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ABSTRACT

In Task-Oriented Dialogue (TOD) systems, correctly updat-
ing the system’s understanding of the user’s needs (a.k.a dia-
logue state tracking) is key to a smooth interaction. Tradition-
ally, TOD systems perform this update in three steps: tran-
scription of the user’s utterance, semantic extraction of the
key concepts, and contextualization with the previously iden-
tified concepts. Such cascade approaches suffer from cascad-
ing errors and separate optimization. End-to-End approaches
have been proved helpful up to the semantic extraction step.
This paper goes one step further paving the path towards com-
pletely neural spoken dialogue state tracking by comparing
three approaches: (1) a state of the art cascade approach, (2)
a locally E2E approach with rule-based contextualization and
(3) a completely neural approach. Our study highlights that
although they all outperform the recent DSTC11 best model,
especially with a filtering post-processing step, (1) remains
the most accurate approach. Indeed, both (2) and (3) have
trouble propagating context as dialogues unfold showing that
context propagation in completely neural approaches is an
open challenge.

Index Terms— spoken dialogue systems, context adapta-
tion, end-to-end, dialogue state tracking

1. INTRODUCTION

Digitization enables many tasks to be automated, nevertheless
users sometimes require assistance to perform a specific task
such as making a reservation at a restaurant or booking a hotel
room. Task-Oriented Dialogue (TOD) systems are designed
to assist such users. A common approach to implement them
is to break the problem down to three iterative steps [1]: up-
dating the system’s understanding of the users’ needs, reason-
ing over a database and domain knowledge to choose the next
action and providing the user an answer. This paper focuses
on the first step.

Traditionally the user’s needs update consists of three
components, respectively performing the transcription of the
user’s utterance, semantic extraction and contextualization
of the extracted concepts [2]. Unfortunately, this method
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Fig. 1. Spoken Dialogue State Tracking alternatives. Red
characters indicate potential cascading errors.

presents the inconvenience of propagating errors of a compo-
nent on to the next one(s) (i.e. cascading errors) and of not
optimizing all components on the final objective (i.e. separate
optimization) [3]. End-to-End (E2E) approaches may address
these issues by designing models in which the gradient (i.e.
error signal) can back-propagate from the output all the way
to the input [4].

On the one hand, with the advent of deep-learning and
textual embeddings, state of the art Dialogue State Tracking
(DST) models work directly on automatic transcriptions [5].
However, such approaches require careful, dataset specific,
mechanisms to catch and correct transcription errors together
with data augmentation to increase the model’s robustness to
specific upstream errors.

On the other hand, Spoken Language Understanding
(SLU) working directly on the speech signal, has success-
fully been applied to tasks which process utterances individ-
ually such as voice command slot filling [6] and dialogue
act classification [7, 8]. Such systems often leverage transfer
learning of previously trained models which is challenging
because it requires a trade-off between learning new knowl-
edge (e.g. domain’s vocabulary, domain’s ontology structure)
and keeping previous capabilities (e.g. transcription of open
vocabulary concepts) on a small amount of data [3].

In TOD such models must also adapt to the dialogue’s cur-
rent context. While E2E SLU models have been efficiently



designed for independent single user utterance processing
[6, 9, 10], contextually dependant E2E SLU remains unex-
plored to the best of our knowledge. Indeed, dialogue history
integration to guide the current turn’s prediction (e.g. better
spelling of technical vocabulary) has been already imple-
mented [7, 8, 11, 12]. Yet, for the tasks described in these
studies, the context was not mandatory for solving the task
(e.g. the task does not need to process cross-turn references
resolution).

Producing contextual semantic annotations is expensive
because of the cognitive load required to analyse the con-
text and adapt the annotation. Such datasets exist for chat
based dialogue understanding [13, 14] but lack for spoken di-
alogues, explaining the gap between E2E SLU and DST. To
the best of our knowledge, the vocalized version of Multi-
Woz [15] is the only dataset providing speech, transcriptions
and contextual semantic annotations (i.e. representing the
user’s needs from the beginning of the dialog up to the current
turn).

This paper lies at the intersection of both directions. We
focus on contextually dependant semantic extraction, such as
DST, in which the previous dialogue turns are mandatory to
correctly process the current one. In fact, the spoken DST
models presented in this paper output a summary of the user’s
needs since the beginning of the dialogue. State of the art
DST systems use cascade approaches which create a textual
bottleneck both in terms of data and model inference. E2E
approaches do not require ground-truth transcriptions and can
be jointly optimized. We pave the path towards E2E spoken
DST by comparing (1) a state of the art cascade approach, (2)
a locally E2E approach with rule-based contextualization and
(3) a completely neural approach.

