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Abstract
In Task-Oriented Dialogue (TOD) systems, correctly updat-

ing the system’s understanding of the user’s requests (a.k.a di-
alogue state tracking) is key to a smooth interaction. Tradition-
ally, TOD systems perform this update in three steps: transcrip-
tion of the user’s utterance, semantic extraction of the key con-
cepts, and contextualization with the previously identified con-
cepts. Such cascade approaches suffer from cascading errors
and separate optimization. End-to-End approaches have been
proven helpful up to the turn-level semantic extraction step.
This paper goes one step further and provides (1) a novel ap-
proach for completely neural spoken DST, (2) an in depth com-
parison with a state of the art cascade approach and (3) avenues
towards better context propagation. Our study highlights that
jointly-optimized approaches are also competitive for contextu-
ally dependant tasks, such as Dialogue State Tracking (DST),
especially in audio native settings. Context propagation in DST
systems could benefit from training procedures accounting for
the previous’ context inherent uncertainty.
Index Terms: spoken dialogue systems, context adaptation,
end-to-end, dialogue state tracking

1. Introduction
Digitization enables many tasks to be automated, nevertheless
users sometimes require assistance to perform complex tasks
such as making a reservation at a restaurant or booking a hotel
room. Task-Oriented Dialogue (TOD) systems are designed to
assist such users. A common approach to implement them is
to break the problem down to three iterative steps [1]: updat-
ing the system’s understanding of the users’ requests, reasoning
over a database and domain knowledge to choose the next ac-
tion and providing the user an answer. This paper focuses on
the understanding step.

Traditionally the user’s requests update consists of three
components, respectively performing the transcription of the
user’s utterance, semantic extraction and contextualization of
the extracted concepts [2]. Unfortunately, this method presents
the inconvenience of propagating errors of a component on to
the next one(s) (i.e. cascading errors) and of not optimizing all
components on the final objective (i.e. separate optimization)
[3], as illustrated in Figure 1. End-to-End (E2E) approaches
may address these issues by designing models in which the gra-
dient (i.e. error signal) can back-propagate from the output all
the way to the input [4].

On the one hand, with the advent of deep-learning and
textual embeddings, state of the art Dialogue State Tracking
(DST) models now work directly on automatic transcriptions
[5]. However, such approaches require careful, dataset specific,
mechanisms to catch and correct transcription errors together
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Cascade DST

[...]
restaurant-name=sushi seki

restaurant-people=5
restaurant-time=4:08 pm
restaurant-day=saturday

"let's go for sushi sexy,
book that for the same 
group of people, please, 

at 4:08 pm, on the same day."
Ut

DSt

Figure 1: Spoken Dialogue State Tracking alternatives. Red
characters indicate potential cascading errors.

with data augmentation to increase the downstream model’s ro-
bustness to specific upstream errors [6].

On the other hand, Spoken Language Understanding (SLU)
directly from the speech signal, has successfully been applied to
tasks which process utterances individually such as voice com-
mand slot filling [7] and dialogue act classification [8, 9]. Such
systems often leverage transfer learning of previously trained
models. This is challenging because it requires a trade-off be-
tween learning new knowledge (e.g. domain’s vocabulary, do-
main’s ontology structure) and keeping previous capabilities
(e.g. transcription of open vocabulary concepts) on a small
amount of data [3].

In TOD systems the semantic extraction also depends on
the dialogue’s current context. While E2E SLU has been ef-
ficiently designed for single independent utterance processing
[7, 10, 11], contextually dependant E2E SLU remains unex-
plored to the best of our knowledge. Indeed, dialogue history
integration to guide the current turn’s prediction (e.g. better
spelling of technical vocabulary) has already been implemented
[8, 9, 12, 13]. Yet, the tasks described in these studies can be
achieved without resorting to the context which is impossible
for DST (e.g. processing cross-turn reference resolution).

Producing high quality annotated dialogue datasets is ex-
pensive because of the cognitive load required to analyse the
context and adapt the annotation. Such datasets exist for chat
based dialogue understanding [14, 15] but lack for spoken di-
alogues, explaining the gap between E2E SLU and DST. Re-
cently, two datasets have been introduced in an attempt to fill
this gap: Spoken MultiWOZ [16] and SpokenWOZ [17].

