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Abstract

The length of a tree-decomposition of a graph is the maximum distance (in the graph) between two vertices
of a same bag of the decomposition. The treelength of a graph is the minimum length among its tree-
decompositions. Treelength of graphs has been studied for its algorithmic applications in classical metric
problems such as Traveling Salesman Problem or metric dimension of graphs and also, in compact routing
in the context of distributed computing. Deciding whether the treelength of a general graph is at most 2 is
NP-complete (graphs of treelength one are precisely the chordal graphs), and it is known that the treelength
of a graph cannot be approximated up to a factor less than 3

2 (the best known approximation algorithm for
treelength has an approximation ratio of 3). However, nothing is known on the computational complexity of
treelength in planar graphs, except that the treelength of any outerplanar graph is equal to the third of the
size of a largest isometric cycle. This work initiates the study of treelength in planar graphs by considering
the next natural subclass of planar graphs, namely the one of series-parallel graphs.

We first fully describe the treelength of melon graphs (set of pairwise internally disjoint paths linking two
vertices), showing that, even in such a restricted graph class, the expression of the treelength is not trivial.
Then, we show that treelength can be approximated up to a factor 3

2 in series-parallel graphs. Our main
result is a quadratic-time algorithm for deciding whether a series-parallel graph has treelength at most 2.
Our latter result relies on a characterization of series-parallel graphs with treelength 2 in terms of an infinite
family of forbidden isometric subgraphs.

Keywords: Tree-decomposition, Treelength, Series-parallel graphs, Isometric subgraphs

1. Introduction

Treewidth. Tree-decompositions of graphs have been initially introduced by Halin [2] and then rediscovered
as part of the Graph Minor Theory by Robertson and Seymour [3]. Roughly speaking, a tree-decomposition
of a graph describes it using a set of subsets of its vertices (called bags) that are organized in a tree-like
fashion. The classical measure of a tree-decomposition is its width, i.e., the maximum size (minus one) of its
bags, and the treewidth of a graph G, denoted by tw(G), is the minimum width of its tree-decompositions.
Tree-decompositions have been extensively studied due to their various algorithmic applications. For in-
stance, numerous NP-hard problems can be solved in linear time in bounded treewidth graphs [4, 5]; tree-
decompositions are used as part of many efficient parameterized algorithms [6]; they play a crucial role in
the design of sub-exponential algorithms in the context of bi-dimensionality [7], etc. (see [8, 9] for more
details).

To make the most of previous results, being able to compute tree-decompositions with small width is an
important pre-requisite. Unfortunately, computing the treewidth of an n-vertex graph G is NP-hard [10] and
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the best known approximation algorithm has approximation-ratio O(
√

log tw(G)) [11]. While computing the

treewidth is FPT, i.e., deciding whether tw(G) ≤ k can be solved in time O(2k
3

n) [12], the latter algorithm
cannot be used in practice since it is super-exponential in k and due to the large constant hidden in the
“big O”. On the positive side, an integer k being fixed, there exists an algorithm that, given an input
n-node graph G, decides if tw(G) > k or computes a tree-decomposition of G with width at most 2k + 1 in
time 2O(k)n [13]. The case of planar graphs is particularly interesting since, while approximation algorithms
exist [14, 15], the status of the computational complexity of treewidth in planar graphs has been open for
almost 40 years.

Treelength. Apart from its width, other parameters have been proposed as “measures” of a tree-decomposi-
tion. In particular, the length (resp., breadth) of a tree-decomposition is the maximum diameter (resp.,
radius) of its bags (where the distances are considered in the whole graph). The treelength of a graph G,
denoted by t`(G), is then the minimum length of its tree-decompositions [16] and the treebreadth is defined
accordingly [17]. Both treelength and treebreadth also have algorithmic interests. For instance, the Traveling
Salesman Problem admits an FPTAS in bounded treelength graphs [18]; computing the metric dimension is
FPT in the treelength plus the maximum degree [19]; efficient compact routing schemes and sparse additive
spanners can be built in the class of bounded treelength or bounded treebreadth graphs [16, 17, 20], etc.
Unfortunately, both these parameters are not even FPT since deciding if a graph has treelength at most two
(resp., has treebreadth at most one) is NP-complete [21, 22]. On the positive side, both parameters can be
efficiently approximated: treelength can be approximated up to a factor 3 using a BFS-like algorithm [16]
(the approximation for treebreadth follows since the treelength of a graph is at most twice its treebreadth).
Concerning treelength and treebreadth of planar graphs, very few is known. In [21], it was shown that
deciding whether the treebreadth is at most one can be solved in polynomial-time in the class of K3,3-minor-
free graphs. The treelength of an outerplanar graph equals the third of its largest isometric cycle [16], but
it is not even known whether deciding if the treelength of a planar graph is at most two can be solved in
polynomial time.

This paper initiates the study of the computational complexity of treelength in planar graphs by consider-
ing the next natural superclass of 2-connected outerplanar graphs, namely the series-parallel graphs [23, 24].

Relationship between treewidth and treelength. Another motivation for this work is that achieving
exact (or better approximation) algorithms for computing the treelength may lead toward better (more
efficient or with better approximation ratio) approximation algorithms for computing the treewidth in large
graph classes. In general, treewidth and treelength are not comparable. The treewidth of any n-node cycle
equals 2 while its treelength equals dn3 e [16]. On the other hand, the treewidth of the complete graph with
n vertices equals n − 1 while its treelength equals one. However, these graph classes (cycles and complete
graphs) are somehow the extreme cases since it has been proved that tw(G) = Θ(t`(G)) in the class of
graphs G excluding an apex graph as minor (including planar graphs) and with bounded largest isometric
cycle [25]. More specifically, [26] presents a polynomial-time algorithm that, given a tree-decomposition of
length ` of a planar graph G, computes a tree-decomposition of width at most 9` for G. Therefore, computing
tree-decompositions with “small” length would imply “good” approximation algorithms for the treewidth of
planar graphs.

Our contributions. We focus on the computation of the treelength in series-parallel graphs. Section 2 is
devoted to the formal definitions of the main concepts used throughout the paper. In Section 3, we consider
melon graphs, i.e., series-parallel graphs G obtained by identifying the endpoints of pairwise internally
disjoint paths (Pi)i≤p of respective length `i (with `1 ≥ · · · ≥ `p). We show that, in any melon graph G,

t`(G) = min{d lc(G)
3 e,max{d is(G)

3 e, `p}} where is(G) (resp., lc(G)) is the size of a largest isometric (resp., of
a largest) cycle in G. Moreover, we exhibit an example of series-parallel graphs for which it seems harder
to link the treelength to the size of its largest (isometric) cycles. In our next results, we make use of the
nested ear-decompositions [23] of series-parallel graphs. In Section 4, we design a 3

2 -approximation algorithm
for computing the treelength of series-parallel graphs. In Section 5, our main result is that a series-parallel
graph G has treelength at most two if and only if its largest isometric cycle has length at most 6 and G has
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no Dumbo graph (see definition below) as an isometric subgraph. This characterization leads to a quadratic-
time algorithm that decides if a series-parallel graph has treelength at most two. Finally, we conclude in
Section 6 by discussing how our results may be generalized to compute treelength of series-parallel graphs.

