bitwise exclusive or (xor) operator. If all the
values are chosen independently from each other and at least
one of the value is really sampled from a uniform distribution,
then the output y is a uniformly random string. In the real world,
this protocol is fundamentally flawed because the messages are
not sent simultaneously. Whoever announces her value after
all other n− 1 participants has the advantage to unilaterally
determine the output. Without loss of generality, assume that
participant n submits her value last and wishes the output to be
a ∈ {0, 1}l. She can choose xn := x1 ⊕ x2 ⊕ · · · ⊕ xn−1 ⊕ a
and thus ensure the protocol’s output is y = a.

Commitment Schemes. A standard solution to avoid domina-
tion by the last participant and mimic simultaneous action
is to use a commitment scheme. A commitment scheme is a
cryptographic primitive that allows a sender to commit a chosen
value while keeping it hidden to the receiver. On the other hand,
the receiver has the ability to verify the committed value later
if the sender provides a hint. A commitment scheme has two
phases. In the commit phase, the sender holds a message x and
chooses a random string r ∈ {0, 1}κ. The sender encodes them
to c and sends c to the receiver. Usually, a hash function is
used at this point and we have c := hash(x, r). In the reveal
phase, the sender sends a hint string k to the receiver. Having
the knowledge of k, the receiver can open the commitment c
to get and verify x. For example, if a hash function is used for
the commitment, we can use the hint k := (x, r). Formally, a
commitment scheme should satisfy the following two security
properties:
• Hiding: Receiving a commitment c should leak no

information about message x. Formally, for ∀x0, x1,
let p0 ∼ {(r, c)|r

$← {0, 1}κ, c $← Commit(x0, r)},
p1 ∼ {(r, c)|r

$← {0, 1}κ, c $← Commit(x1, r)}. Then
the distribution of p0 and p1 should be computationally
indistinguishable.

• Binding: Values other than x should not be encoded into
the same commitment c. Formally, for all non-uniform
probabilitistic polynomial time algorithms that output
x0, x1 and r0, r1, the probability that x0 6= x1 and
Commit(x0, r0) = Commit(x1, r1) is a negligible
function in κ, the length of r0 and r1.

With a commitment scheme, the participants of RNG can
commit their values in the commit phase and announce the
values in the reveal phase after every participant has already
committed. The last participant does not know the values of
other participants when she chooses her value in the commit
phase, hence she cannot arbitrarily tamper with the output.
However, she might choose not to reveal her value in the
reveal phase and it is computationally infeasible to open the

commitment. If the protocol computes the output without her
value, then she has successfully biased the distribution. In the
case of a random bit, she can dominate the output value by
committing to 1 and then maliciously choosing whether to
reveal or not. Even if we design a punishment scheme by
claiming a prespecified amount of deposit for such malicious
behavior, it is not effective if the output has significant
economic consequences and the benefits from tampering the
output outweigh the confiscated deposits. Moreover, rerunning
the protocol in cases where a party does not reveal would also
lead to success in biasing the output. The last participant can
compute the value and choose not to reveal unless the resulting
output is in her favor.
RANDAO. RANDAO [24] is a family of Ethereum smart
contracts that produce distributed random numbers as a service.
RANDAO adopts a commitment scheme and achieves tamper-
resistance through verifiable delay functions (VDF) [27]. A
VDF is a function whose value can only be evaluated after
a preset amount of non-parallelizable serial computations.
Thus, VDFs ensure that the output can be computed only
after a prescribed amount of time. Even with massive parallel
processors, the computation time cannot be significantly
reduced. After the computation, an efficient proof of the output
can be generated so that the expensive computation is no longer
required for others to verify the output. Therefore, if we apply
a VDF to the xor result of RNG, the new output cannot be
biased by the malicious participants because they cannot predict
the VDF output during the reveal phase. However, this incurs
additional gas-inefficient computations on the blockchain in
order to verify the result, and a huge amount of off-chain
computation to run the sequential algorithm to evaluate the
VDF. Finally, the output of a VDF is not guaranteed to preserve
the uniform distribution unless we assume that hash functions
are idealized random oracles.
PVSS. An alternative paradigm to tackle the issue of malicious
manipulation is using a publicly-verifiable secret sharing
(PVSS) scheme [21], [28]. With a PVSS scheme, each
participant chooses a value as her secret and sends shares
to other participants in the first phase. In the second phase,
either the participant can release her value and other participants
can check the correctness, or the participant maliciously hides
the secret and other participants can collaborate to reconstruct
her value based on the secret shares. Unfortunately, PVSS
requires quadratic, i.e. Θ(n2), communication complexity and
additionally relies on the assumption that a majority of the
participants are honest in order to successfully reconstruct the
values in presence of adversaries.