This paper lies at the intersection of both directions. We
focus on contextually dependant semantic extraction, such as
DST, in which the previous dialogue context is mandatory to
correctly process the current one (e.g. cross-turn references res-
olution). In fact, the spoken DST models presented in this pa-
per output a summary of the user’s requests since the beginning
of the dialogue. State of the art DST systems use cascade ap-



proaches which create a textual bottleneck both in terms of data
and model inference. E2E approaches do not require ground-
truth transcriptions and can be jointly optimized.

This paper paves the path towards E2E spoken DST with:
(1) a novel completely neural DST approach, (2) a detailed
comparison with a state-of-the-art cascade approach and (3) av-
enues towards better context propagation.

2. Method
2.1. Task-Oriented Dialogues

In TODs users require assistance from an agent to complete
a task such as making a reservation at a restaurant or book-
ing a hotel room. More formally, let us define a TOD as
a sequence of t dialogue turns U1, A2, . . . , At−1, Ut where
At−1 and Ut respectively correspond to agent’s turn t − 1
and user’s turn t. The goal of DST is to keep up to date a
condensed representation of the user’s requests. In this pa-
per, users requests are represented as Dialogue States (DS)
and correspond to a list of n slot-value pairs flattened as
slot1=value1;...;slotn=valuen. At a given turn t,
a DST system is thus inputted the previous context DSt−2 and
both agent’s and user’s most recent turns At−1 and Ut from
which it should output the updated user’s requests DSt

1.

2.2. Context Propagation

As the dialogue unfolds, the user might refer to previously men-
tioned entities. In order to design a contextually dependant SLU
model, we need to propagate the context of the previous turns
DSt−2 to inform the prediction D̂St associated to the current
user turn Ut. This paper compares two alternatives of spoken
DST models detailed in the following sections, and illustrated in
Figure 2. For a fairer comparison, we use the same pre-trained
components for both approaches and train the model(s) with the
same consumer grade 24Gb GPU2.

2.2.1. Traditional Cascade Approach

The cascade approach consists of an Automatic Speech Recog-
nition (ASR) model which transcribes the agent and user’s
turns, respectively At−1 and Ut, concatenates them to the pre-
vious’ turns context DSt−2, and uses it as input of a Natural
Language Understanding (NLU) model which predicts the up-
dated Dialogue State D̂St.

In our experiments, we consider two ASR models: a
WavLM model [18] fine-tuned (with two additional linear
layers outputting tokens’ probabilities and CTC loss) on
the dataset’s transcriptions and an off-the-shelf Whisper [19]
model. Regarding the NLU component, we focus on a T5
Encoder-Decoder [20] model. Note that the NLU model is
trained with user turns transcriptions of the ASR model in order
to be as close as possible to its inference regime.

2.2.2. Completely Neural Approach

The completely neural approach leverages the same pre-trained
components. It removes the textual bottleneck by fusing the cur-
rent dialogue turns with the context later on, in an embedding
high dimensional space. This enriched context is then used to
condition T5’s decoder generation. The goal of this approach is
to enable joint optimization of all components.

1For t = 0, both the context and agent turns are empty.
2Code will be made available upon publication.
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Figure 2: Two approaches for context propagation in spoken
DST: SOTA cascade (top) and completely neural models (bot-
tom). The inputs are displayed in the middle: agent previous
turn At−1, user current turn Ut and previous dialogue state
DSt−2. The output is the current dialogue state DSt. Hatched
components are speech-related while solid ones are text-related.
Colored blocks are fine-tuned while white ones are trained from
scratch.

An audio encoder Eaudio (e.g. WavLM or Whisper’s en-
coder) and a textual encoder Etext (e.g. T5’s encoder) respec-
tively encode the current agent and user dialogue turns (audio)
and the dialogue’s context in the form of the previous dialogue
state DSt−2 (textual). Given that both models do not have the
same processing windows, two convolution layers (stride 3, ker-
nel size 9) are added to down-sample the audio encoder’s out-
puts. The fusion layer is a self-attention layer over the con-
catenation, noted ||, of both encoder’s outputs. The goal is to
enable the model to select and mix the information from both
encoders. Finally, a textual decoder (e.g. T5’s decoder) predicts
D̂St conditioned on the fusion of both encoders’ outputs. More
formally, we have:

hstate = Etext(DSt−2)

hturns = Conv(Eaudio(At−1 + Ut))

h = Self-Attention(hstate||hturns)

D̂St = w1 . . . wn

with wi = argmaxw p(w|wi−1 . . . , w1, h)

3. Results
3.1. Datasets

MultiWOZ is a human-human chat-based English Task-
Oriented Dialogue (TOD) dataset commonly used for training
and evaluating dialogue systems [15]. A spoken version with
vocalized user turns was published in the context of the Speech
Aware Dialogue Systems track of the 11th edition of the Dia-
logue System Technology Challenge3 (DSTC11) [16]. Given
that only the user turns are vocalized, the agent turns are con-
catenated as context with the previous dialogue state in our
models.