2. METHOD

2.1. Task-Oriented Dialogues

In TOD users require assistance from an agent to complete a
task such as making a reservation at a restaurant or booking
a hotel room. More formally, let us define a TOD as a se-
quence of t dialogue turns U1, A2, . . . , At−1, Ut where At−1

and Ut respectively correspond to textual agent’s turn t − 1
and spoken user’s turn t. The goal of DST is to keep up to
date a condensed representation of the user’s needs. In this
paper, users needs are represented as Dialogue States (DS)
and correspond to a list of n slot-value pairs linearized as
slot1=value1;...;slotn=valuen. At a given turn t,
a TOD system is thus inputted the previous context1 and the
current user turn from which it should output the updated user
needs DSt.

1For t = 1, the context is empty.

2.2. Context Propagation

As the dialogue unfolds, the user might refer to previously
mentioned entities. In order to design a contextually depen-
dant SLU model, we need to propagate the context of the pre-
vious turns DSt−2 + At−1 to inform the prediction D̂St of
the current user turn Ut. This paper compares three alterna-
tives of contextually dependant SLU models shown in Fig. 2.
For each approach we train the model(s) over 10 epochs on a
single 24Gb GPU and use the last checkpoint at inference2.

2.2.1. Cascade DST Approach

The cascade approach consists of an Automatic Speech
Recognition (ASR) model which transcribes the user’s turn
Ut and concatenates it to the previous’ turns context DSt−2+
At−1 as the input of a Natural Language Understanding
(NLU) model which then predicts the next Dialogue State
DSt.

Both components are trained separately: WavLM [16],
with two additional linear layers outputting tokens’ probabil-
ities, to transcribe the user turns (fine-tuned with CTC loss)
and T5 Encoder-Decoder [17] to output dialogue states. Note
that the NLU model is trained with user turns transcriptions
of the ASR model in order to be as close as possible to its
inference regime.

2.2.2. Local E2E Approach

DS are updated through three operations: addition of a new
slot-value pair, modification and suppression of a previously
mentioned slot-value pair. In order to update DSt−2 and ob-
tain DSt with a rule based system we need to encode these
operations into local DS. While additions and modifications
of slots can remain the same in local DS, we mark suppressed
slots by assigning them the value <unk>.

Finally, for references to previously mentioned slots, as
shown in Fig. 2, we explicit the reference through the name
of the referred slot’s value present in DSt−2.

This model relies on a Whisper [18] backbone model with
a fine-tuned decoder on the user turns. At inference time, the
context DSt−2 + At−1 is added before the decoder input to-
kens to condition the decoding. Note that erroneous refer-
ences and suppression (e.g. non-existing slots) are discarded
by post-processing the outputs.

2.2.3. Completely Neural Approach

The completely neural approach leverages both previous ap-
proaches by fusing audio and semantic encoder’s outputs and
feeding them to a semantic decoder. The goal of this approach
is to enable joint optimization of all components. More for-
mally, we have:

2Code will be made available upon publication.
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Fig. 2. Three approaches for context propagation in spoken DST: (1) SOTA cascade, (2) local E2E model with rule-based
contextualization and (3) completely neural model. (1) and (2) present cascading errors in red characters. Hatched components
are speech-related while solid ones are text-related.

h1 = Sem-Enc(DSt−2 +At−1)

h2 = Audio-Enc(Ut)

h = Fusion(h1 + Conv(h2))

D̂St = Sem-Dec(h)

WavLM [16] and T5’s encoder [17] respectively encode
the current turn (audio) and the context (text). Given that both
models do not have the same processing windows, two con-
volution layers (stride 3, kernel size 9) are added to down-
sample the audio encoder’s outputs. The fusion layer is a
MLP which enables the model to select and mix the informa-
tion from both encoders. Finally, a T5 decoder outputs DSt

conditioned on the fusion of both encoders’ outputs.

3. RESULTS

3.1. Spoken Multi-Woz dataset

Multi-Woz is a human-human chat-based English Task-
Oriented Dialogue (TOD) dataset commonly used for training
and evaluating dialogue systems [14]. A spoken version of
Multi-Woz with vocalized user turns was published in the
context of the Speech Aware Dialogue Systems track of the
11th edition of the Dialogue System Technology Challenge3

(DSTC11) [15]. The user utterances in the training set are

3https://dstc11.dstc.community/

available as synthetic speech, whereas the dev and test sets
(Dev|Test) include both synthetic and human speech versions
(TTS|Human). The dataset contains close to 10,000 dia-
logues with a 80/10/10 train-dev-test split and an average of
13.3 turns per dialogue. Among the pre-defined slots, we
can distinguish 3 groups: categorical slots with a closed set
of values (∼60%), non-categorical slots with an open set of
values (∼30%) and time slots (∼10%). Note that, in order
to reduce the value overlap across sets, non-categorical slots
were replaced and time slots offset in the Dev and Test sets.