Proof-of-stake protocols, such as [4]–[6] use a combination
of the above methods to choose the next miner. Some of them
also use blockchain data, such as hashes of previous blocks,
as seeds for pseudo-random number generators. Thus, they
suffer from the same limitations. Specifically, (i) VDFs and
PVSS schemes have high computational or communication
complexity; (ii) hash functions, VDFs and pseudo-random
number generators are not guaranteed to output uniform
randomness and achieve fairness; and (iii) blockchain data,
such as block hashes, can be manipulated by malicious miners

if they can gain an advantage by tampering with the LE result.

B. Single Secret Leader Selection
Another line of research studies the problem of single secret

leader selection [29], where (i) exactly one leader is selected
among the participants and (ii) the identity of leader is unknown
to other participants unless the leader reveals her success. For
example, [30] uses a tree-based multiple-round protocols similar
to our tournament protocol. In the weighted setting where
participants have different chance of winning, [30] further
represents the input of each participant using a tree of depth
O(log(S)), where they assume weights are integers and S is
the weight. Compared with [30], PureLottery is suitable for
weighted setting without extra overhead. Our protocol does not
aim for secrecy of leader selection, hence having much lower
computation and communication complexity.

C. Online Lottery Protocols
Another family of related works are online lottery schemes

which do not necessarily use blockchains. Chow [31] proposed
an online lottery scheme using a hash chain to link the lottery
tickets of participants. A verifiable random function (VRF)
is applied to extract verifiable randomness from the hash
chain and a verifiable delay function (VDF) is applied to
avoid the malicious adversary of the last participant. Similar
to commitment schemes with VDFs, the sequential evaluation
time of VDFs brings efficiency concerns and is also unable to
guarantee fairness.

Lee [32] designed a scheme that uses the Chinese Remainder
Theorem and blind signatures [33] in the lottery tickets. For the
randomness to select the winner, Lee’s scheme uses a pseudo-
random number generator and seeds it with the sequential
modular sum of random values submitted by all the participants.
These random values are sent to the lottery dealer under
encryption. In this scheme, the last participant can collude with
the lottery dealer to tamper the random seed by decrypting
other participants’ values. Liu [34] improved this protocol by
changing the random seed to a Lagrange interpolation result
that depends on random values of all participants. The random
values are committed in the first phase. Liu’s scheme does
not address the issue of maliciously hiding the random values,
as in the commitment schemes. Grumbach [35] follows the
paradigm of using delay functions to handle manipulation.
The contribution is to use a Merkle tree structure to achieve
fast probabilistic verification in large-scale lottery systems,
which is orthogonal to our contribution. Xia [36] proposed a
lottery scheme using symmetric bivariate polynomials to share
random secrets among different lottery centers. This distributed
randomness is similar to distributed RNG using PVSS schemes.

The approaches above are not decentralized. Instead, they
all have a centralized structure with a dealer who receives
values from all participants. In many cases, the dealer may be
replaced by a smart contract, leading to methods similar to
those of the following section.

