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We present a novel implementation of a genuinely 4th-order accurate finite volume scheme 
for multidimensional classical and special relativistic magnetohydrodynamics (MHD) based on 
the constrained transport (CT) formalism. The scheme introduces several novel aspects when 
compared to its predecessors yielding a more efficient computational tool. Among the most 
relevant ones, our scheme exploits pointwise to pointwise reconstructions (rather than one-

dimensional finite volume ones), employs the generic upwind constrained transport averaging 
and sophisticated limiting strategies that include both a discontinuity detector and an order 
reduction procedure. Selected numerical benchmarks demonstrate the accuracy and robustness 
of the method.

1. Introduction

The modeling of astrophysical plasmas is nowadays demanding for more efficient and accurate numerical schemes for solving 
the equations of classical and special relativistic magnetohydrodynamics (MHD, RMHD). Physical interest is increasingly directed 
towards the investigation of highly nonlinear flows featuring both smooth and discontinuous solutions, with a great deal of attention 
being devoted to enhance the accuracy of the underlying numerical methods while retaining stability and computational efficiency.

Traditionally, in the context of finite volume (FV) or finite difference (FD) schemes, a great variety of 2nd-order methods have 
been developed to solve the MHD and RMHD equations (e.g., [1–18]). However, in the last decade several efforts have been made to 
design higher than 2nd-order numerical methods both for FD (e.g., [19,20,15,21–24]) as well as for FV (e.g., [25–32]) approaches, 
leading to the dawn of high-order numerical codes (e.g. [33–38]) in plasma physics and computational fluid-dynamics. Most 4th-
order schemes, in fact, can reach unprecedented performances overstepping the limits of traditional 2nd-order frameworks because 
of their intrinsic lower dissipation properties. In addition, smooth solutions are improved at much faster rates, yielding enhanced 
convergence and henceforth a computational efficiency that increases with the dimensionality of the problem and with resolution.

In this paper we present a genuine 4th-order accurate finite volume method for the numerical solution of the ideal classical 
and special relativistic MHD equations. Such method draws on the work originally introduced by McCorquodale & Colella [28]

and then refined by Felker & Stone [36], but with a number of important improvements and differences. In fact, our numerical 
scheme is introducing, for the first time in the literature of FV schemes, a version of the MP5 [39] and the WENOZ [40–42] spatial 
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reconstruction algorithms based on pointwise values, which are instead traditionally used in FD schemes. As we shall demonstrate, 
pointwise reconstructions lower the algorithmic complexity of the overall scheme by retaining the 4th-order accuracy with fewer 
operations per step and without even enlarging the stencil size. Moreover, this new feature reduces the number of Riemann problems 
to be solved per direction, leading to a more efficient and cost-effective scheme. Concurrently, robustness is ensured by means of a 
local discontinuity detector to distinguish smooth solutions from discontinuous ones when determining the function local point value 
from its cell average. Regarding temporal integration, we employ a semi-discrete approach based on a five-stage 4th-order explicit 
strong stability preserving Runge-Kutta method (eSSPRK(5,4), [43,44]). The solenoidal condition of the magnetic field is fulfilled by 
means of a high-order formulation of the generalized upwind constrained transport (UCT, [45,3,5,46,47]) algorithm, which ensures 
a divergence-free magnetic field up to machine accuracy, and works well with any generic upwind average [18].

The paper is structured as follows: in §2 we will briefly describe the MHD and RMHD equations and how they are discretized in 
a general FV framework together with the notation used throughout this work. In §3 an extensive description of the novel numerical 
method will be provided. In §4 we will illustrate our method to control the solenoidal condition. Numerical tests and conclusions 
will be given, respectively, in §5 and §6.

2. The ideal MHD and RMHD equations

The ideal MHD equations can be split out in two coupled sub-systems [19,47,18], the first one being a time-dependent hyperbolic 
system for the evolution of the conservative flow variables (the mass density 𝜌, the momentum density 𝜌𝐯, and the energy density 
E). This sub-system can be written in compact form by introducing a state vector of conservative quantities, 𝑈 , and a rank-2 tensor, 
𝖥, whose rows represent the fluxes relative to each component of 𝑈

𝜕𝑈

𝜕𝑡
+∇ ⋅ 𝖥 = 0 , (1)

where

𝑈 =
⎛⎜⎜⎝
𝜌

𝜌𝐯
E

⎞⎟⎟⎠ , 𝖥 =
⎛⎜⎜⎝

𝜌𝐯
𝜌𝐯𝐯−𝐁𝐁+ 𝖨𝑝𝑡

(E + 𝑝𝑡)𝐯− (𝐯 ⋅𝐁)𝐁

⎞⎟⎟⎠
⊺

. (2)

In Eq. (2), 𝐯 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) is the fluid velocity, 𝐁 = (𝐵𝑥, 𝐵𝑦, 𝐵𝑧) is the magnetic field, 𝑝𝑡 = 𝑝 + 𝐵2∕2 is the total pressure expressed 
as the sum of the thermal and magnetic pressure, and 𝖨 is the identity matrix. The total energy density is composed by a kinetic, a 
thermal and a magnetic term

E = 1
2
𝜌𝐯2 + 𝑝

Γ − 1
+ 𝐁2

2
, (3)

while Γ is the specific heat ratio for an adiabatic equation of state. On the other hand, the second sub-system consists of the induction 
equation for the evolution of the magnetic field

𝜕𝐁
𝜕𝑡

+ 𝑐∇×𝐄 = 0. (4)

Due to the presence of the curl operator instead of the divergence, the latter equation cannot be considered a simple extension of 
the HD subsystem [19]. Additionally, in the ideal MHD framework, the electric field 𝐄 is a function of the fluid velocity 𝐯 and the 
magnetic field 𝐁

𝑐𝐄 = −𝐯 ×𝐁 , (5)

where 𝑐 is the speed of light.

Analytically, the commutativity of spatial derivatives endows the induction equation with the solenoidal condition for the mag-

netic field

∇ ⋅𝐁 = 0. (6)

This stationary condition, once satisfied at 𝑡 = 0, is analytically preserved at 𝑡 > 0. On the other hand, since numerical derivatives do 
not commute, the condition expressed in Eq. (6) is not automatically fulfilled by numerical schemes, leading to the rising of magnetic 
monopoles which cause unphysical plasma transport and dissipation of momentum and energy in ideal frameworks [48]. For these 
reasons, HD numerical schemes cannot be straightforwardly extended to MHD systems without introducing some corrections to 
numerically constraint Eq. (6) to be satisfied.