2. Preliminaries

In this paper, we consider only undirected unweighted simple (without loops or parallel edges) graphs.
A graph G = (V,E) is connected if, for every u, v ∈ V , there exists a path between u and v in G. We
now only consider connected graphs. For any v ∈ V , let NG(v) be the neighbors of v in G (i.e., NG(v) =
{w ∈ V (G) | {v, w} ∈ E(G)}) and let NG(S) be the set of vertices in G adjacent to a vertex in S (i.e.,
NG(S) =

⋃
v∈S NG(v)\S). The distance distG(u, v) in G = (V,E) between two vertices u, v ∈ V equals the

minimum length (number of edges) of a path linking u and v in G (the subscript G is omitted when there
is no ambiguity), and PG(u, v) denotes any shortest u, v-path. The diameter of G is the maximum distance
between its vertices, i.e., maxu,v∈V distG(u, v). A subgraph H = (V (H) ⊆ V,E(H) ⊆ E ∩ (V (H)× V (H)))
of G is isometric if distH(u, v) = distG(u, v) for every u, v ∈ V (H), i.e., if H preserves the distances of G.
Let is(G) be the largest size of an isometric cycle in G.

Tree-decompositions. A tree-decomposition of a graph G = (V,E) is a pair (T,X = {Xt | t ∈ V (T )})
such that T is a tree, and X is a set of subsets (called bags) of vertices of G, indexing the nodes of T such
that:

•
⋃
t∈V (T )Xt = V (G);

• for every {u, v} ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ Xt;

• for every v ∈ V (G), the set {t ∈ V (T ) | v ∈ Xt} induces a subtree of T .

We may further assume that (T,X ) is reduced, i.e., no bag is included in another one. The width of
(T,X ) equals maxt∈V (T ) |Xt| − 1, i.e., the largest size of the bags of (T,X ) minus one. The treewidth tw(G)
of G is the minimum width of the (reduced) tree-decompositions of G. The length `(T,X ) of (T,X ) equals
maxt∈V (T ) `(Xt) = maxt∈V (T ) maxu,v∈Xt distG(u, v), i.e., the maximum diameter (in G) of its bags. The
treelength t`(G) of G is the minimum length of the (reduced) tree-decompositions of G.
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Figure 1: Example of a tree-decomposition (T,X ) (right) of minimum length (t`(G) = 2) of the graph G (left) where the bag
{2, 3, 4, 5} has length 2 and all other bags have length 1.

In what follows, we will use the following lemma that follows from the fact that t`(Cn) = dn3 e for any
n-vertex cycle Cn [16].

Lemma 1. [16] Let G be any graph and H be any isometric subgraph of G. Then, t`(H) ≤ t`(G). In

particular, t`(G) ≥ d is(G)
3 e.

Given a connected graph G = (V,E), a set S ⊂ V is a separator if G− S (obtained from G by removing
the vertices of S) is not connected. It is well known that in any reduced tree-decomposition, the intersection
between two adjacent bags is a separator of the graph. The set S is a clique-separator of G if moreover the
subgraph G[S] induced by S in G is a complete graph. It is easy to show that, for any graph G with a
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clique-separator S and C being the set of connected components of G\S, then tw(G) = max
C∈C

tw(G[C∪S]) and

t`(G) = max
C∈C

t`(G[C ∪ S]). A graph G is called prime if it does not admit any clique-separator. Therefore,

from now on, we will only consider prime graphs. In particular, we only consider 2-connected graphs, i.e.,
graphs with no separator of size one (Lemma 7 even considers graphs without clique-separators of size 2,
i.e., without edge-separators). Note that computing the prime components of any planar graph can be done
in linear-time [27].

Series-parallel graphs. An (s, t)-series-parallel graph is any graph (with two distinguished vertices s and t)
recursively defined as follows. An edge st is an (s, t)-series-parallel graph. Moreover, given an (s1, t1)-series-
parallel graph G1 and an (s2, t2)-series-parallel graph G2, an (s, t)-series-parallel graph G can be obtained
from the disjoint union of G1 and G2 by identifying either:

series composition: t1 and s2 (in which case s = s1, and t = t2) or,

parallel composition: s1 and s2 on the one hand, and t1 and t2 on the other hand (in which case s =
s1 = s2, and t = t1 = t2).

Figure 2: Series (right) and parallel (middle) composition of two series-parallel graphs (left) SP1 and SP2.

A graph G = (V,E) is series-parallel if there are two vertices s, t ∈ V such that G is an (s, t)–series-parallel
graph. It is well known that a graph is K4-minor free, or equivalently has treewidth at most 2, if and only if
its 2-connected components are series-parallel. Note that outerplanar graphs are precisely (K4,K2,3)-minor
free graphs and so 2-connected outerplanar graphs are included in the class of series-parallel graphs.

Note that, in any series-parallel graph G, a largest isometric cycle (and so is(G)) can be computed in
linear time by a simple dynamic programming algorithm (using a recursive sequence of compositions that
can be obtained in linear time [24]).

Ear-decompositions. An ear-decomposition of a graph G = (V,E) is a partition (E0, . . . , Ep) of E such
that E0 induces a cycle in G and, for every 1 ≤ i ≤ p, Ei induces a path between two vertices ai and bi
in G. Moreover, V (Ei) ∩ V (Gi−1) = {ai, bi} where Gi−1 is the subgraph induced by

⋃
j≤i−1 V (Ej) (that

is, the path induced by Ei is internally disjoint from V (E0), · · · , V (Ei−1)). We say that ai and bi are the
attachment vertices of Ei in Gi−1 (note that {ai, bi} is a separator of Gi). It is well known that a graph
admits an ear decomposition if and only if it is 2-connected [9].

An ear decomposition is nested if moreover, for every 1 ≤ i ≤ i′ ≤ p:

• the attachment vertices ai and bi of Ei appear in a previous ear Ej , with j < i, i.e., there exists j < i
such that ai, bi ∈ V (Ej), in which case we say that Ei is attached to Ej . Let ji be the smallest index
0 ≤ j < i such that Ei is attached to Ej , and

• if two ears Ei and Ei′ are both attached to some ear Ej , then either the path PEj (ai, bi) between ai and
bi in Ej contains (not necessarily properly) PEj (ai′ , bi′), or vice versa, or PEj

(ai, bi) and PEj
(ai′ , bi′)

are internally vertex-disjoint. That is, two ears “do not cross” each other.

A graph is a 2-connected series-parallel graph if and only if it admits a nested ear decomposition [23].
It is easy to prove that we may further assume that E0 is a largest isometric cycle of G and that, for every
1 ≤ i ≤ p, |E(Ei)| ≥ |E(PEji

(ai, bi))|, i.e., equivalently that Gi is an isometric subgraph of G for every
0 ≤ i ≤ p. A nested ear-decomposition satisfying the latter condition is called isometric.
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Figure 3: Example of not nested (left) and nested (right) ears.

Lemma 2. For any 2-connected series-parallel graph G, an isometric nested ear decomposition starting from
a largest isometric cycle of G can be computed in quadratic time.

Proof. First, note that, by a remark above, a largest isometric cycle C of G (and its length) can be computed
in linear time. Then an isometric nested ear decomposition of G can be computed in quadratic time as follows:

• Step E0: G0 = G[V (C)] and let E0 = G0.

• Step Ei, for 1 ≤ i ≤ p: Let C1, . . . , Ck be the k connected components of G−Gi−1. For any 1 ≤ j ≤ k,
consider the subgraph C∗ induced by V (Cj) ∪ V (NGi−1∪Cj

(Cj)). Note that |V (NGi−1∪Cj
(Cj))| = 2

(otherwise there is a K4-minor) and let V (NGi−1∪Cj
(Cj)) = {ai, bi}. Let Ei be a shortest path between

ai and bi in C∗ and Gi = G[V (Gi−1) ∪ V (Ei)].