D. Blockchain-based Lottery Schemes
Blockchain and smart contracts are well suited for designing

distributed protocols without trusted third-parties. Thus, it is

natural that there are many LE and lottery schemes using
smart contracts. To the best of our knowledge, all existing
blockchain-based lottery schemes [13]–[15], [17], [17] use
RNG, either through (i) pseudo-random number generators
or random oracles that use blockchain states as seeds, or
(ii) an external decentralized random number generation
protocol. Therefore, they all inherit the limitations of existing
decentralized random number generation methods. Some of
them present solutions to achieve orthogonal properties such as
further privacy protections, but none can avoid the limitations
in RNG protocols.

III. OUR PROTOCOL

In this section, we present PureLottery, our new LE protocol
that does not rely on decentralized RNG. More specifically, all
random numbers mentioned below are local randomness and
generated on a participant’s own machine. We never need to
generate a random number that is subject to consensus and a
mixture of submissions from different parties as is required
in decentralized RNG methods. Our protocol is surprisingly
simple and does not use any gas-inefficient cryptographic
primitives such as VDF or PVSS.

In the sequel, we assume there are n = 2m participants
in the leader election protocol. Exactly one participant will
ultimately be selected as the leader. If the LE protocol is used
to implement a lottery, this participant is the winner and can
claim the entire money. Other participants lose the lottery
game and cannot claim any money back. The LE protocol is
run by a smart contract and is entirely decentralized, i.e. all
participants have the same roles and abilities. We assume that
each participant corresponds to an account on the underlying
blockchain. Thus, every participant has a secret key and a public
key and can perform standard operations such as hashing and
encryption.

A. Two-player Case

In PureLottery, our two-player case coincides with classical
approaches based on commitment schemes, but the extension
to more players is done in a significantly different manner. For
simplicity, we first present the basic case where there are only 2
participants, i.e., m = 1. One of these two participants should
be elected as the leader and the election should be fair. As is
common in commitment schemes, our PureLottery protocol
consists of two phases: a commit phase and a reveal phase. In
our smart contracts, time is measured by block numbers and
each phase corresponds to a predetermined interval of blocks.

Commit Phase. In the commit phase, the participants register
and send the commitment message to the contract. The commit
message is valid if (i) a pre-specified deposit is transferred to
the contract in the transaction, and (ii) a valid commitment is
attached in the message. The commitment of participant i is
of the form 〈hash(xi||ri)〉, where hash is a predetermined
cryptographic hash function, xi ∈ {0, 1} is a uniformly-
sampled random bit and ri ∈ {0, 1}κ is a random string used
as a salt to hide xi. Here, || denotes string concatenation.
Registration and commitment can be done at the same time or
separately, in two messages to the contract. It is also possible to

divide them in two subphases and first have all the participants
register and then ask them to commit only after the registration
deadline has passed.

Each participant can only send one commit message during
the commit phase. If they send more than one message or not
send a valid message, they are considered malicious and lose
the LE, forfeiting it to the other player who will be announced
as the leader by default. We number the participants in the
order of their registration with the contract. Note that this order
is unambiguous and is inherited from the order of transactions
in the blockchain. Alternatively, if the protocol is implemented
without an underlying blockchain, e.g. for PoS, the participants
can be ordered by their public key or its hash. The order does
not give any advantage to the participants.

Reveal Phase. As in a normal commitment scheme, both
participants should send a reveal message to the contract within
the reveal phase. The reveal message of participant i should be
〈xi, ri〉. The contract computes hash(xi||ri) and compares it
with the commitment of participant i. If the hash outputs do not
match, then the reveal message is ignored and the revelation
is not accepted. A participant who does not reveal correctly
and in time (during the reveal phase) automatically forfeits the
leadership position to the other participant.

After reveal phase ends, if a participant has failed to commit
or reveal within the deadline, then the other participant is
declared as the winner. If no one is malicious, the contract
computes y = x1⊕x2. Participant i wins if y ≡ i−1 mod 2.
In other words, the first participant wins if y = 0 and the
second participant wins if y = 1.

Note that, in the simple protocol above, an honest participant
who truly samples xi from a uniform distribution has at
least a 1/2 probability of winning, no matter what the
opponent does. A dishonest opponent can only increase this
probability by forfeiting the game. Thus, no game-theoretically
rational participant would deviate from the Nash equilibrium
of submitting an xi sampled from the uniform distribution.