Similarly to the MHD case, the ideal RMHD equations can be expressed in the form given by Eq. (1) with

𝑈 =
⎛⎜⎜⎝
𝐷

𝐦
E

⎞⎟⎟⎠ , 𝖥 =
⎛⎜⎜⎝

𝐷𝐯
𝑤𝑡𝛾

2𝐯𝐯− 𝐛𝐛+ 𝖨𝑝𝑡
𝐦

⎞⎟⎟⎠
⊺

, (7)

where 𝐷 = 𝛾𝜌, 𝐦 = (𝜌ℎ𝛾2 + |𝐁|2)𝐯 − (𝐯 ⋅ 𝐁)𝐁, and E = 𝜌ℎ𝛾2 − 𝑝 + |𝐁|2∕2 + (|𝐯|2|𝐁|2 − (𝐯 ⋅ 𝐁)2)∕2 are respectively the relativistic 
2

mass density, momentum density, and energy density, while 𝑤𝑡 = 𝜌ℎ + |𝐁|2∕𝛾2 + (𝐯 ⋅ 𝐁)2 and 𝐛 = 𝐁∕𝛾 + 𝛾(𝐯 ⋅ 𝐁)𝐯. In the previous 
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expressions we introduced the specific enthalpy ℎ, the Lorentz factor 𝛾 = (1 − |𝐯|2)−1∕2 and we set the speed of light 𝑐 to unity. In 
addition, the same induction equation as in the MHD regime needs to be added to Eq. (7), thus requiring the same numerical scheme 
to control the divergence-free condition shown in Eq. (6).

2.1. Notations

We employ a Cartesian coordinate system with unit vectors �̂�𝑥 = (1, 0, 0), �̂�𝑦 = (0, 1, 0), and �̂�𝑧 = (0, 0, 1) and maintain the same 
notation formalism adopted by Mignone & Del Zanna [18]. In each direction the coordinate spacing Δ𝑥, Δ𝑦, and Δ𝑧 is uniform. 
Computational cells are centered at (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) and delimited by the six interfaces orthogonal to the coordinate axis centered, 
respectively, at (𝑥

𝑖± 1
2
, 𝑦𝑗 , 𝑧𝑘), (𝑥𝑖, 𝑦𝑗± 1

2
, 𝑧𝑘), and (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘± 1

2
).

According to Gauss’ theorem, the conserved quantities are evolved as volume averages ⟨𝑈⟩
𝒄

over the cell volume

⟨𝑈⟩
𝒄
≡ 1

Δ𝑥Δ𝑦Δ𝑧 ∫ 𝑈 (𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑥𝑑𝑦𝑑𝑧 , (8)

where the 𝒄 subscript is a shorthand notation for (𝑖, 𝑗, 𝑘), by means of the neat difference of the surface-averaged representation of 
the fluxes at zone interfaces:

𝐹𝑥,𝐱𝑓 ≡ 1
Δ𝑦Δ𝑧 ∫ �̂�𝑥 ⋅ 𝖥

(
𝑈 (𝑥

𝑖+ 1
2
, 𝑦, 𝑧, 𝑡)

)
𝑑𝑦𝑑𝑧 ,

𝐹𝑦,𝐲𝑓 ≡ 1
Δ𝑥Δ𝑧 ∫ �̂�𝑦 ⋅ 𝖥

(
𝑈 (𝑥, 𝑦

𝑗+ 1
2
, 𝑧, 𝑡)

)
𝑑𝑧𝑑𝑥 ,

𝐹𝑧,𝐳𝑓 ≡ 1
Δ𝑥Δ𝑦 ∫ �̂�𝑧 ⋅ 𝖥

(
𝑈 (𝑥, 𝑦, 𝑧

𝑘+ 1
2
, 𝑡)

)
𝑑𝑥𝑑𝑦 .

(9)

In the finite-volume fashion, a semi-discrete method of lines approximates the partial differential equation (PDE) associated with 
Eq. (1), yielding an ordinary differential equation (ODE) in the time variable

𝑑 ⟨𝑈⟩
𝒄

𝑑𝑡
= −

(
𝐹𝑥,𝐱𝑓 − 𝐹𝑥,𝐱𝑓−�̂�𝑥

Δ𝑥
+
𝐹𝑦,𝐲𝑓 − 𝐹𝑦,𝐲𝑓−�̂�𝑦

Δ𝑦
+
𝐹𝑧,𝐳𝑓 − 𝐹𝑧,𝐳𝑓−�̂�𝑧

Δ𝑧

)
. (10)

Eqns. (8)-(10) frame the discretization for zone-centered variables. In constrained transport MHD instead, the magnetic field 
update relies on a discrete version of Stoke’s theorem [49,50,45,5], where the magnetic field is treated as a staggered primary 
variable. In this representation, each component of the magnetic field

�̂�𝑓 ≡
⎛⎜⎜⎜⎝
�̂�
𝑥,𝑖+ 1

2 ,𝑗,𝑘

�̂�
𝑦,𝑖,𝑗+ 1

2 ,𝑘

�̂�
𝑧,𝑖,𝑗,𝑘+ 1

2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
�̂�𝑥,𝐱𝑓
�̂�𝑦,𝐲𝑓
�̂�𝑧,𝐳𝑓

⎞⎟⎟⎟⎠ (11)

is evolved as an area-weighted average on the face orthogonal to the field component. The subscripts 𝐱𝑓 , 𝐲𝑓 and 𝐳𝑓 identify the 
location of the faces, i.e., 𝐱𝑓 ≡ (𝑖 + 1

2 , 𝑗, 𝑘), 𝐲𝑓 ≡ (𝑖, 𝑗 + 1
2 , 𝑘), and 𝐳𝑓 ≡ (𝑖, 𝑗, 𝑘 + 1

2 ).
Furthermore, Eq. (4) prescribes that the variation in time of the magnetic flux is equal to the line integral of the electric field �̄�𝑒

over zone edges, namely, the electromotive force (EMF)

�̄�𝑒 ≡
⎛⎜⎜⎜⎝
�̄�
𝑥,𝑖,𝑗+ 1

2 ,𝑘+
1
2

�̄�
𝑦,𝑖+ 1

2 ,𝑗,𝑘+
1
2

�̄�
𝑧,𝑖+ 1

2 ,𝑗+
1
2 ,𝑘

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎝
�̄�𝑥,𝐱𝑒
�̄�𝑦,𝐲𝑒
�̄�𝑧,𝐳𝑒

⎞⎟⎟⎠ , (12)

where:

�̄�𝑥,𝐱𝑒 ≡ 1
Δ𝑥 ∫ 𝐸𝑥(𝑥, 𝑦𝑗+ 1

2
, 𝑧
𝑘+ 1

2
, 𝑡)𝑑𝑥 ,

�̄�𝑦,𝐲𝑒 ≡ 1
Δ𝑦 ∫ 𝐸𝑦(𝑥𝑖+ 1

2
, 𝑦, 𝑧

𝑘+ 1
2
, 𝑡)𝑑𝑦 ,

�̄�𝑧,𝐳𝑒 ≡ 1
Δ𝑧 ∫ 𝐸𝑧(𝑥𝑖+ 1

2
, 𝑦
𝑗+ 1

2
, 𝑧, 𝑡)𝑑𝑧 .