Note that since we define Ei as a shortest path in C∗, it is impossible that an ear Ei′ is attached to Ei such
that |E(Ei′)| < |E(PEi(ai′ , bi′))|.

3. Simple series-parallel graphs

This section is devoted to the simplest (including the cycles) subclass of 2-connected series-parallel graphs
that we call the melon graphs. A melon graph is any graph G = (P1, · · · , Pp) obtained from two vertices
x and y by adding p ≥ 2 internally vertex-disjoint paths P1, · · · , Pp between x and y. In what follows, let
`i = |E(Pi)| be the length of Pi for every 1 ≤ i ≤ p and, w.l.o.g., let us assume that `1 ≥ · · · ≥ `p > 0. Note
that a largest isometric cycle of G consists of P1 and Pp and so is(G) = `1 + `p and that a largest cycle
consists of P1 and P2 and has size lc(G) = `1 + `2 ≥ is(G).

Figure 4: A melon graph.
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Theorem 1. For any melon graph G = (P1, · · · , Pp), t`(G) = min{d lc(G)
3 e; max{d is(G)

3 e, `p}}.

Proof. Let us first show the upper bounds in each of the three cases: `p = |E(Pp)| ≤ d is(G)
3 e (in which case

we aim at proving that t`(G) = d is(G)
3 e); d

is(G)
3 e ≤ `p ≤ d

lc(G)
3 e (in which case t`(G) = `p); and d lc(G)

3 e ≤ `p
(in which case t`(G) = d lc(G)

3 e).

• First, let us assume that `p ≤ d `1+`p3 e. Let I1 = {1 ≤ i < p | `i > d `1+`p3 e − `p} and let I2 =

{1, · · · , p− 1}\I1. Note that, for any i ∈ I2, `i = |E(Pi)| ≤ d `1+`p3 e.
For any i ∈ I1, let zi be the vertex of Pi such that the subpath P ′i of Pi from x to zi has length

d `1+`p3 e − `p and does not pass through y (possibly zi = x). The path Pp ∪ P ′i going from y to zi and

passing through x has length d is(G)
3 e. For any i ∈ I1, let P ′′i = (Pi\P ′i ) ∪ zi and let γi be the central

vertex of P ′′i , i.e., such that distP ′′i (γi, zi) = b |E(P ′′i )|
2 c. Let Qi (resp. Q′i) be the subpath of P ′′i going

from γi to zi (resp., to y). Note that |E(Qi)| ≤ |E(Q′i)| = d |E(Pi)|−|E(P ′i )|
2 e = d `i−(d

`1+`p
3 e−`p)
2 e =

d `p+`i−d
`1+`p

3 e
2 e ≤ d `p+`1−d

`1+`p
3 e

2 e = d `1+`p3 e.
For any i ∈ I2, let zi = x and V (P ′i ) = {zi} and P ′′i = Pi. Then Qi and Q′i are defined similarly as

above. By definition of I2, |E(Qi)| ≤ |E(Q′i)| ≤ |E(Pi)| = `i ≤ d `1+`p3 e.
Let us build a tree-decomposition as follows. Start with a bag X0 = V (Pp). For every 1 ≤ i < p,
add a bag X1

i = X0 ∪ V (P ′i ) adjacent to X0, then a bag Ci = {zi, γi, y} adjacent to X1
i and two

bags X2
i = V (Qi) and X3

i = V (Q′i) both adjacent to Ci. By the previous paragraph, this is a tree-

decomposition with length d `1+`p3 e (see Figure 5).

Figure 5: The graph G = (P1, . . . , Pp) (left) and a tree-decomposition of length d `1+`p
3
e (right) when `p ≤ d

`1+`p
3
e.

• Let us assume that d `1+`p3 e ≤ `p ≤ d `1+`23 e. The tree-decomposition is obtained as in the previous
case with the only difference that zi = x for every 1 ≤ i ≤ p (i.e., P ′i = {zi} for every i). This is a
tree-decomposition with length `p (see Figure 6).

• Finally, let us consider the case when d `1+`23 e < `p. For every 1 ≤ i ≤ p, let γi be the vertex of Pi at

distance d `1+`23 e < `p from x and let P ′i be the subpath of Pi which is a shortest path from x to γi.

For every 1 ≤ i, j ≤ p, distG(γi, γj) ≤ d `1+`23 e (via the shortest path going through y). Let Q be the
subtree induced by {γ1, . . . , γp} and the connected component of G− {γ1, . . . , γp} that contains y.
Let us build a tree-decomposition as follows. Start with a bag X0 = {x, γ1, . . . , γp}. For every 1 ≤ i ≤ p,
add a bag Xi = V (P ′i ) adjacent to X0. Finally, add a bag Xp+1 = V (Q) adjacent to X0. This is a
tree-decomposition with length d `1+`23 e (see Figure 7).
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Figure 6: The graph G = (P1, . . . , Pp) (left) and a tree-decomposition of length `p (right) when d `1+`p
3
e ≤ `p ≤ d `1+`2

3
e.

Figure 7: The graph G = (P1, . . . , Pp) (left) and a tree-decomposition of length d `1+`2
3
e (right) when d `1+`2

3
e < `p.

Now, let us prove the lower bounds. By Lemma 1, in all cases, t`(G) ≥ d is(G)
3 e = d `1+`p3 e. Thus, if

`p ≤ d `1+`p3 e, t`(G) = d `1+`p3 e. We now prove that, if `p > d `1+`p3 e, then t`(G) ≥ min{`p, d `1+`23 e}. For

the purpose of contradiction, let us assume that t`(G) < k for some k ≤ min{`p, d `1+`23 e} and consider a
tree-decomposition (T,B) of G with minimum length. Let α (resp. β) be the vertex at distance k from x
on P1 − y (resp. on P2 − y). Note that α and β are well defined since either `1 ≥ `2 ≥ `p > d `1+`23 e ≥ k or

d `1+`23 e ≥ `p > d `1+`p3 e and so `1 ≥ `2 > `p ≥ k. Since k ≤ min{`p, d `1+`23 e}, distG(α, β) ≥ k and, therefore,
no bag of (T,B) can contain at least two of x, α and β. Let Bx, Bα and Bβ be three bags containing x, α
and β respectively. There are several cases to be considered.

• First, let us assume that Bx is on the path of T between Bα and Bβ . Therefore, α and β must be in
different connected components of G − Bx. Hence, Bx must contain a vertex of the path from α to
β going through y (and not through x). Every vertex of this path is at distance at least k from x, a
contradiction.

• Second, assume that Bα is on the path of T between Bx and Bβ . Therefore, x and β must be in
different connected components of G−Bα. Hence, Bα must contain a vertex of the path from x to β
not going through y. Every vertex of this path is at distance at least k from α, a contradiction. Note
that the same statement holds if Bβ is between Bx and Bα.
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• Finally, assume that there is a bag B such that Bx, Bα and Bβ are each in distinct connected component
of T − B. The set B must separate x, α and β. Therefore, B must contain a vertex in each of the
three paths from x to α (not going through y), from x to β (not going through y) and from α to
β going through y (and not through x). Since the cycle P1 ∪ P2 containing these three vertices has
length at least 3k ≤ `1 + `2 and k ≤ `p, at least two of these three vertices are at distance at least k,
a contradiction.