B. PureLottery with more than Two Players

We now present our PureLottery protocol in the general case
with n = 2m players. The intuition is similar to a knockout
tournament in sports such as football. The basic two-player case
is used as a building block and the protocol now consists of
m+1 rounds. In each round, every pair of adjacent participants
compete with each other by playing a commit-reveal game as
in the previous section. The loser is eliminated and the winner
proceeds to the next round. If there is no winner, i.e. if both
participants violate the protocol, a dummy player is created
and proceeds to the next round. The dummy players always
lose. Since the number of players is halved in each round, we
will have a single elected leader at the end of the m+1 rounds
of the game.

Registration and Commitment. The first round of our general
PureLottery protocol is similar to the commit phase of the
previous section. Each player i chooses m + 1 uniformly-

Fig. 1. Example of PureLottery with 4 Players

sampled random bits x1i , x
2
i , . . . , x

m+1
i and m+1 random salts

r1i , r
2
i , . . . , r

m+1
i . She then computes the following hashes:

hm+1
i = hash(xm+1

i ||rm+1
i)

hmi = hash(xmi ||rmi ||h
m+1
i)

...
hji = hash(xji ||r

j
i ||h

j+1
i)

...
h1i = hash(x1i ||r1i ||h2i).

Intuitively, we aim to use the hash hji in the j-th round
of the protocol. The last hash hm+1

i is simply a commitment
to the random bit xm+1

i as in the previous section. However,
every other hash hji is a commitment not only to xji but also
to the following hash hj+1

i . Thus, any tampering with any of
the xji ’s would lead to a different value for h1i . In other words,
h1i is a commitment to all of the bits chosen by player i.

Each participant must send a message to the smart contract
in the commit phase, providing a deposit and the commitment
h1i . As before, a player who fails to provide the deposit or
a valid commitment is automatically assumed to have lost
and replaced with a dummy player for the next rounds. The
players are ordered based on their registration time with the
contract. As before, the order is arbitrary and can be replaced
by an ordering based on public keys or any other well-defined
ordering. Changing the order does not give any player an
advantage.

Reveal Rounds. After the commit phase is over, our reveal
phase begins, which consists of m + 1 rounds. Each round
has a predetermined deadline. In round j, we have nj = n

2j−1

remaining participants. The participants are considered in sorted
order and divided into pairs of adjacent players who should
face each other. Each player i must send a message to the smart
contract which contains 〈xji , r

j
i , h

j+1
i 〉. The contract records

these values and checks whether the value previously declared
for hji by player i matches hash(xji ||r

j
i ||h

j+1
i). If the hash

does not match, the reveal message is unsuccessful and ignored.
Suppose player i is matched with player i′ and i′ > i. If

either of the players fails to reveal a correct value, they auto-
matically forfeit the game and the opponent wins. Otherwise,
if both players have revealed correctly, the contract computes
yi,i′ = xji ⊕ x

j
i′ . Player i wins if yi,i′ = 0 and player i′ wins

if the value is 1.
In the unlikely and strange case that both players i and

i′ fail to reveal, they both lose the game. In this scenario, a
dummy player with the same number i is created and proceeds
to the next round. Dummy players are controlled by the smart
contract itself. They lose in head-to-head encounters with any
non-dummy player who reveals correctly. However, they win
if their opponent fails to reveal. This ensures that the number
of players halves at every round and we will have exactly nj
players at round j.

Elected Leader. The elected leader is the unique remaining
player after round m + 1. In a normal LE procedure, any
player who has not cheated can get their deposit back, but the
cheaters’ deposits are confiscated and burnt, i.e. they get stuck
in the contract and cannot be withdrawn. In a lottery, each
deposit has two parts: one to incentivize honesty as above and
the other as a contribution to the lottery, i.e. ticket price. In
this case, all lottery contributions are paid to the elected leader,
who is also the lottery winner.