The user utterances in the training set are available as syn-
thetic speech, whereas the dev and test sets (Dev|Test) include
both synthetic and human speech versions (TTS|Human). The
dataset contains close to 10,000 dialogues with a 80/10/10 train-

3https://dstc11.dstc.community/



Dev Test

Cascade (g.t. text) 71.4 71.2
[70.3, 72.6] [70.1, 72.4]

TTS Human TTS Human

dstc11 baseline [16] 38.4 31.8 n/a
dstc11 best [5] 47.2 43.2 44.0 39.5

Cascade (WavLM) 58.2 55.0 57.2 53.5
[57.2, 59.3] [53.9, 56.2] [56.0, 58.3] [52.3, 54.7]

Cascade (Whisper) 63.7 63.6 64.4 62.3
[62.5, 64.8] [62.4, 64.8] [63.3, 65.6] [61.1, 63.5]

E2E (WavLM) 56.4 54.0 53.4 53.0
[55.3, 57.4] [52.9, 55.1] [52.3, 54.5] [51.8, 54.2]

E2E (Whisper) 59.0 56.9 58.3 56.6
[58.0, 60.2] [55.7, 58.0] [57.2, 59.4] [55.5, 57.7]

(a) Spoken MultiWOZ: ground-truth previous state DSt−2

Dev Test

Cascade (g.t. text) 32.0 30.3
[30.3, 33.7] [28.5, 31.9]

TTS Human TTS Human

Cascade (WavLM) 19.5 16.2 17.6 15.3
[18.4, 20.7] [15.1, 17.2] [17.2, 19.3] [15.2, 17.4]

Cascade (Whisper) 24.0 21.9 23.1 21.3
[22.7, 25.3] [20.6, 23.2] [21.9, 24.4] [20.0, 22.6]

E2E (WavLM) 15.1 14.4 13.7 14.6
[14.1, 16.0] [13.4, 15.4] [12.8, 14.6] [13.6, 15.6]

E2E (Whisper) 19.1 17.6 18.5 16.6
[18.0, 20.2] [16.5, 18.7] [17.4, 19.5] [15.7, 17.7]

(b) Spoken MultiWOZ: predicted previous state D̂St−2

Dev Test

Cascade (WavLM) 82.3 63.0
[81.3, 83.3] [61.7, 64.3]

Cascade (Whisper) 80.7 64.2
[79.5, 81.8] [62.8, 65.5]

E2E (WavLM) 70.7 61.8
[69.4, 72.0] [60.7, 63.0]

E2E (Whisper) 81.6 80.5
[80.4, 82.8] [79.6, 81.3]

(c) SpokenWOZ: ground-truth previous state DSt−2

Dev Test

Cascade (WavLM) 24.6 23.4
[23.0, 26.3] [22.4, 24.6]

Cascade (Whisper) 24.3 23.5
[22.8, 25.8] [22.5, 24.6]

E2E (WavLM) 22.2 20.3
[20.7, 23.7] [19.3, 21.3]

E2E (Whisper) 26.5 24.1
[24.7, 28.5] [23.1, 25.2]

(d) SpokenWOZ: predicted previous state D̂St−2

Table 1: JGA↑ with bootstrapped 95% confidence intervals. Cascade (g.t. text) shows upper-bound performance on the ground-truth
transcriptions. Note that [16] and [5] use the complete dialogue history as input to the DST model which is not possible for audio
native E2E approaches [13].

dev-test split and an average of 13.3 turns per dialogue. Among
the pre-defined slots, we can distinguish 3 groups: categori-
cal slots with a closed set of values (∼60%), non-categorical
slots with an open set of values (∼30%) and time slots (∼10%).
Note that, in order to reduce the value overlap across sets, non-
categorical slots were replaced and time slots offset in the Dev
and Test sets.