The above result (involving 2-connected series-parallel graphs with at most 2 vertices with degree larger
than 2) and the following family of series-parallel graphs (with only four vertices with degree larger than
2) give us the impression that the treelength of series-parallel graphs cannot be expressed by a “nice”
formula (such as in the case of outerplanar graphs). Let p ∈ N∗. Let Gp be the graph obtained from a
cycle of length 12p and let a, b, c, d be four distinct vertices of it such that dist(a, b) = dist(c, d) = 4p and
dist(a, d) = dist(b, c) = 2p. Then, add one path of length 8p from a to b and one path of length 8p from
c to d. Note that is(Gp) = 12p, that its largest cycle (not isometric) has length 20p, all other cycles (not
isometric) have length 16p and that its maximal paths with internal vertices of degree 2 have length 2p, 4p
or 8p. By similar arguments as in the previous proof, it can be shown that t`(Gp) = 5p which seems not
directly related to the invariants previously mentioned.

Figure 8: The graph Gp (left) and a tree-decomposition of length 5p (right).

Lemma 3. For any p ∈ N∗, t`(Gp) = 5p.

Proof. Let us build a tree-decomposition as follows (see Figure 8). Start with a bag X0 = {a, b, e}. Add
two bags adjacent to X0 containing respectively the shortest path between a and e, and the shortest path
between b and e. Then, add a bag X1, adjacent to X0, containing the shortest path between a and b, and
the shortest path between b and f (the diameter of this bag is 5p). Add the bag X2 = {a, d, f} adjacent to
X1. Add a bag, adjacent to X2, containing the shortest path from a to d. Add the bag X3, adjacent to X2,
containing the shortest path from d to f (this bag has also diameter 5p). Then, add the bag X4 = {d, c, g}
adjacent to X3. Finally, add the bags, adjacent to X4, containing respectively the shortest path between d
and g, and between c and g. This tree-decomposition has length 5p.

To prove the lower bound, let us consider the vertices a, f and g. In any tree-decomposition of length
< 5p, no bag can contain at least two of these vertices. Let Ba, Bf and Bg be some bags containing
respectively a, f and g in such a decomposition (that we suppose to exist for the purpose of contradiction).
There are several cases to be considered.

• First, let us assume that Bf is on the path of T between Ba and Bg. Therefore, a and g must be in
different connected components of Gp−Bf . Hence, Bf must contain a vertex of the shortest path from
a to g going through d. Every vertex of this path is at distance at least 5p from f , a contradiction.

• Second, assume that Ba is on the path of T between Bf and Bg. Therefore, f and g must be in
different connected components of Gp−Ba. Hence, Ba must contain a vertex of the shortest path from
g to f going through c. Every vertex of this path is at distance at least 5p from a, a contradiction.
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• Then, assume that Bg is on the path of T between Bf and Ba. Therefore, f and a must be in different
connected components of Gp −Bg. Hence, Bg must contain a vertex of the shortest path from a to f
going through b. Every vertex of this path is at distance at least 5p from g, a contradiction.

• Finally, assume that there is a bag B0 such that Ba, Bg and Bf are each in distinct connected
components of T −B0. The set B0 must separate a, f and g. There are several cases to be considered.

– Assume first that B0 contains a vertex v of the shortest path between b and f (to separate a from
f). The bag B0 must also contain a vertex u of the shortest path from g to a (containing d). If
distGp

(v, u) < 5p, then distGp
(a, u) ≤ p. Finally, B0 must contain a vertex on the shortest path

from g to f (going through c) which are all at distance at least 5p from u, a contradiction.

– Otherwise, B0 must contain a vertex v of the path from b to a in Gp (containing e). The bag B0

must also contain a vertex u of the path between a and g (containing d) and a vertex w of the
path from f to g (through c). Note that if distGp(u,w) < 5p, then distGp(a, u) > p. Hence, v has
to be in the path between a and e (otherwise distGp

(u, v) > 5p). Therefore, distGp
(v, w) > 5p, a

contradiction.

4. Approximation algorithm

This section shows that, even if it is still unknown whether computing the treelength of series-parallel
graphs can be done in polynomial time, there exists an efficient approximation algorithm using ear-decomposi-
tions.

Theorem 2. For any series-parallel graph G, a tree-decomposition of G with length at most 3
2 · t`(G) can

be computed in quadratic time.

Proof. By a remark in Section 2, it is sufficient to consider 2-connected graphs. Let G be a 2-connected

series-parallel graph. It follows from Lemma 1 that t`(G) ≥ d is(G)
3 e. Let us show how to compute a tree-

decomposition of length at most d is(G)
2 e. Intuitively, every bag will consist of a subgraph of an isometric cycle,

and so, for every x and y in a bag, they will belong to an isometric cycle C and distG(x, y) = distC(x, y) ≤
b |E(C)|

2 c ≤ b is(G)
2 c. Let us consider an isometric nested ear decomposition E = (E0, . . . , Ep) starting with a

largest isometric cycle E0 for G (it exists and can be computed in quadratic time by Lemma 2). For any
1 ≤ i ≤ p, let ai and bi be the endpoints of Ei as defined in the proof of Lemma 2. Let us build the tree-
decomposition as follows. Start with a bag containing V (E0). Then, for every 1 ≤ i ≤ p, let us add a bag
consisting of V (Ei) adjacent to the bag containing V (Eji) where 0 ≤ ji < i is the minimum index such that
Eji contains ai and bi, the two endpoints of Ei. Recall that, for any 0 ≤ j ≤ p, Gj is the subgraph induced by
E0, . . . , Ej . Since E is an isometric nested ear decomposition, i.e., Gi−1 is an isometric subgraph of G, for any
x, y ∈ Gi−1, dGi−1

(x, y) ≤ dG(x, y). Therefore, the cycle C ′ that consists of Ei and a shortest path between
ai and bi in Gi−1 is isometric in Gi. Since, moreover, Gi is an isometric subgraph of G, C ′ is an isometric

cycle of G. Therefore, the length of the tree-decomposition is at most b is(G)
2 c ≤ d

is(G)
3 e ·

3
2 ≤

3
2 · t`(G).

5. Characterization of series-parallel graphs with treelength 2

Before stating our main theorem, a last ingredient is required, namely the Dumbo graphs. A Dumbo
graph is any graph built as follows (see Figure 9). Start with a cycle C0 = (v0, . . . , v5) of order 6, and add
a path R of length (number of edges) at least 3 and at most 4 between v0 and v2 and a path L of length at
least 3 and at most 4 between v3 and v5. Note that a Dumbo graph is series-parallel.

This section is devoted to prove the following theorem which highly relies on the ear-decompositions of
series-parallel graphs.
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Figure 9: A Dumbo graph of treelength 3 with two ears L and R such that 3 ≤ |E(L)| ≤ 4 and 3 ≤ |E(R)| ≤ 4.

Theorem 3. For any series-parallel graph G, t`(G) ≤ 2 if and only if is(G) ≤ 6 and G does not contain a
Dumbo graph as an isometric subgraph.

Moreover, there is a quadratic-time algorithm that either computes a tree-decomposition of length at most
2 of G or exhibits a certificate that t`(G) > 2 (a large isometric cycle or an isometric Dumbo subgraph).

The “only if” part of Theorem 3 follows from Lemma 1 (t`(G) ≥ d is(G)
3 e) and from Lemma 5 whose proof

uses Lemma 4.

Lemma 4. Let G be a graph and C be any isometric cycle of length ` in G. In any tree-decomposition
(T,X ) of G with length at most d `3e, there exists a bag X ∈ X containing three vertices a, b, c ∈ V (C) such

that d `3e = dist(a, b) ≥ dist(a, c) ≥ b `3c and dist(a, c) ≥ dist(c, b) ≥ b `3c − 1.