(13)

Similarly to the magnetic field, the edge-centered electric field positions are labeled as 𝐱𝑒 ≡ (𝑖, 𝑗 + 1
2 , 𝑘 +

1
2 ), 𝐲𝑒 ≡ (𝑖 + 1

2 , 𝑗, 𝑘 +
1
2 ), and 
3

𝐳𝑒 ≡ (𝑖 + 1
2 , 𝑗 +

1
2 , 𝑘). Given all these elements, it is possible to retrieve the discretized version of Stokes theorem
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𝑑�̂�𝑥,𝐱𝑓
𝑑𝑡

= −

(
�̄�𝑧,𝐳𝑒 − �̄�𝑧,𝐳𝑒−�̂�𝑦

Δ𝑦
−
�̄�𝑦,𝐲𝑒 − �̄�𝑦,𝐲𝑒−�̂�𝑧

Δ𝑧

)
,

𝑑�̂�𝑦,𝐲𝑓
𝑑𝑡

= −

(
�̄�𝑥,𝐱𝑒 − �̄�𝑥,𝐱𝑒−�̂�𝑧

Δ𝑧
−
�̄�𝑧,𝐳𝑒 − �̄�𝑧,𝐳𝑒−�̂�𝑥

Δ𝑥

)
,

𝑑�̂�𝑧,𝐳𝑓
𝑑𝑡

= −

(
�̄�𝑦,𝐲𝑒 − �̄�𝑦,𝐲𝑒−�̂�𝑥

Δ𝑥
−
�̄�𝑥,𝐱𝑒 − �̄�𝑥,𝐱𝑒−�̂�𝑦

Δ𝑦

)
,

(14)

where we set 𝑐 = 1, thus verifying

𝑑

𝑑𝑡

(
�̂�𝑥,𝐱𝑓 − �̂�𝑥,𝐱𝑓−�̂�𝑥

Δ𝑥
+
�̂�𝑦,𝐲𝑓 − �̂�𝑦,𝐲𝑓−�̂�𝑦

Δ𝑦
+
�̂�𝑧,𝐳𝑓 − �̂�𝑧,𝐳𝑓−�̂�𝑧

Δ𝑧

)
= 0 , (15)

which is valid exactly and guaranties the fulfillment of the solenoidal condition for an initially divergence-free magnetic field. 
Notice that no approximation has been made in the treatment so far. To summarize our notation convention, given the generic 
physical quantity 𝑄 we indicate with ⟨𝑄⟩

𝒄
its volume average. We use �̂�𝐱𝑓 ,𝐲𝑓 ,𝐳𝑓 and �̄�𝐱𝑒,𝐲𝑒,𝐳𝑒 to refer to the face and edge averages, 

respectively. Similarly, the notations 𝑄
𝒄
, 𝑄𝐱𝑓 ,𝐲𝑓 ,𝐳𝑓 , and 𝑄𝐱𝑒,𝐲𝑒,𝐳𝑒 refer to the pointwise values at the center of the cell, face, and edge, 

respectively.

3. The 𝟒𝐭𝐡-order accurate method

In this section we introduce the main features of our 4th-order accurate numerical scheme. Finite volume Godunov-type methods 
evolve the cell-averaged conservative variables (e.g., ⟨𝑈⟩

𝒄
= {⟨𝜌⟩

𝒄
, ⟨𝜌𝐯⟩

𝒄
, ⟨E⟩

𝒄
}, while the representation of 𝐁 depends on the choice 

of the algorithm chosen to control the solenoidal condition and may be either a cell-centered or a staggered quantity) and typically 
consist of three main stages: a reconstruction step at cell faces, flux computation at zone interfaces via Riemann solvers, and time 
integration. At 2nd-order accuracy, point values can be interchanged with volume or surface averages, so that the transformation 
between conservative and primitive variables (e.g., 𝑉𝑐 = {𝜌, 𝐯, 𝑝} same arguments as before hold for 𝐁) can be simply defined as 
𝑉
𝒄
≈ ⟨𝑉 ⟩

𝒄
≈ (⟨𝑈⟩

𝒄
). This property, however, does no longer hold for higher order schemes, where one has to distinguish the 

cell-centered point value from its volume average and, likewise, the face-centered flux from its surface average. On top of that, 
one-dimensional FV reconstruction schemes have to be reformulated in order to obtain 4th-order accurate left and right states at 
zone interfaces. These states are best obtained using primitive or characteristic variables in order to avoid unwanted numerical 
oscillations. These steps are described in the following sections.

3.1. Point value recovery of primitive variables

Before reconstruction of primitive variables can take place, their values must become available at cell centers. Since conservative 
schemes evolve the volume average of conservative quantities ⟨𝑄⟩

𝒄
, their local point value 𝑄

𝒄
has to be obtained first. To 4th-order 

accuracy, point values can be retrieved from cell averages using the relation

𝑄
𝒄
= ⟨𝑄⟩

𝒄
−

Δ ⟨𝑄⟩
𝒄

24
+𝑂(ℎ4) , (16)

and conversely

⟨𝑄⟩
𝒄
=𝑄

𝒄
+

Δ𝑄
𝒄

24
+𝑂(ℎ4) , (17)

where Eq. (17) is effectively a high-order Simpson-like quadrature rule. In Eqns. (16) and (17) 𝑄 is a component of 𝑈
𝒄
, while Δ is 

the Laplacian operator first introduced in the context of high-order methods by McCorquodale & Colella [28], i.e.