Example. Figure 1 shows an example of PureLottery with
4 players. Initially, the players choose their random bits xji
and salts rji and commit to them. In the first round, 1 plays
against 2 and 3 against 4. Since x11 and x12 are both 0, we
have y1,2 = 0 and thus player 1 wins in this round and is
promoted to the next round. In the other game of round 1,
player 3 reveals that x13 = 1. At this point, player 4 knows that
he will lose the game since he knows x14. So, he decides not
to reveal. However, this does not affect the game and he loses
by default as he failed to reveal. Players 1 and 3 proceed with
the next round. In this round, the smart contract already knows
h21 and h23 since these values were revealed in the previous
round. Thus, each player i ∈ {1, 3} has to reveal x2i and r2i .
The smart contract checks the hashes and computes x21 ⊕ x23
concluding that 1 is the ultimate winner and elected leader.

An alternative scenario is shown in Figure 2. In this case,
both players 3 and 4 fail to reveal their value in the first round.
Thus, they are both eliminated and a dummy player, shown
by ⊥, advances to the next round. In the game between 1 and
⊥, the non-dummy player 1 wins if and only if she reveals a
correct value. In other words, ⊥ is assumed to lose unless its
opponent cheats.

C. PureLottery when n is not a Power of 2

For elegance and brevity, we presented our PureLottery
protocol with the assumption that the number of players n is a
power of 2 and defined m := log2 n. This assumption makes
it much easier to present our protocol and also to analyze its
security and complexity in Section IV. However, it can be

Fig. 2. Example of PureLottery when Players 3 and 4 Both Decide to Cheat

Fig. 3. PureLottery with 7 Players

easily relaxed without affecting the correctness or any of the
analyses.

Suppose n is not a power of 2. For example, n = 7. We can
still create a binary tree of our players as in Figure 3. However,
in this tree the game played at each internal (blue) node is a
bit different. Consider the node shown with a dashed outline.
Player 7 reaches this node automatically, without having to
win against any other opponents. However, the winner of 5 and
6 reaches the same node after having defeated an opponent.
Thus, it would be unfair to let 7 have the same probability
of advancing to the next round as the winner of 5 and 6.
Instead, we should have a game in which the winner of 5
and 6 has a 2/3 probability of advancement and 7 has only
1/3 probability. This would ensure that each of 5, 6 and 7
have the same probability 1/2× 2/3 = 1/1× 1/3 of reaching
the last round. More generally, we have to ensure that the
multiplication of winning probabilities from each leaf (player)
to the root is exactly 1/n.

This property is easy to achieve. Consider any internal node u
of the tree. Let ku be the number of leaves that are descendants
of u. Similarly, let lu be the number of descendants of the left
child of u and ru the number of descendants of its right child.

We annotate u with the probabilities lu
ku
, ruku . See Figure 3.

These are the probabilities that the winner at the node u is the
winner of the left or right subgame, respectively. We have to
design a game between these two players that achieves these
exact winning probabilities. We call this a skewed commitment
game.
Skewed Commitment Game. Suppose that two players play
a game in which player 1 should win with probability l/k
and player 2 with probability r/k where r = k − l. In the
first phase, each player i chooses a uniformly-sampled random
integer xi from the set {0, 1, . . . , k− 1} and commits to it. In
the second phase, the players reveal their commitments and
the value y = x1 + x2 mod k is computed. If y < l, then
player 1 wins. Otherwise, player 2 wins.

We can easily plug in the skewed commitment game above
into our PureLottery protocol of Section III-C. The only change
is that we use modular sum instead of xor and the xji ’s are
no longer bits, but longer numbers. More specifically, if the
ancestor of player i at round j has k descendant leaves, then
xji must be in the range {0, 1, . . . , k − 1}. As an example, in
Figure 3, player 3 must choose x13 ∈ {0, 1}, x23 ∈ {0, 1, 2, 3}
and x33 ∈ {0, 1, . . . , 6}.