Proof. Let (T,X ) be any tree-decomposition of G of length at most d `3e. Note that, by Lemma 1, (T,X )

has length exactly d `3e. Since every edge must appear in some bag, there must be bags containing at least
two vertices of C. For every X ∈ X with |X ∩ V (C)| ≥ 2, let d(X) = max

u,v∈X∩V (C)
dist(u, v). Let X be a

bag maximizing d(X) and a, b ∈ X ∩ V (C) with dist(a, b) = d(X). Since d(X) ≤ `(X) ≤ `(T,X ), then
dist(a, b) ≤ d `3e. Moreover, since the restriction (T,X ∩ V (C)) of (T,X ) to C is a tree-decomposition of C,

the length of (T,X ∩ V (C)) is at least d `3e. This implies that d(X) ≥ d `3e. Therefore, dist(a, b) = d `3e.
Let P be the path in C between a and b of length ` − dist(a, b), and let c ∈ V (P ) be such that 0 ≤

dist(a, c)− dist(b, c) ≤ 1. Since dist(a, b) = d `3e, we get that |E(P )| = `−d `3e and since dist(b, c) = b |E(P )|
2 c

and dist(a, c) = d |E(P )|
2 e, it follows that d `3e ≥ dist(a, c) ≥ dist(b, c) = b `3c.

Hence, if c ∈ X, a, b, c and X satisfy the statement.
Thus, let us assume that no bag contains a, b and c. Let Y be a bag containing c (which exists by the

properties of a tree-decomposition) that is closest to X in T and let X ′ be a bag containing a and b that is
closest to Y . Let X ′′ be the bag adjacent to X ′ on the path between X ′ and Y in T (possibly X ′′ = Y ) and
let Z = X ′ ∩X ′′. Note that c /∈ Z and at least one of a and b is not in Z (otherwise, it would contradict
either the fact that X ′ is closest to Y or that no bag contains {a, b, c}).

Let us first assume that b /∈ Z. Since Z is the intersection between two adjacent bags, Z must separate b
and c. Hence, there is a vertex u between b and c in P that belongs to Z. Note that dist(a, u) = dist(a, c) +
dist(c, u) since dist(a, u) ≤ dist(a, b) = d(X) = d(X ′) by the maximality of d(X). Therefore dist(a, c) < d `3e,
otherwise, d(a, u) ≥ d `3e+ 1, a contradiction to the length of (T,X ). Hence, dist(a, c) = dist(b, c) = b `3c. It

follows that ` ≡ 1 (mod 3). Therefore, dist(a, u) = b `3c+ 1 = d `3e and dist(b, u) = b `3c − 1. Hence, a, b, u
and X ′ satisfy the statement.

Let us assume now that a /∈ Z. Since Z is the intersection between two adjacent bags, Z must separate
a and c. Hence, there is a vertex u between a and c in P that belongs to Z. We claim that a, b and u are the
required vertices. Indeed, by the maximality of d(X), d(X) ≥ d(X ′). Thus dist(a, b) ≥ dist(u, b) and so the
shortest path between u and b in C goes through c. Hence dist(u, b) > dist(b, c) = b `3c and so dist(u, b) = d `3e
(because dist(u, b) ≤ `(X ′) ≤ d `3e). So, dist(u, b) = dist(b, c) + 1 and dist(a, u) = dist(a, c) − 1. Since
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d `3e ≥ dist(a, c) ≥ b `3c, then d `3e − 1 ≥ dist(a, u) ≥ b `3c − 1. This implies that a, b, u and X ′ satisfy the
statement.

Lemma 5. If a series-parallel graph G contains a Dumbo graph as an isometric subgraph, then t`(G) > 2.

Proof. Let G = (V,E) be any series-parallel graph containing a Dumbo graph D = (C0, R, L) as an isometric
subgraph. For the purpose of contradiction, let us assume thatG admits a tree-decomposition (T,X ) of length
at most 2. By Lemma 4, there must be a bag X ∈ X containing {v0, v2, v4} or {v1, v3, v5}. By symmetry, let
us assume that {v0, v2, v4} ⊆ X. Let z be a vertex of L−{v5, v3} such that |dist(z, v5)−dist(z, v3)| ≤ 1. Note
that dist(z, v5), dist(z, v3) ≥ 1 and max{dist(z, v5), dist(z, v3)} ≥ 2. Moreover, because G is series-parallel,
every path from z to v0, v2 or v4 goes through v3 or v5 (otherwise, there would be a K4 minor). Note also
that no bag contains {v0, v2, v4, z} since z is at distance at least 3 from some of v0, v2, v4.

Let Y be the bag containing z that is closest to X, and let X ′ be the bag containing v0, v2, v4 that is
closest to Y . If X ′Y ∈ E, let Z = X ′ ∩ Y , otherwise, let Z ′ be the neighbor of X ′ on the path between X ′

and Y in T and let Z = Z ′ ∩X ′. Note that z /∈ Z and at least one of v0, v2 and v4 is not in Z (otherwise,
it would contradict either the fact that X ′ is closest to Y , that Y is closest to X or that no bag contains all
v0, v2, v4 and z). Let W = {v0, v2, v4} \ Z. Since Z is the intersection between two adjacent bags, Z must
separate every w ∈W from z. There are several cases to be considered depending on which vertices among
v0, v2 and v4 are not in Z:

• If v2 belongs to Z, then W ⊆ {v0, v4}. Hence, there must be u in the z-v5 subpath of L that is in
Z if {v0, v4} ∩ W 6= ∅ (which is the case by the previous assumptions). Since z /∈ Z, u 6= z and
dist(u, v3) ≥ 2 and then dist(u, v2) ≥ 3. Therefore, there is no tree-decomposition of length 2 with v2
in Z.

• If v0 belongs to Z, then W ⊆ {v2, v4}. Hence, there must be v in the z-v3 subpath of L that is in
Z if {v2, v4} ∩ W 6= ∅ (which is the case by the previous assumptions). Since z /∈ Z, v 6= z and
dist(v, v5) ≥ 2 and then dist(v, v0) ≥ 3. Therefore, there is no tree-decomposition of length 2 with v0
in Z.

• Finally, since v0, v2 /∈ Z, we have that v0, v2 ∈ W . Hence, there must be u in the z-v5 subpath of L
that is in Z and there must be v in the z-v3 subpath of L that is in Z. Since z /∈ Z, v 6= z, u 6= z,
dist(u, v3) ≥ 2 and dist(v, v5) ≥ 2 and then dist(v, v0) ≥ 3 and dist(u, v2) ≥ 3. Therefore, there is no
tree-decomposition of length 2 with v0, v2 in W .

Note that the previous lemma implies that t`(D) ≥ 3 when D = (C0, L,R) is a dumbo graph but it is
easy to show that t`(D) ≤ 3 since it admits the decomposition with the three bags V (L), V (C0) and V (R).
It follows:

Corollary 1. Let D be a Dumbo graph. Then, t`(D) = 3.

The “if” part of Theorem 3 follows from Lemma 7 whose proof describes the algorithm. Lemma 6 will
be used in the proof of Lemma 7 to deal with the case of ears of length 2.