Δ𝑄
𝒄
≡Δ𝑥𝑄

𝒄
+Δ𝑦𝑄

𝒄
+Δ𝑧𝑄

𝒄
, (18)

with components given by:

Δ𝑥𝑄
𝒄
≡ (

𝑄
𝒄−�̂�𝑥 − 2𝑄

𝒄
+𝑄

𝒄+�̂�𝑥

)
, Δ𝑦𝑄

𝒄
≡ (

𝑄
𝒄−�̂�𝑦 − 2𝑄

𝒄
+𝑄

𝒄+�̂�𝑦

)
, Δ𝑧𝑄

𝒄
≡ (

𝑄
𝒄−�̂�𝑧 − 2𝑄

𝒄
+𝑄

𝒄+�̂�𝑧

)
. (19)

The interested reader may refer to Appendix A for a full derivation of Eqns. (16) and (17).

Similarly, high-order transformations need to be applied also in the conversion between point values and face- or edge-averaged 
quantities, by means of the corresponding 2D or 1D operators. At zone faces, for instance, we use transverse Laplacian operators 
defined by:

Δ𝑥
⊥
𝑄𝐱𝑓 =Δ𝑦𝑄𝐱𝑓 +Δ𝑧𝑄𝐱𝑓 , Δ𝑦

⊥
𝑄𝐲𝑓 =Δ𝑥𝑄𝐲𝑓 +Δ𝑧𝑄𝐲𝑓 , Δ𝑧

⊥
𝑄𝐳𝑓 =Δ𝑥𝑄𝐳𝑓 +Δ𝑦𝑄𝐳𝑓 . (20)
4

This is employed, for example, to recover the face-centered point value of the magnetic field from its surface average:
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𝐵𝑥,𝐱𝑓 = �̂�𝑥,𝐱𝑓 −
Δ𝑥
⊥
�̂�𝑥,𝐱𝑓
24

, 𝐵𝑦,𝐲𝑓 = �̂�𝑦,𝐲𝑓 −
Δ𝑦
⊥
�̂�𝑦,𝐲𝑓
24

, 𝐵𝑧,𝐳𝑓 = �̂�𝑧,𝐳𝑓 −
Δ𝑧
⊥
�̂�𝑧,𝐳𝑓
24

. (21)

Following Felker & Stone [36], the pointwise value of the magnetic field at the cell center is obtained using an unlimited high-order 
interpolation, i.e.:

𝐵𝑥,𝑐 = − 1
16

(𝐵𝑥,𝐱𝑓+�̂�𝑥 +𝐵𝑥,𝐱𝑓−2�̂�𝑥 ) +
9
16

(𝐵𝑥,𝐱𝑓 +𝐵𝑥,𝐱𝑓−�̂�𝑥 ) ,

𝐵𝑦,𝑐 = − 1
16

(𝐵𝑦,𝐲𝑓+�̂�𝑦 +𝐵𝑦,𝐲𝑓−2�̂�𝑦 ) +
9
16

(𝐵𝑦,𝐲𝑓 +𝐵𝑦,𝐲𝑓−�̂�𝑦 ) ,

𝐵𝑧,𝑐 = − 1
16

(𝐵𝑧,𝐳𝑓+�̂�𝑧 +𝐵𝑧,𝐳𝑓−2�̂�𝑧 ) +
9
16

(𝐵𝑧,𝐳𝑓 +𝐵𝑧,𝐳𝑓−�̂�𝑧 ) .

(22)

Once the pointwise values of the conservative variables are obtained by means of Eqns. (16) and (22), the conversion to primitive 
variables takes place.

3.2. The pointwise MP5 and WENOZ spatial reconstruction algorithms

Here we introduce for the first time in a FV framework, to the extent of our knowledge, reconstruction schemes that operate 
directly on the function point values rather than on one-dimensional average quantities as traditionally done by previous investiga-

tions (see, e.g., [40,39,51,28,31,37]). Compared to other FV 4th-order methods, such as the one proposed by Felker & Stone [36], 
we do not need to convert the average value ⟨𝑈⟩

𝒄
into the mapped value (⟨𝑈

𝒄
⟩), nor to compute from it the average value ⟨𝑉 ⟩

𝒄

before reconstructing, thus resulting in a more efficient and cost-effective scheme. In addition, the advantages of a point value recon-

struction include that left and right states after reconstruction can be directly fed into the Riemann solver, avoiding the computation 
of interface-averaged Riemann problems. A similar feature can also be found in the scheme presented by Núñez-de La Rosa & Munz 
[34], as they reconstruct point values of the conservative quantities at the interfaces starting from cell-averaged values via a multi-

dimensional Gaussian quadrature rule [51]. However, the approach from Núñez-de La Rosa & Munz is meant to reconstruct either 
conservative or characteristic quantities (whose volume-averaged values are the only available at the beginning of the integration 
step), while in our implementation we can either reconstruct primitive or characteristic variables (which in both approaches increase 
the stability of the scheme). More importantly, the high-order reconstruction based on the approach by [51] leads to a number of 
Riemann problems at each cell’s interface equal to the number of Gaussian points used during the integration (e.g. 4 in the case of 
a three-dimensional domain when using 2 Gaussian points). Our scheme, on the other hand, always produces one Riemann problem 
per cell’s interface.

The monotonicity preserving (MP5) scheme of Suresh & Huynh [39] provides a 5th-order accurate polynomial reconstruction at 
cell faces and, when necessary, limits the reconstructed value to preserve monotonicity near discontinuities while ensuring accuracy 
in smooth regions. While in the original formulation the unlimited interface value is retrieved by one-dimensional cell averages, our 
scheme replaces its definition by using point values in the same fashion as FD schemes (see, e.g., Appendix A.2 of Del Zanna et al. 
[20] for a brief summary). The unlimited value at 𝑖 + 1

2 is now given by

𝑃 (𝑥)|
𝑖+ 1

2
≡ 𝑉 𝐿

𝑖+ 1
2
= 1

128
(
3𝑉𝑖−2 − 20𝑉𝑖−1 + 90𝑉𝑖 + 60𝑉𝑖+1 − 5𝑉𝑖+2

)
. (23)

where {𝑉𝑖±2, 𝑉𝑖±1, 𝑉𝑖} are now primitive quantities evaluated at cell-centers. The scheme employs, as in the original case, a five-

point stencil in order to distinguish between local extrema and a genuine O(1) discontinuity. The MP5 limiting procedure remains 
unchanged as monotonicity-preserving bounds are equally well expressed in terms of point values. We refer the reader to the original 
work of Suresh & Huynh [39] or to Appendix 2 of Del Zanna et al. [20].