3.2. Evaluation

We evaluate all approaches with a turn-level exact match met-
ric known as Joint-Goal Accuracy (JGA↑) [19]. This metric
requires to post-process the coma separated slot-value output
format to convert it into a valid dictionary which does not
take into account the order of the slot-value pairs. Given that
generative models, such as T5, are prone to hallucinations, a
filtering step discards all slots which are not part of the prede-
fined slots. We present here the results of all three approaches
in two scenarios: with ground truth context DSt−2, in Table
1 and with the previous prediction D̂St−2 in Fig. 4.

We find that the cascade approach remains a tough com-
petitor only 6 points behind the text oracle model. Although
both the local and global E2E approaches achieve higher ac-
curacies than the recent DSTC11 best model, especially with
the filtering post-processing step, they are not competitive
with a carefully designed cascade approach. It is notewor-



Dev Test

Text 81.2 80.3
w/o filtering 64.8 63.8

TTS Human TTS Human

DSTC11 baseline [15] n/a n/a
w/o filtering 38.4 31.8 n/a

DSTC11 best [5] n/a n/a
w/o filtering 47.2 43.2 44.0 39.5

(1) Cascade 75.2 71.9 75.4 71.8
w/o filtering 53.5 48.6 53.2 47.8

(2) Local E2E 60.5 61.8 62.3 62.6
w/o filtering 43.6 43.8 42.8 42.7

(3) E2E 56.8 54.2 57.1 53.9
w/o filtering 14.9 12.6 14.3 12.3

Table 1. JGA of spoken DST with ground-truth previous state
DSt−2. Text line shows upper-bound performance. Note that
[15] and [5] use dialogue history as input to the DST model.

thy that filtering out the undefined slots has a significant im-
pact for all approaches. The completely E2E approach seems
particularly prone to hallucinations which indicates that it has
more trouble selecting the relevant information from the au-
dio encoder’s hidden states.

In order to get a more precise understanding of the dif-
ferences between these approaches, we further evaluate each
slot’s F1-measure and present each slot groups average F1-
measure on the Test-Human set in Fig. 3. Categorical slots
present no difficulty while non-categorical and time slots are
more challenging. Interestingly the backbone model seems
to play a role in the output format given that the local E2E
and completely E2E models’ F1-measures are reversed for
the Time slot group which requires careful formatting.

Categorical Non-Categorical Time
Slot Group
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Approach
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Fig. 3. Test-Human slot group average F1 measure.

In a more realistic scenario where we base our next pre-
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Fig. 4. Test-Human turn accuracy with and without ground-
truth previous state for each approach. Note that there are
fewer and fewer dialogues as the number of turns increases.

diction on the previous one4 we observe that, as illustrated in
Fig. 4, both the cascade and the completely E2E approaches
perform as good with their predictions as with the ground-
truth whereas the local E2E approach collapses. In fact it
achieves a higher accuracy on the first turn and collapses on
the next ones which highlights that using decoder prefixing
to propagate the dialogue’s context might not be the best
method. Also note that the global E2E approach has more
trouble handling long dialogues than its alternatives.

4. CONCLUSION

In order to pave the path towards E2E spoken DST, we com-
pare a state of the art cascade approach with local and global
E2E approaches. Our study highlights that although they
all outperform the recent DSTC11 winner model, especially
with a filtering post-processing step, the cascade approach
remains the most accurate approach and context propagation
in completely neural approaches an open challenge. Local
E2E and global E2E approaches behave quite differently:
the former is very accurate on the first dialogue turn but
collapses when contextualizing its predictions and the latter
hallucinates much more and has trouble with long dialogues.

Our results remain to be confirmed on other contextually
dependant SLU datasets to come. Given the chat-based ori-
gin of Multi-Woz, the turns are assumed to be perfectly sep-
arable which is not the case in general. A more fine-grained
evaluation to assess which errors are low-impact errors (e.g.
rectified with the help of a database, with no impact on the
dialogue trajectory) and improving the post processing with a
more careful filtering is left as future work.

4Note that At−1 and Ut remain unchanged which might lead to some
incoherences.
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