Let us first give an intuition of the algorithm. It takes an isometric ear decomposition E = (E0, . . . , Ep)
of G as input. Let Gi be the subgraph induced by the first i ears. The algorithm first checks that is(G) ≤ 6
(otherwise t`(G) > 2 by Lemma 1). Then, it proceeds by induction on the number of ears and, in polynomial
time, either computes a tree-decomposition of length 2, or exhibits a Dumbo graph as an isometric subgraph.
Informally, let us assume by induction on i that, for 0 ≤ i < p, our algorithm has computed a tree-
decomposition (T i,X i) of Gi of length at most 2 and such that, for every ear Ej , j > i, of length at least 3
and whose attachment vertices are in Gi, these attachment vertices are in some bag of (T i,X i). If Ei+1 is of
length 2, we extend the tree-decomposition (T i,X i) “directly” to a tree-decomposition (T i+1,X i+1) (with
the desired properties) of Gi+1 (using Lemma 6). Otherwise, by a case analysis on the length |Ei+1| of Ei+1

and is(G) (the proof of Lemma 7 is mainly dedicated to that part), we show that either (T i,X i) can be
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extended to a decomposition (T i+1,X i+1) of Gi+1 (with the desired properties), or a Dumbo graph can be
identified. The main difficulty is that, in the latter case (when |Ei+1| > 2), we are sometimes forced to deal
simultaneously with a subset of new ears.

Recall that, given a nested ear decomposition E = (Ei)0≤i≤p of a graph G, ji denotes the smallest index
such that Eji contains both endpoints of Ei for every 0 ≤ i ≤ p.

Lemma 6. Let G be any 2-connected series-parallel graph without clique-separators, with an isometric nested
ear decomposition E = (Ei)0≤i≤p. Let (T ′,X ′) be a tree-decomposition, with length at least 2, of the subgraph
Gj of G induced by E0, . . . , Ej and let Ei be such that 1 ≤ ji ≤ j < i ≤ p and |Ei| = 2, i.e., Ei is an ear of
length 2 not in Gj but both its endpoints are in Gj. Then, there exists a tree-decomposition (T,X ) of Gj ∪Ei
with the same length and such that, for every B′ ∈ X ′, there exists B ∈ X such that B′ ⊆ B.

Proof. Note that, by hypothesis, both endpoints of Ei belong to Gj since they belong to Eji . Let us first
suppose that the endpoints of Ei are in a same bag B of (T ′,X ′). Then, the tree-decomposition obtained
from (T ′,X ′) by adding a bag V (Ei) adjacent to B satisfies the statement of the lemma.

Let us now consider the case where no bag of (T ′,X ′) contains both the endpoints ai and bi of Ei. Let
X ∈ X ′ and Y ∈ X ′ be such that ai ∈ X, bi ∈ Y and the distance in T between two such bags is minimum.

Note that, because G has no edge-separator and because the ears are added in isometric order (i.e.,
2 ≤ |E(PEji

(ai, bi))| ≤ |E(Ei)| = 2), ai and bi must have common neighbors in Gj . Note also that, because
G is series-parallel (in particular, the ears are nested) without clique-separators, then every common neighbor
w of ai and bi satisfies N(w) = {ai, bi}. Indeed, if w admits a neighbor u different from ai and bi, the edge
{u,w} must belong to an ear whose attachment vertices are w and either ai or bi (because the decomposition
is nested), which would imply that either {ai, w} or {w, bi} is an edge-separator, a contradiction.

Since (T ′,X ′) is a tree-decomposition, every bag W on the X-Y path in T ′ must separate X \ Y from
Y \X. In particular, NGj

(ai)∩NGj
(bi) ⊆W . Similarly, NGj

(ai)∩NGj
(bi) ⊆ X and NGj

(ai)∩NGj
(bi) ⊆ Y .

Let v be the common neighbor of ai and bi in Ei. Then, adding v to every bag W on the X-Y path
in T ′ (including X and Y ) gives the desired decomposition. This is clearly a tree-decomposition (T,X )
of Gj ∪ Ei and, for every B′ ∈ X ′, there exists B ∈ X such that B′ ⊆ B. We only need to prove
that its length is at most `(T ′,X ′). Let W ′ be any bag on the X-Y path in T ′ (including X and Y )
and let W = W ′ ∪ {v}. Let v′ ∈ W ′ and let w ∈ N(ai) ∩ N(bi) ∩ V (Eji). Since w, v′ ∈ W ′ ⊆ W ,
then dist(w, v′) ≤ `(W ′). Moreover, dist(w, v′) = min{dist(w, ai) + dist(ai, v

′), dist(w, bi) + dist(bi, v
′)} =

min{dist(v, ai) + dist(ai, v
′), dist(v, bi) + dist(bi, v

′)} = dist(v, v′) (since, N(w) = N(v) = {ai, bi}). Hence,
`(W ) ≤ `(T ′,X ′) for every such bag W .

Some notations are still needed. Let G be a 2-connected series-parallel graph with an isometric nested
ear decomposition E = (Ei)0≤i≤p such that E0 is a largest isometric cycle of G. Recall that ai and bi denote
the endpoints of Ei (ai, bi ∈ V (Gi−1)). Let `i = |E(Ei)| and di = distGi−1(ai, bi). Since E is isometric,
di ≤ `i for all 1 ≤ i ≤ p. Finally, for any subgraph H of G induced by

⋃
i′≤j≤i V (Ej), let Att(H) ⊆ V (H)

be the set of vertices of H that are the attachment vertices (ak and bk) of some ear Ek with k > i.
Recall that a graph is prime if it has no clique-separators. Moreover, an edge-separator is a separator

that consists of two adjacent vertices.

Lemma 7. Let G be any (simple) prime series-parallel graph with is(G) ≤ 6. If G does not contain a Dumbo
graph as an isometric subgraph, then t`(G) ≤ 2.

Proof. Let us assume that G is not a chordal graph in which case the result is trivial (recall that t`(G) = 1
if and only if G is chordal, which can be decided in linear time). Hence, we may assume that t`(G) ≥ 2.

Let G be any prime series-parallel graph with is(G) ≤ 6, and with no Dumbo graph as an isometric
subgraph. Let E = (Ei)0≤i≤p be an isometric nested ear-decomposition of G with E0 being a largest
isometric cycle. Note that E contains no ear of length one since G is simple, series-parallel, and prime (an
ear of length one would be an edge-separator).

We will build a sequence E1 ⊂ E2 ⊂ · · · ⊂ Ep′ = E such that E0 ∈ E1 and, for every 1 ≤ i ≤ p′,
1. Gi = G[

⋃
E′∈Ei V (E′)] is an isometric series-parallel subgraph of G with Ei as an ear-decomposition;
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2. There are no ears of length two attached to Gi, i.e., every ear of E not yet in Gi with both endpoints
in Gi has length at least 3;

3. Gi admits a tree-decomposition (T i,X i) of length 2;

4. For every ear Ej ∈ E \ Ei attached to Gi, there exists t ∈ V (T i) such that {aj , bj} ⊆ Xi
t ∈ X i, i.e.,

every ear not yet in Gi with both endpoints in Gi (so with length at least 3) has both its endpoints in
some bag of (T i,X i).

The proof is by induction on 1 ≤ i ≤ p′. The base case consists in building E1. There are several cases
depending on the size `0 of E0. Note that `0 > 3 since otherwise, G would be chordal or not prime, and so
4 ≤ `0 ≤ 6.