Likewise, we also introduce a pointwise version of the 5th-order weighted essentially non-oscillatory (WENO, [40]) scheme in 
the version proposed by Borges et al. (WENOZ, [41]), which attains better spatial resolution with reduced numerical dissipation at 
a modest computational cost. The same interface value of Eq. (23) at 𝑥 = 𝑥

𝑖+ 1
2

is computed as the convex combination of 3rd-order 
accurate interface values built on the three possible three-point sub-stencils {𝑖 − 2, 𝑖 − 1, 𝑖}, {𝑖 − 1, 𝑖, 𝑖 + 1}, and {𝑖, 𝑖 + 1, 𝑖 + 2}, i.e.

𝑉 𝐿
𝑖+ 1

2
= 𝜔0

3𝑉𝑖−2 − 10𝑉𝑖−1 + 15𝑉𝑖
8

+𝜔1
−𝑉𝑖−1 + 6𝑉𝑖 + 3𝑉𝑖+1

8
+𝜔2

3𝑉𝑖 + 6𝑉𝑖+1 − 𝑉𝑖+2
8

, (24)

where, again, {𝑉𝑖±2, 𝑉𝑖±1, 𝑉𝑖} are point values. The weights 𝜔𝑙 , for 𝑙 = {0, 1, 2}, are defined as

𝜔𝑙 =
𝛼𝑙∑
𝑚 𝛼𝑚

, 𝛼𝑙 = 𝑑𝑙
(
1 +

|𝛽0 − 𝛽2|
𝛽𝑙 + 𝜀

)
. (25)

Here 𝑑𝑙 denotes the optimal weights that reckon the 5th-order accurate approximation of Eq. (23), while 𝜀 = 10−40 is a small number 
which avoids division by zero. In our new framework, the optimal weights {𝑑0 = 1∕16, 𝑑1 = 5∕8, 𝑑2 = 5∕16} can be determined from 
the uniqueness of the interpolating polynomial with 𝑑0 + 𝑑1 + 𝑑2 = 1. On the other hand, the smoothness indicators 𝛽𝑙 estimate the 
regularity of the polynomial approximation and, for a reconstruction based on point values, have been found to be the same as in 
5

Borges [41]:



Journal of Computational Physics 499 (2024) 112701V. Berta, A. Mignone, M. Bugli et al.

𝛽0 =
13
12

(𝑉𝑖−2 − 2𝑉𝑖−1 + 𝑉𝑖)2 +
1
4
(𝑉𝑖−2 − 4𝑉𝑖−1 + 3𝑉𝑖)2 ,

𝛽1 =
13
12

(𝑉𝑖−1 − 2𝑉𝑖 + 𝑉𝑖+1)2 +
1
4
(𝑉𝑖−1 − 𝑉𝑖+1)2 ,

𝛽2 =
13
12

(𝑉𝑖 − 2𝑉𝑖+1 + 𝑉𝑖+2)2 +
1
4
(3𝑉𝑖 − 4𝑉𝑖+1 + 𝑉𝑖+2)2 .

(26)

Note that the right state, 𝑉 𝑅
𝑖− 1

2

, is obtained similarly by reversing the index order (e.g. 𝑖 − 1 → 𝑖 + 1, etc).

We will also occasionally employ the 3rd-order WENO scheme (here denoted as WENO3) [40] in the improved version of Yamaleev 
& Carpenter [52]. The point value approach leads to the following expression for the left interface value

𝑉 𝐿
𝑖+ 1

2
= 𝜔0

𝑉𝑖+1 + 𝑉𝑖
2

+𝜔1
−𝑉𝑖+1 + 3𝑉𝑖

2
, (27)

where the weights are given by:

𝜔𝑙 =
𝛼𝑙

𝛼0 + 𝛼1
, 𝛼𝑙 = 𝑑𝑙

⎛⎜⎜⎝1 +
|Δ
𝑖+ 1

2
− Δ

𝑖− 1
2
|2

𝛽𝑙 + 𝜀

⎞⎟⎟⎠ , 𝛽0 = Δ2
𝑖− 1

2
, 𝛽1 = Δ2

𝑖+ 1
2
, (28)

with 𝑙 = {0, 1}. In Eq. (28), Δ
𝑖+ 1

2
= (𝑉𝑖+1 − 𝑉𝑖) whereas {𝑑0 = 3∕4, 𝑑1 = 1∕4} (note that in the standard finite volume formulation, 

starting from 1D cell averages, one has 𝑑0 = 2∕3, 𝑑1 = 1∕3). Finally, in order to avoid loss of accuracy at critical points (see [52] and 
[15]) we adopt here 𝜀 =Δ𝑥2.

3.3. Flux computation and temporal integration

Spatial reconstruction provides the 4th-order accurate pointwise values for left/right states at a given face center (e.g. 𝑉 𝐿𝐱𝑓 , 𝑉 𝑅𝐱𝑓 ). 
These serve as input states to the Riemann solver for the computation of the high-order interface fluxes. Our implementation comes 
with a variety of Riemann solvers, such as the linearized Roe solver [53], HLL-type Riemann solvers [54], including the HLLC 
[55,56,11] and HLLD [57,58], the Lax-Friedrichs [59], and the GFORCE [60] solver. Denoting with 𝑥,𝑦,𝑧(⋅, ⋅) a generic 1-D Riemann 
solver along the {𝑥, 𝑦, 𝑧} direction, the interface upwind punctual fluxes are obtained as:

𝐹𝑥,𝐱𝑓 = 𝑥(𝑉 𝐿𝐱𝑓 , 𝑉 𝑅𝐱𝑓 ) , 𝐹𝑦,𝐱𝑓 = 𝑦(𝑉 𝐿𝐲𝑓 , 𝑉 𝑅𝐲𝑓 ) , 𝐹𝑧,𝐱𝑓 = 𝑧(𝑉 𝐿𝐳𝑓 , 𝑉 𝑅𝐳𝑓 ) . (29)

4th-order accurate surface averages are then obtained by the quadrature rule in Eq. (17) using the transverse Laplacian operators:

𝐹𝑥,𝐱𝑓 = 𝐹𝑥,𝐱𝑓 +
Δ𝑥
⊥
𝐹𝑥,𝐱𝑓
24

, 𝐹𝑦,𝐲𝑓 = 𝐹𝑦,𝐱𝑓 +
Δ𝑦
⊥
𝐹𝑦,𝐱𝑓
24

, 𝐹𝑧,𝐳𝑓 = 𝐹𝑧,𝐱𝑓 +
Δ𝑧
⊥
𝐹𝑧,𝐱𝑓
24

. (30)

Note that this requires an additional integration in the first layer of ghost zones in order to retrieve the flux information. Moreover, 
thanks to the deployment of point value reconstructions, we do not need to solve a Riemann problem with interface-averaged 
primitive states as it is instead done by Felker & Stone (Eq. 17 in [36]).