IV. ANALYSIS OF THE PROTOCOL

A. Fairness Uniform Randomness
If every participant is honest, then everyone sends valid

messages in every round. In each round and within each pair,
no participants lose before the end of reveal phase. The contract
always receives valid reveal messages and computes the xor
result to decide exactly one winner and one loser. For each such
basic case, since both participants select a bit xji uniformly at
random, the xor result is also a uniform random bit. For each
participant, the probability to survive each reveal round is 1/2.
Since independent random values are used for different rounds,
the probability to survive all m rounds is 1/2m = 1/n, which
is the desired fair probability. Note that the fairness of every
round is not dependent on the assumption that both participants
are honest. Even if one participant is honest and reveals their
value correctly, they have at least a 1/2 probability of advancing
to the next round. The same analysis can be extended to the
general case where n is not a power of 2 by observing that
each player’s probability of being the elected leader is equal
to the product of probabilities from their leaf to the root and
all such products are equal to 1/n by construction.

B. Strong Bias-resistance
First, consider the case where n = 2. If both participants

are dishonest, it is easy to show that their overall winning
probability cannot exceed 1. If both participants are honest,
then we have already shown that they each have the same 1/2
probability of winning. Suppose player 1 is honest but player
2 is a dishonest adversary.
• The adversary might not sample her value x2 uniformly.

However, due to the hiding property of commitment
schemes, she has no information about x1, which is
drawn uniformly at random. This implies that x2 is chosen
independently from x1. Consequently, y = x1⊕x2 follows

a uniform distribution, no matter what the distribution of
x2 is.

• If the adversary does not honestly reveal, she forfeits the
game and her probability of winning is 0. She also forfeits
her deposit. In this case, since player 1 honestly follows
the protocol, he wins the lottery with probability 1 > 1/2.

The exact same analysis can be applied to a skewed commit-
ment game, ensuring that an adversary cannot decrease an
honest player’s chances of winning the game.

We now show that strong bias-resistance, i.e., bias-resistance
even when n−1 adversaries collude, holds for the PureLottery
protocol with n = 2m participants by showing that each honest
participant has at least probability 1/2 to survive each reveal
round. In this case, if two adversaries play against each other,
they can choose who wins the round. Presumably, the choice is
made so as to maximize their total probability of being elected.
However, if the winner eventually has to play an honest player
i at a later round j, the adversaries have no way of knowing
this honest player’s xji , which remains hidden until player i
reveals it at round j. Thus, if player i is honest and generates
xji uniformly at random, then her probability of winning at
any given round is not affected. This also holds for the case
where n is not a power of two.

In summary, the design of multiple independent reveal rounds
ensures that the competition between a pair is independent from
previous rounds from the perspective of honest participants.
The opponent’s value is committed before the current round
while her own value is not revealed until the current round
starts. Therefore, each honest participant has probability at
least 1/n to be elected. In other words, dishonesty can only
decrease the adversaries’ chance of winning. Thus, no rational
player or group of players would play dishonestly, ensuring
that every player is elected with probability exactly 1/n.

C. Liveness

The PureLottery protocol does not abort when a malicious
participant violates the protocol by sending invalid messages
or withholding values and refusing to reveal. Note that such
a participant would immediately lose. This is safe because
of strong bias-resistance. A malicious participant, or group
of participants, might bias the probability distribution of the
elected leader, but not to their own benefit. Thus, no rational
participant or group of participants would fail to reveal their
numbers in practice. This is a strong game-theoretic guarantee
since revealing is always a dominant strategy. Essentially, by
deviating from the protocol, the best that an adversary can do
is to transfer its probability of winning to its opponent, the
adjacent participant in its current pair. At the time of making
decisions, it has no information about future rounds except
for the participants controlled by itself. So, even if it is in
collusion with its opponent, such dishonesty has no benefit
and is strictly disincentivized since it causes a loss of deposit.