• If E0 = (a, b, c, d) has length 4, recall that since G is prime, for any Ej ∈ E , dj > 1 and `j > 1.
Moreover, since E is nested, for any two ears Eq and Eq′ in E , either PEjq

(aq, bq) ⊆ PEj
q′

(aq′ , bq′) or

PEj
q′

(aq′ , bq′) ⊆ PEjq
(aq, bq) or they are disjoint. Therefore it is not possible that G contains an ear

attached to a and c and another ear attached to b and d. Therefore, up to symmetries, Att(E0) = {a, c}
(if Att(E0) = ∅, then G = E0 and the result is trivial). Let E1 consist of E0 and the set of all ears

Figure 10: Graph (left) and tree-decomposition (right) with `0 = 4.

of length two attached to a and c. Then, (T 1,X 1) is the tree-decomposition with one “central” bag
{a, b, c, d}, with one neighboring bag Ej for every ear Ej ∈ E1 \{E0} (see Figure 10). Clearly, (T 1,X 1)
is a tree-decomposition of G1 with length 2. Finally, because the ears are nested and there are no
clique-separators, every ear in E\E1 with attachment vertices in G1 must have a and c as attachment
vertices. If such an ear in E\E1 exists, it must have length at least 3 which would contradict the fact
that E0 is a largest isometric cycle. Hence, no such ear exists and G1 = G.

• If E0 = (a, b, c, d, e) has length 5 then, up to symmetries, Att(E0) ⊆ {a, c, d} (see Fig. 11). Indeed, if
Att(E0) = ∅, then G = E0 and the result is trivial. Otherwise, since G has no clique-separator, no ear
can be attached to two adjacent vertices. Moreover, since E is nested, up to symmetries, the ears can
only be attached to a and c or to a and d. Moreover, all ears have length two or three, otherwise, there
would be an isometric cycle of length larger than 5.

Let E1 consist of E0 and the set of all ears of length two attached to E0, and let G1 be the graph
induced by these ears. Then, (T 1,X 1) is the tree-decomposition with one “central” bag {a, b, c, d, e},
with one neighboring bag Ek for every ear Ek ∈ E1 \ {E0} (see Figure 11). Clearly, (T 1,X 1) is a
tree-decomposition of G1 with length 2. Finally, every ear in E \ E1 attached to G1 has its attachment
vertices in E0 because E is nested and G has no clique-separator. More precisely, otherwise, since an
ear cannot have adjacent attachment vertices (no clique-separator), there would be an ear Ej ∈ E \ E1
and an ear Ek ∈ E1 \ {E0} (w.l.o.g., say with attachment vertices a and c) with aj ∈ Ek \ {a, c} and
bj /∈ {a, c}. This would imply that G contains a K4 as minor, a contradiction. Thus, the vertices of
G1 that are attachment vertices of ears in E \ E1 all belong to V (E0) (which is a bag of (T 1,X 1)), and
moreover, the ears of E \ E1 with attachment vertices in G1 (so in V (E0)) have length at least 3, by
definition of E1. Hence, the induction hypotheses are satisfied.
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Figure 11: Graph (left) and tree-decomposition (right) with `0 = 5 (Ek and Ek′ are contained in a bag since they have length
2. Ej and Ej′ are not contained in a bag since they have length 3).

• Then, let us consider the case when E0 = (a, b, c, d, e, f) has length 6. If there is an ear attached to two
vertices at distance 3, note that every such ear has length exactly 3 since E0 is a largest isometric cycle.
Moreover, all such ears have the same attachment vertices since the ears are nested (otherwise, there
would be a K4 minor). W.l.o.g., let a and d be the attachment vertices of all (if any) ears attached to

Figure 12: Graph (left) and tree-decomposition (right) with `0 = 6.

vertices at distance 3 in E0. Let E ′1 consist of E0 and all ears Ej = (aj = a, xj , yj , bj = d) attached to
a and d.

Let E be an ear of E \ E ′1 of length at least 3 and with both its attachment vertices x and y in G′ =
G[

⋃
E′∈E′1

V (E′)]. Recall that x and y cannot be adjacent since G has no edge-separator. Moreover,

if E ′1 6= {E0}, we must have {x, y} ∩ {a, d} 6= ∅ since E is nested (if E ′1 = E0, up to symmetries, we
may assume that {x, y} ∩ {a, d} 6= ∅). Up to symmetry, let us assume that x = a. Then, y 6= d
(since otherwise E ∈ E ′1). Hence, since G has no edge-separator, we must have y ∈ {c, e}∪

⋃
Ej∈E′1

{yj}.
Finally, let E′ be another (if any) ear of E \E ′1 of length at least 3 and with both its attachment vertices
x′ and y′ in G′ = G[

⋃
E′′∈E′1

V (E′′)]. Let us assume for the purpose of contradiction that x′ = d, by

similar arguments, y′ ∈ {b, f} ∪
⋃
Ej∈E′1

{xj}. In that case, either E and E′ are not nested (if they

are attached to the same ear Ej ∈ E ′1), or E, E′ and the cycle containing x, y, x′ and y′ would be an
isometric Dumbo graph, a contradiction. Therefore, up to symmetries, all ears of length at least 3 that
are attached to G′ have a and some vertex in B = {c, e} ∪

⋃
Ej∈E′1

{yj} as attachment vertices (see

Figure 12).

Let (T ′,X ′) be the tree-decomposition with one “central” bag C = B ∪ {a} with one neighboring bag
{a, xj , yj} for every ear Ej ∈ E ′1 \ {E0}, one neighboring bag {a, b, c}, one neighboring bag {a, f, e},
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and one neighboring bag {d}∪B. Then, (T ′,X ′) is clearly a tree-decomposition of G′ of length 2 such
that all ears of length at least 3 attached to G′ have their attachment vertices in C. Finally, let F be
the set of all ears of length 2 attached to G′. Let E1 = E ′1 ∪ F . By Lemma 6, from (T ′,X ′), we can
obtain a tree-decomposition (T 1,X 1) of G1 of length 2 such that every bag in X ′ is contained in some
bag of X 1 (see Figure 12).

Finally, since G has no clique-separator and is series-parallel (in particular the ears are nested), every
ear attached to G1 must have both its attachment vertices in the same bag of (T 1,X 1), and must have
length at least 3 (since otherwise it would have been included in E1).

Now, let us prove by induction on 1 ≤ i < p′ that we can build an ear decomposition Ei+1 from Ei with
all the desired properties. Let Ej be any shortest ear not in Ei with attachment vertices {aj , bj} ∈ V (Gi).
Because G has no clique-separator and, by the induction hypothesis, Gi has a tree-decomposition (T i,X i)
of length 2 with a bag containing aj and bj , note that dj = distG(aj , bj) = distGi(aj , bj) = 2. Moreover,
because is(G) = 6 and there is no ear of length 2 attached to Gi, the length `j of Ej is such that 3 ≤ `j ≤ 4.
There are two cases depending on the length of Ej .

• If Ej = (aj , x, y, bj) has length 3, then up to symmetries Att(Gi ∪ Ej) ∩ V (Ej) ⊆ {aj , y, bj}. Indeed,
since G has no clique-separator, no ear can be attached to two adjacent vertices. Moreover, since
all ears of E are nested, first, there are no two ears, one attached to aj and y and the other one
attached to x and bj , and, second, there is no ear attached to a vertex of V (Ej)\{aj , bj} and to a
vertex of V (Gi)\{aj , bj} (see Figure 13). Let E ′i+1 consist of Ei and Ej . Let G′ = G[

⋃
E′∈E′i+1

V (E′)]

and (T ′,X ′) be the tree-decomposition build from (T i,X i) with a bag B = {aj , x, y, bj} connected to
a bag of (T i,X i) containing aj and bj . Then, (T ′,X ′) is clearly a tree-decomposition of G′ of length
2. Finally, let F be the set of all ears of length 2 attached to G′ (note that, because of the induction
hypothesis and the fact that the initial ear decomposition is isometric, all such ears are attached to
aj and y). Let Ei+1 = E ′i+1 ∪ F . By Lemma 6, from (T ′,X ′), we can obtain a tree-decomposition
(T i+1,X i+1) of Gi+1 of length 2 such that every bag of X ′ is contained in some bag of X i+1 (see
Figure 13). Clearly if there is an ear attached to the only middle vertex of an ear Ef of F then by
definition of a nested ear decomposition, its second endpoint is a vertex in Ef which contradicts the
fact that G has no clique-separator. We can deduce that for every Em attached to Gi+1 there exists
t ∈ V (T i+1) such that {am, bm} ⊆ Xi+1

t .