SpokenWOZ [17] is a human-human multi-domain spoken
English TOD dataset. It extends the MultiWOZ’s set of slots
with cross-turn and reasoning slots. It contains 5,700 dialogue
recordings with a 4200/500/1000 train/dev/test split which cor-
responds to a total of 203,074 dialogue turns and 249 hours of
audio. Given the native audio nature of the dataset, no ground-
truth transcriptions are available. We thus consider the dataset’s
provided ASR transcriptions instead of the outputs of a fine-
tuned WavLM.

Given the low quantity of data at our disposal, we use 100%
of the training sets for both dataset.

3.2. Evaluation

We evaluate all approaches with a turn-level exact match met-
ric known as Joint-Goal Accuracy (JGA↑) [21]. This metric
requires to post-process the coma separated slot-value output
format to convert it into a valid dictionary which does not take
into account the order of the slot-value pairs. We present the re-
sults of all three approaches in two scenarios: with ground truth
previous context DSt−2, and with the previously predicted con-
text D̂St−2 in Table 1. We further analyse the performance per
slot group in Figure 3 and per dialogue turn in Figure 4.

Table 1 highlights that the joint optimization does indeed
seem to robustify the WavLM audio encoder in the sense that
it reduces the performance gap between TTS and Human for

spoken MultiWOZ. Moreover, the completely neural approach
leveraging a robust audio encoder such as Whisper’s performs
on par with cascade approaches and even slightly better in an
audio native setting such as with SpokenWOZ.

3.2.1. Slot group analysis

In order to get a more precise understanding of the differences
between these approaches, we further evaluate each slot’s F1-
measure. We present each slot group’s average F1-measure on
the spoken MultiWOZ Test-Human and SpokenWOZ Test sets
in Figure 3. Categorical slots present little difficulty while non-
categorical and time slots are more challenging especially when
an effort is made to have less overlap between those slots’ val-
ues such as in spoken MultiWOZ. In such a setting, Whisper’s
transcription formatting seems appreciated for time slots values.
In a native audio setting, such as SpokenWOZ, the end-to-end
approaches perform better than cascade approaches which un-
derlines the advantage of joint-optimization in such settings. In
addition, Whisper’s encoder seems to improve time formatting
capabilities suggesting that part of the formatting information
might be already present in its encoder.

3.2.2. Dialogue turn analysis

When comparing the per-turn performance, we observe that, as
illustrated in Fig. 4, the robustness of the audio encoder pre-
vents a too fast collapse of the turn accuracy as the dialogue
unfolds. However, in a more realistic scenario where we base
our next prediction on the previous one D̂St−2

4, all approaches
have trouble following the course of the dialogue. This suggests

4Note that At−1 and Ut remain unchanged which might lead to
some incoherences.
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Figure 3: Slot group average F1

that additional training mechanisms such as done for other se-
quence prediction tasks [22] might be required to compensate
this training-inference discrepancy.

When comparing datasets we also notice that the native au-
dio setting of SpokenWOZ underlines the advantage of joint-
optimization since the completely neural approaches perform
better on further dialogue turns. Note that only the com-
pletely neural approach with Whisper’s encoder seems to per-
form roughly equally among dialogue turns. This suggests that
this encoder captures better the details necessary to update the
users’ requests.

4. Discussion
This paper focuses on spoken DST, for which, to the best of
our knowledge, only two datasets are available. While E2E ap-
proaches often require more data to reach the same level of
performance [23], this paper compares cascade and E2E ap-
proaches at the same resource level. Meaning that we use 100%
of each dataset’s training set and the same pre-trained backbone
models for both approaches. In addition, both datasets assume
the dialogue turns to be perfectly separable. Future datasets will
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Figure 4: Turn accuracy with and without ground-truth previous
state for each approach. Note that there are fewer and fewer
dialogues as the number of turns increases.

enable to study E2E approaches in higher resource and more
realistic settings. Given the exact match nature of JGA, a more
fine-grained evaluation to assess which errors are low-impact
errors (e.g. rectified with the help of a database, with no impact
on the dialogue trajectory) and an adapted post processing of
the non categorical slot values is left as future work.

5. Conclusion

In order to pave the path towards E2E spoken DST, we analyze
the differences between a state of the art cascade approach and a
completely neural approach. Our study highlights that although
the cascade approach remains the most accurate approach, com-
pletely neural approaches are competitive especially in audio
native settings such as SpokenWOZ. However, context propa-
gation in completely neural approaches remains an open chal-
lenge. Integrating the previous context’s uncertainty into the
training process such as done for sequence prediction tasks [22]
seems an interesting step in this direction.
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