D. Complexity

Communication and Gas. In PureLottery, each participant
sends m + 3 = O(log n) messages to the contract in the
worst case. This includes a registration message, a commitment

message providing h1i , and up to m+1 messages for each of the
reveal phases. The winner (elected leader) is never eliminated
throughout the entire protocol and is required to send a message
in each round. However, most participants lose in the early
rounds and do not need to send any more messages. For a fixed
participant, the expected number of rounds he participates in is
1 + 1/2 + 1/22 + · · ·+ 1/2m < 2. Thus, in expectation, each
participants sends no more than 4 constant-length messages to
the smart contract and has to pay only O(1) in gas fees since
every function in the smart contract performs O(1) on-chain
computation. Note that the total gas usage of all participants is
Θ(n), which is asymptotically optimal since we have to at least
register every participant and the registration alone takes this
much gas. Moreover, our contract is gas-efficient in practice,
too, since it only performs hashes, which have a small fixed gas
usage in programmable blockchains such as Ethereum [9]. We
intentionally avoided gas-inefficient operations such as VDFs,
PVSS and zk-SNARKs.

Off-chain Computation. In PureLottery, each participant
should perform O(log n) hash operations to compute the hji
values. This can be computed on her own machine off-chain.

V. CONCLUSION

We presented PureLottery, a novel decentralized leader
election scheme that does not rely on an explicit random
number source. To the best of our knowledge, all previous LE
schemes either require an external decentralized random number
generation protocol, or assume that blockchain states are
unpredictable and that random oracles can output randomness
based on the unpredictable information on blockchains. We are
the first to claim that decentralized random number generation
is not required for a fair LE and lottery scheme. In PureLottery,
the winner is selected through a novel multiple-round protocol
of binary competition similar to knockout tournaments in
sports. We showed that PureLottery is fair and selects the
winner uniformly at random when participants are honest.
Furthermore, honest behavior is well-incentivized. PureLottery
is also strongly bias-resistant in the sense that no set of
dishonest participants can increase their overall chance of
winning by collusion. Moreover, no subset of participants can
collaborate to terminate the protocol maliciously or to reduce
an honest participant’s chance of being elected. PureLottery
has an asymptotically optimal gas usage and requires only 4
constant-length messages from each participant in expectation.

REFERENCES

[1] E. Korach, S. Kutten, and S. Moran, “A modular technique for the design
of efficient distributed leader finding algorithms,” in PODC, 1985, pp.
163–174.

[2] H. Attiya and J. Welch, Distributed computing: fundamentals, simulations,
and advanced topics. Wiley, 2004.

[3] L. Badea and M. C. Mungiu-Pupazan, “The economic and environmental
impact of Bitcoin,” IEEE access, vol. 9, pp. 48 091–48 104, 2021.

[4] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in SOSP, 2017, pp.
51–68.

[5] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in CRYPTO, 2017,
pp. 357–388.

[6] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
EUROCRYPT, 2018, pp. 66–98.

[7] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” 2012.

[8] W. Zhao, S. Yang, X. Luo, and J. Zhou, “On PeerCoin proof of stake
for blockchain consensus,” in ICBCT, 2021, pp. 129–134.

[9] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, 2023.

[10] U. Pavloff, Y. Amoussou-Guenou, and S. Tucci Piergiovanni, “Ethereum
proof-of-stake under scrutiny,” in SAC, 2023, pp. 212–221.

[11] “Lottery market: Global opportunity analysis and industry forecast,
2021-2031,” 2022. [Online]. Available: https://www.alliedmarketresearch.
com/online-lottery-market-A14339

[12] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang, “Decen-
tralized autonomous organizations: Concept, model, and applications,”
IEEE Transactions on Computational Social Systems, vol. 6, no. 5, pp.
870–878, 2019.

[13] Y. Pan, Y. Zhao, X. Liu, G. Wang, and M. Su, “FPLotto: A fair blockchain-
based lottery scheme for privacy protection,” in Blockchain, 2022, pp.
21–28.

[14] J. Li, Z. Zhang, and M. Li, “BanFEL: A blockchain based smart contract
for fair and efficient lottery scheme,” in DSC, 2019, pp. 1–8.