Figure 13: Graph (left) and tree-decomposition (right) of Gi+1 with `j = 3.

• Now, let us assume that Ej = (aj , x, y, z, bj) has length 4. There are several cases depending on the
vertices of Ej that are attachment vertices for other ears El in E\(Ei ∪ {Ej}) attached to Ej . Because
G has no clique-separator and E is an isometric nested ear decomposition, we have the following
possibilities up to symmetries.
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– If Att(Ej) ⊆ {aj , y, bj} (see Figure 14), then let E ′i+1 consist of Ei and Ej . Let (T ′,X ′) be the
tree-decomposition of G′ = G[

⋃
E∈E′i+1

V (E)] built from (T i,X i) as follows. Let B be any bag

of (T i,X i) containing both aj and bj (which exists by the induction hypothesis). Let us add the
bag {aj , y, bj} adjacent to B and to the bags {aj , x, y} and {y, z, bj}. Since (T i,X i) is a tree-
decomposition of Gi of length 2, then (T ′,X ′) is also a tree-decomposition of G′ of length 2. Let
F be the set of ears of length 2 attached to Ej and let Ei+1 consist of E ′i+1 and F . By Lemma 6,
we can obtain from (T ′,X ′) a tree-decomposition (T i+1,X i+1) of length 2 of Gi+1. Finally,
(T i+1,X i+1) satisfies the desired properties (in particular because G has no edge separator, every
ear attached to Gi+1 has its attachment vertices in a bag of (T i+1,X i+1)).

Figure 14: Graph (left) and tree-decomposition (right) of Gi+1 with `j = 4 and Att(Ej) ⊆ {aj , y, bj}.

– Now, let us assume, up to symmetry, that there exists an ear E′ attached to aj and z. Note that
such an ear has length exactly 3 since E is an isometric nested ear decomposition and no isometric
cycle has length more than 6. Let E ′ be the set of all ears Ej′ = (aj = aj′ , xj′ , yj′ , bj′ = z) /∈ Ei of
length 3 attached to aj and z (in particular, E′ is such an ear), and let E ′i+1 consist of Ei∪Ej ∪E ′
(see Figure 15).

Let us first show that no ear Eq ∈ E \ E ′i+1 of length at least 3 is attached to xj′ and z = bj′ for
some j′ such that Ej′ ∈ E ′ (resp. to x and z). For the purpose of contradiction, let us assume
that such an ear Eq exists. Recall that, by the induction hypothesis, aj and bj must belong to a
same bag of (T i,X i) of length 2 and that, because there is no clique-separator, {aj , bj} /∈ E(G).
Hence, distG(aj , bj) = distGi

(aj , bj) = 2. Let E` be the first (i.e., with minimum `) ear of Gi
containing both aj and bj (such an ear must exist since Ej can only be attached to the vertices
of some previous ear).

∗ If E` = E0, then the subgraph induced in G by V (E0) ∪ V (Ej′) ∪ V (Eq) (resp. V (E0) ∪
V (Ej) ∪ V (Eq)) is an isometric Dumbo graph, a contradiction.

∗ Otherwise (if ` 6= 0), let a` and b` be the endpoints of E`, and let G∗ be the subgraph induced
by the vertices of the ears in {Em ∈ E i | m < `}. Note that G∗ is an isometric subgraph of
Gi. W.l.o.g., a` /∈ {aj , bj} (otherwise this would contradict that E` is the first ear in which
both aj and bj appear). Let P be any shortest a`-b` path in G∗. Since a` and b` are not
adjacent (otherwise there would be an edge separator in G), P has length at least 2. Then, the
subgraph induced by V (P )∪V (E`)∪V (Ej′)∪V (Eq) (resp. V (P )∪V (E`)∪V (Ej)∪V (Eq))
is an isometric Dumbo graph, a contradiction.

Let B be any bag of (T i,X i) containing both aj and bj (which exists by the induction hypothesis).
Let B′ = {aj , bj , y}

⋃
j′,Ej′∈E′

{yj′}, let Bj′ = {aj , xj′ , yj′} for all j′ such that Ej′ ∈ E ′, let

B′′ = {bj , z, y}
⋃
j′,Ej′∈E′

{yj′}, and let Bj = {aj , x, y}.
Let (T ′,X ′) be the tree-decomposition of G′ = G[

⋃
E′∈E′i+1

V (E′)] built from (T i,X i) by adding

the bag B′ adjacent to B, to B′′, to Bj , and to Bj′ for all j′ such that Ej′ ∈ E ′. It can be shown
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Figure 15: Case where Ej has length 4 and there is at least one ear attached to aj and z.

that (T ′,X ′) is a tree-decomposition of G′, with length 2 and such that every ear of length at
least 3 attached to G′ has both its attachment vertices in some bag of (T ′,X ′). Let F be the set
of ears of length 2 attached to some ear in E ′ ∪Ej and let Ei+1 consist of E ′i+1 ∪F . By Lemma 6,
we can obtain from (T ′,X ′) a tree-decomposition (T i+1,X i+1) of length 2 of Gi+1.

Finally, (T i+1,X i+1) satisfies the desired properties (in particular because G has no edge separa-
tor, every ear attached to Gi+1 has its attachment vertices in a bag of (T i+1,X i+1)).

This concludes the proof. Note that this proof is constructive and provides a quadratic-time algorithm that
takes a series-parallel graph G as input and either returns a certificate that tl(G) > 2 (an isometric Dumbo
graph, or an isometric cycle of size at least 7) or a tree-decomposition of length 2 of G. The algorithm
first checks whether G is chordal or not in linear time [28]. If G is chordal, then the algorithm computes a
tree-decomposition of length 1. Otherwise, it computes, in linear time, the size of a largest isometric cycle
in G (using a decomposition computed in linear time [24], see section 2). If there is an isometric cycle of
size at least 7, this cycle is returned. Otherwise, the algorithm computes, in quadratic time (by Lemma 2),
an isometric nested ear decomposition of G. Finally, it considers sequentially each ear (sometimes several
ears simultaneously) and adds it (them) to the current tree-decomposition in constant time (it looks for the
bags containing the attachment vertices for instance using a dictionary, and it considers a constant number
of cases). Overall, the time complexity is quadratic in the size of the graph.

6. Further work

This work presents the first characterization of the treelength of a class of graphs in terms of forbidden
isometric subgraphs. In particular, we show that deciding if the treelength of a series-parallel graph is at
most 2 can be done in polynomial time while this problem is NP-complete in general graphs. Our approach
seems difficult to generalize to larger values of the treelength. Indeed, for treelength 3, we have already
identified about 20 families of forbidden isometric subgraphs. All these families are slight variations of the
Dumbo graphs but we still do not know how to describe them in a synthetic way. The next step is then to
find a polynomial-time algorithm that computes the treelength of series-parallel graphs (or to prove that it
is an NP-hard problem). The main goal is to further investigate the computational complexity of computing
the treelength (or even the treewidth) of planar graphs. Designing better approximation algorithms for
general or planar or series-parallel graphs is also an interesting open problem.
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