These fluxes are used to build the right-hand side of Eq. (10) which will be hereafter denoted with (𝑈 ). Our numerical scheme 
employs the five stage 4th-order explicit Strong Stability Preserving Runge-Kutta method (eSSPRK(5,4), [43,44]) to discretize Eq. (10)

𝑈 (1) = 𝑈𝑛 + 0.391752226571890Δ𝑡(𝑈𝑛)
𝑈 (2) = 0.444370493651235𝑈𝑛 + 0.555629506348765𝑈 (1) + 0.368410593050371Δ𝑡(𝑈 (1))
𝑈 (3) = 0.620101851488403𝑈𝑛 + 0.379898148511597𝑈 (2) + 0.251891774271694Δ𝑡(𝑈 (2))
𝑈 (4) = 0.178079954393132𝑈𝑛 + 0.821920045606868𝑈 (3) + 0.544974750228521Δ𝑡(𝑈 (3))
𝑈𝑛+1 = 0.517231671970585𝑈 (2) + 0.096059710526147𝑈 (3) + 0.063692468666290Δ𝑡(𝑈 (3))

+0.386708617503268𝑈 (4) + 0.226007483236906Δ𝑡(𝑈 (4)) .

(31)

The eSSPRK(5,4) method is strongly stable (namely, no bounded temporal growth is allowed: ‖𝑈𝑛+1‖ ≤ ‖𝑈𝑛‖) under the assumption 
that the forward Euler method employed is strongly stable under the Courant-Friedrichs-Levy (CFL) restriction (‖𝑈𝑛 +Δ𝑡(𝑈𝑛)‖ ≤‖𝑈𝑛‖, [61,62]). In our implementation, the CFL condition determines the time step according to

Δ𝑡 = min
𝑖𝑗𝑘

[
min
𝑑

(
Δ𝑥𝑑|𝜆𝑑max|

)]
(32)

where  is the CFL number, 𝜆𝑑max is the outermost fast magnetotosonic wave and Δ𝑥𝑑 is the cell length through the different directions 
𝑑.
6

For a detailed description of the stability properties of the method we refer the reader to [62,44,63–65].
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3.4. Order reduction in the presence of discontinuities

The recovery of point values from volume averages follows the assumption that the function 𝑄 is locally continuous up to the 3rd
derivative in its expansion. However, this assumption manifestly breaks down in the immediate neighbor of a discontinuity, where 
using Eq. (16) may easily produce unphysical values such as negative energies or densities. In order to address this shortcoming, we 
modify the recovery of pointwise conservative variables at the beginning of any integration stage by modifying Eq. (16) as

𝑈
𝒄
= ⟨𝑈⟩

𝒄
− 𝜃

𝒄

Δ ⟨𝑈⟩
𝒄

24
+𝑂(ℎ4) , (33)

where 𝜃
𝒄

has been introduced to detect the presence of a discontinuity

𝜃
𝒄
=

{
1 if 𝜂

𝒄
< 𝜂𝑑 ,

0 otherwise . (34)

The parameter 𝜂
𝒄

is defined as 𝜂
𝒄
=

√
𝜂2
𝒄,𝑥

+ 𝜂2
𝒄,𝑦

+ 𝜂2
𝒄,𝑧

, while 𝜂𝑑 is a threshold parameter. When 𝜃
𝒄
= 0 in Eq. (33), the local order of 

the scheme is reduced in proximity of discontinuous fronts, including avoiding the integration of fluxes (Eq. (30)). In these regions, 
we further increase the robustness of the scheme by also lowering the order of the reconstruction scheme by switching to the 3rd-order 
WENO scheme (see end of §3.2) or to piecewise linear reconstruction. This approach (known as the “fallback”) has been employed, 
in a similar fashion, also by [34] in the context of high-order schemes. We now propose two different discontinuity detectors in order 
to evaluate 𝜂

𝒄
.

The first one is based on Jameson’s pressure-based shock sensor [66]

𝜂
𝒄,𝑥 =

⟨𝑄⟩
𝒄+�̂�𝑥 − 2 ⟨𝑄⟩

𝒄
+ ⟨𝑄⟩

𝒄−�̂�𝑥| ⟨𝑄⟩
𝒄+�̂�𝑥 |+ 2| ⟨𝑄⟩

𝒄
|+ | ⟨𝑄⟩

𝒄−�̂�𝑥 |+ 𝜀 , (35)

(similar expressions hold for 𝜂
𝒄,𝑦 and 𝜂

𝒄,𝑧) where 𝜀 is a small number to prevent negligible variations from triggering the switch. 
Eq. (35) is first evaluated with ⟨𝑄⟩ being the volume-averaged density, pressure, and magnetic pressure and the maximum over these 
three values is finally considered. Jameson’s switch has the advantage of keeping the stencil compact (no additional ghost zones are 
needed), albeit three zones may not be sufficient to distinguish a discontinuity from a smooth extremum [39].

The second discontinuity sensor that we propose employs a derivatives ratio that attempts to identify high-frequency oscillations 
which typically arise near a discontinuous front. Since high wave-number Fourier modes will not be dumped around these critical 
points, we expect the contribution of higher order derivatives to be non-negligible. To this end, we first evaluate the normalized 
contribution of odd and even modes separately by evaluating the parameters 𝜂𝑜

𝒄
and 𝜂𝑒

𝒄

𝜂𝑜
𝒄
=

|𝛿(3) ⟨𝑄⟩
𝒄
|| ⟨𝑄⟩

𝒄,ref |+ |𝛿(1) ⟨𝑄⟩
𝒄
|+ |𝛿(3) ⟨𝑄⟩

𝒄
|+ 𝜀 , 𝜂𝑒

𝒄
=

|𝛿(4) ⟨𝑄⟩
𝒄
|| ⟨𝑄⟩

𝒄,ref |+ |𝛿(2) ⟨𝑄⟩
𝒄
|+ |𝛿(4) ⟨𝑄⟩

𝒄
|+ 𝜀 , (36)

where 𝛿(𝑚)𝑄
𝒄

(with 𝑚 = 1, .., 4) are undivided 2nd-order accurate approximations to the 𝑚-th derivative. In the 𝑥-direction, for 
instance:

𝛿(1) ⟨𝑄⟩
𝒄

= 1
2

(⟨𝑄⟩
𝒄+�̂�𝑥 − ⟨𝑄⟩

𝒄−�̂�𝑥

)
,

𝛿(2) ⟨𝑄⟩
𝒄

= ⟨𝑄⟩
𝒄+�̂�𝑥 − 2 ⟨𝑄⟩

𝒄
+ ⟨𝑄⟩

𝒄−�̂�𝑥 ,

𝛿(3) ⟨𝑄⟩
𝒄

= 1
2

(⟨𝑄⟩𝑖+2�̂�𝑥 − 2(⟨𝑄⟩
𝒄+�̂�𝑥 − 2 ⟨𝑄⟩

𝒄−�̂�𝑥 ) − ⟨𝑄⟩
𝒄−2�̂�𝑥

)
,

𝛿(4) ⟨𝑄⟩
𝒄

= ⟨𝑄⟩
𝒄+2�̂�𝑥 − 4 ⟨𝑄⟩

𝒄+�̂�𝑥 + 6 ⟨𝑄⟩
𝒄
− 4 ⟨𝑄⟩

𝒄−�̂�𝑥 + ⟨𝑄⟩
𝒄−2�̂�𝑥 .

(37)

In our experience, using primitive variables has shown to yield a more robust identification method. For this reason, we take ⟨𝑄⟩
𝒄
= (⟨𝑈⟩

𝒄
) at the beginning of the Runge-Kutta stage. The reference value ⟨𝑄⟩

𝒄,ref in Eq. (36) is equal to ⟨𝑄⟩
𝒄

for density and 
pressure while we employ 

√
𝑝
𝒄
∕𝜌

𝒄
(isothermal sound speed) for velocity components and |𝐵|

𝒄
for magnetic field components. Once 

𝜂𝑜
𝒄

and 𝜂𝑒
𝒄

have been computed, we simply take the maximum of the two: 𝜂
𝒄
=max(𝜂𝑜

𝒄
, 𝜂𝑒

𝒄
).

The derivative ratio detector needs a larger stencil thereby asking for one additional ghost zone. Along the same arguments, a 
more sophisticated approach that requires an even larger stencil, is shown by Bambozzi & Pires [67].

4. The 𝟒𝐭𝐡-order constrained transport

As we outlined in §2, the HD sub-system cannot be straightforwardly extended to the MHD system without introducing numerical 
strategies to control the rising of spurious magnetic monopoles. Failure to fulfill this requisite may lead to unphysical effects such 
as plasma acceleration parallel to the field, incorrect jump conditions, wrong propagation speed of discontinuities and odd-even 
decoupling [48,6,5]. In what follows we employ the upwind constrained transport method [45,3,5,46,47,18] in order to ensure that 
the divergence-free condition is maintained to machine accuracy.

In the FV-CT formalism the field’s surface integrals �̂�𝑥,𝐱𝑓 , �̂�𝑦,𝐲𝑓 , �̂�𝑧,𝐳𝑓 are the primary representation of the magnetic field evolved 
7

in time. Eq. (4) regulates the time variation of the magnetic field fluxes, implying that the formal correspondence
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Fig. 1. Left: positioning of MHD variables in the UCT formalism. Staggered magnetic field components (blue) are face-centered, the electromotive force is edge-

centered (red) while remaining HD quantities are located at the zone center (green). Right: top view of the intersection between four neighbor zones: N, S, E, and 
W indicate the four cardinal directions with respect to the zone edge (here represented by the intersection between four neighbor zones), R𝑥(𝐹𝐲𝑓 ) and R𝑦(𝐹𝐱𝑓 ) are 
1-D reconstruction operators applied to each zone face, see Eq. (38). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

𝐹
[𝐵𝑥]
𝑥 = 0 , 𝐹

[𝐵𝑥]
𝑦 =𝐸𝑧 , 𝐹

[𝐵𝑥]
𝑧 = −𝐸𝑦 ,

𝐹
[𝐵𝑦]
𝑥 = −𝐸𝑧 , 𝐹

[𝐵𝑦]
𝑦 = 0 , 𝐹

[𝐵𝑦]
𝑧 =𝐸𝑥 ,

𝐹
[𝐵𝑧]
𝑥 =𝐸𝑦 , 𝐹

[𝐵𝑧]
𝑦 = −𝐸𝑥 , 𝐹

[𝐵𝑧]
𝑧 = 0 ,

(38)

holds when solving a Riemann problem. While this certainly holds for the fluxes computed at the face midpoint, Eq. (14) requires 
the EMF to become available at a zone edge to serve as a discrete version of Stokes theorem. In order to reconstruct the induction 
fluxes from the face center (where they are available as point values) to one of the four adjacent edges, we employ the UCT method 
of Mignone & Del Zanna [18]. This method provides a general formalism for systematic construction of EMF averaging procedures 
where dissipation terms depend on the left and right transverse magnetic field components.

Referring to the right panel of Fig. 1 and being consistent with the notation presented in Mignone & Del Zanna [18], we consider 
a top view of the intersection of four zones at a cell-edge. We denote, respectively, the left and right reconstructed states along the 
y-coordinate as south (S) and north (N), while on the x-direction the reconstructed states are labeled with west (W) or east (E) with 
respect to the intersection point. The edge-centered EMF with the desired upwind properties can be build up from

𝐸𝑧,𝐳𝑒 = −
[(
𝑎𝑥𝑣𝑥𝐵𝑦

)𝑊 +
(
𝑎𝑥𝑣𝑥𝐵𝑦

)𝐸]
+

[(
𝑎𝑦𝑣𝑦𝐵𝑥

)𝑁 +
(
𝑎𝑦𝑣𝑦𝐵𝑥

)𝑆]+ [(
𝑑𝑥𝐵𝑦

)𝐸 −
(
𝑑𝑥𝐵𝑦

)𝑊 ]
−

[(
𝑑𝑦𝐵𝑥

)𝑁 −
(
𝑑𝑦𝐵𝑥

)𝑆]
, (39)

where 𝑣𝑥,𝑦 are the transverse velocities reconstructed from the interfaces, 𝑎𝑥,𝑦 and 𝑑𝑥,𝑦 are the flux and diffusion coefficients, and 
𝐵𝑥,𝑦 are the pointwise values of the magnetic field reconstructed from the corresponding interface. The other EMF components may 
be obtained by cyclic permutations. For the sake of briefness, we address the reader to find all the details of the different EMF 
averaging techniques that we employ in the present work in Mignone & Del Zanna [18]. Note that the employment of point value 
reconstruction methods (rather than 1D volume average-based ones) requires the electric field to be evaluated over 3 layers of ghost 
zones in the transverse direction rather than 4.