[15] Y. Chen, S. Hsu, T. Chang, and T. Wu, “Lottery DApp from multi-
randomness extraction,” in IEEE ICBC, 2019, pp. 78–80.

[16] Z. Jia, R. Chen, and J. Li, “DeLottery: A novel decentralized lottery
system based on blockchain technology,” CoRR, vol. abs/1911.02392,
2019.

[17] Y. Jo and C. Park, “BlockLot: Blockchain based verifiable lottery,” CoRR,
vol. abs/1912.00642, 2019.

[18] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantino-
ple: Practical asynchronous byzantine agreement using cryptography,” J.
Cryptol., vol. 18, no. 3, pp. 219–246, 2005.

[19] Z. Cai and A. K. Goharshady, “Trustless and bias-resistant game-theoretic
distributed randomness,” in ICBC, 2023, pp. 1–3.

[20] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Probabilistic
smart contracts: Secure randomness on the blockchain,” in ICBC, 2019,
pp. 403–412.

[21] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford, “Scalable bias-resistant distributed random-
ness,” in SP, 2017, pp. 444–460.

[22] P. Schindler, A. Judmayer, N. Stifter, and E. R. Weippl, “HydRand:
Efficient continuous distributed randomness,” in SP, 2020, pp. 73–89.

[23] G. Wang and M. Nixon, “RandChain: Practical scalable decentralized
randomness attested by blockchain,” in IEEE Blockchain, 2020, pp.
442–449.

[24] “RANDAO: A DAO working as RNG of Ethereum,” 2019. [Online].
Available: https://github.com/randao/randao

[25] Z. Cai and A. K. Goharshady, “Game-theoretic randomness for proof-of-
stake,” in MARBLE, 2023.

[26] P. Fatemi and A. K. Goharshady, “Secure and decentralized generation
of secret random numbers on the blockchain,” in BCCA, 2023.

[27] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay functions,”
in CRYPTO, 2018, pp. 757–788.

[28] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in CRYPTO, 1999, pp. 148–164.

[29] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco, “Single secret
leader election,” in AFT, 2020, pp. 12–24.

[30] M. Backes, P. Berrang, L. Hanzlik, and I. Pryvalov, “A framework for
constructing single secret leader election from MPC,” in ESORICS, 2022,
pp. 672–691.

[31] S. S. M. Chow, L. C. K. Hui, S. Yiu, and K. Chow, “An e-lottery scheme
using verifiable random function,” in ICCSA, 2005, pp. 651–660.

[32] J. Lee and C. Chang, “Design of electronic t-out-of-n lotteries on the
internet,” Comput. Stand. Interfaces, pp. 395–400, 2009.

[33] D. Chaum, “Blind signatures for untraceable payments,” in CRYPTO,
1982, pp. 199–203.

[34] Y. Liu, D. Lin, C. Cheng, H. Chen, and T. Jiang, “An improved t-out-of-n
e-lottery protocol,” Int. J. Commun. Syst., pp. 3223–3231, 2014.

[35] S. Grumbach and R. Riemann, “Distributed random process for a large-
scale peer-to-peer lottery,” in DAIS, 2017, pp. 34–48.

[36] Z. Xia, Y. Liu, C. Hsu, and C. Chang, “An information theoretically secure
e-lottery scheme based on symmetric bivariate polynomials,” Symmetry,
p. 88, 2019.

https://www.alliedmarketresearch.com/online-lottery-market-A14339
https://www.alliedmarketresearch.com/online-lottery-market-A14339
https://github.com/randao/randao

	Introduction
	Related Works
	Distributed Random Number Generation
	Single Secret Leader Selection
	Online Lottery Protocols
	Blockchain-based Lottery Schemes

	Our Protocol
	Two-player Case
	PureLottery with more than Two Players
	PureLottery when n is not a Power of 2

	Analysis of the Protocol
	Fairness Uniform Randomness
	Strong Bias-resistance
	Liveness
	Complexity

	Conclusion
	References