Finally, the line-averaged integrated electric field is computed as

�̄�𝑥,𝐱𝑒 =𝐸𝑥,𝐱𝑒 +
Δ𝑥𝐸𝑥,𝐱𝑒

24
, �̄�𝑦,𝐲𝑒 =𝐸𝑦,𝐲𝑒 +

Δ𝑦𝐸𝑦,𝐲𝑒
24

, �̄�𝑧,𝐳𝑒 =𝐸𝑧,𝐳𝑒 +
Δ𝑧𝐸𝑧,𝐳𝑒

24
, (40)

and then employed to update the staggered magnetic field components using the discrete version of Stoke’s theorem Eq. (14).

In the following we recap the steps of our 4th-order numerical scheme.

1. Start with the volume average of conserved quantities ⟨𝑈⟩
𝒄

and the face average of the staggered magnetic field components, 
�̂�𝑥
𝑥,𝐱𝑓

, �̂�𝑦𝑦,𝐲𝑓 , �̂�𝑧
𝑧,𝐳𝑓

.

2. Assign boundary conditions to these variables.

3. Obtain volume-averaged primitive variables by converting the volume averages ⟨𝑉 ⟩𝑐 = (⟨𝑈⟩
𝒄
). Notice that this array is 2nd-

order accurate and it is only used in the limiting process, thus it does not replace the pointwise conversion later on.

4. Evaluate the 𝜃
𝒄

parameter for order reduction in presence of discontinuities by means of either the Jameson’s shock sensor 
(Eq. (35)) or by weighing up the contribution of higher-order derivatives (Eq. (36)) and flag troubled cells along with first 
8

neighbors.
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Fig. 2. Primitive variable profiles for the 3D rotated MHD shock tube problem at 𝑡𝑓 = 𝑡′𝑓 cos𝛼 cos 𝛾 , where 𝑡′
𝑓
= 0.2 obtained with the WENOZ 4th-order scheme (red 

squares) on a uniform grid of 768 × 8 ×8 zones. All the variables are plotted along the non-rotated direction 𝑥′ . On the left panels density (top) and pressure (bottom) 
are shown, while in the remaining panels, the three components of velocity (top) and magnetic field (bottom) are plotted. The black solid lines represent a reference 
1D solution computed by employing a 2nd-order scheme with a resolution of 𝑁𝑥 = 16384 grid points.

5. Get pointwise value 𝑈
𝒄

(Eq. (33)) at the cell center and 𝐵𝐱𝑓 , 𝐵𝐲𝑓 , 𝐵𝐳𝑓 (Eq. (21)) at the corresponding face centers. Also, during 
this step, interpolate the magnetic field from the face center to the cell center (Eq. (22)).

6. Convert pointwise conservative variables 𝑈
𝒄

in primitive variables 𝑉
𝒄
= (𝑈

𝒄
).

7. Reconstruct L/R interface values (Eq. (23) or (24)) in primitive (or characteristic) variables.

8. Obtain upwind fluxes of hydro quantities (Eq. (29)) and average them over the corresponding faces (Eq. (30)). Concurrently, 
store the transverse velocities (e.g., 𝑣𝑦 and 𝑣𝑧 at an 𝑥-interface) as well as the coefficients 𝑎𝐿∕𝑅 and 𝑑𝐿∕𝑅 available with the 
chosen Riemann solver at a zone interface. These quantities are needed in the next step of the UCT scheme. For completeness 
we report the explicit form of these coefficients in Appendix B.

9. Reconstruct the transverse velocities obtained with the 1D Riemann solver and the normal components of the magnetic field 
from the face centers to the edges. This will yield the 𝑁, 𝑆 and 𝑊 , 𝐸 values in Eq. (39). At an 𝑥-interface, for instance, one has 
to reconstruct 𝑣𝑦,𝐱𝑓 and 𝐵𝑥,𝐱𝑓 along the 𝑦-direction, and then, again, 𝑣𝑧,𝐱𝑓 and 𝐵𝑥,𝐱𝑓 along the 𝑧-direction.

10. Obtain the electric field at corners (Eq. (39)) by means of different averaging procedures (see Appendix B).

11. Line-average the electric field according to Eq. (40).

12. Add all contributions to the right-hand side and obtain the solution ⟨𝑈⟩
𝒄

at the next time level or RK stage (Eq. (31)).

5. Numerical benchmarks

We now test the capabilities of the novel method in a series of 2D and 3D numerical benchmarks. Each test is validated twice, 
by solving for the MHD and the RMHD case. As a reference, we will compare our results against the traditional 2nd- or 3rd-order 
schemes. As a default, Eq. (10) will be discretized by the 2nd-, 3rd-, or 4th-order schemes by means of a RK2, RK3, or RK4 time 
integrator. The WENOZ and MP5 spatial reconstructions will always use point values and, otherwise differently stated, each MHD 
and RMHD benchmark will employ, respectively, a HLLD solver coupled with the UCT-HLLD EMF average, and the GFORCE solver 
plus the UCT-GFORCE average that we suitably extended to relativistic frameworks.

Whenever the initial condition is a smooth analytic function our scheme integrates it by means of a Gaussian quadrature rule 
employing 4 Gaussian points.

We evaluate 𝐿1 norm errors for a generic quantity 𝑄 against a reference solution 𝑄ref as 𝜀1(𝑄) =
∑
𝑖 |𝑄(𝑥𝑖) −𝑄ref (𝑥𝑖)|∕𝑁 , where 

𝑥𝑖 is a generic point of the domain and 𝑁 is the total number of grid zones. The convergence rate 𝑂𝐿1
is thus calculated via a linear 

fit of log(𝜀1) against log(𝑁𝑥), with 𝑁𝑥 being the linear resolution.

All computations have been carried out by means of the PLUTO astrophysical code [68,69], where the 4th-order method has been 
implemented.

5.1. 3D rotated shock tube

We begin this section by considering a 3D rotated version of a standard shock-tube problem. The initial condition is best expressed 
9

in the original (non-rotated) frame where 𝑥′ is the coordinate perpendicular to the plane of discontinuity. In the MHD case we have
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Fig. 3. Same of Fig. 2 but for the relativistic case. Here the numerical scheme adopted is using the MP5 algorithm and the “unrotated” final time is 𝑡′
𝑓
= 0.55.

⎧⎪⎨⎪⎩
V ′
𝐿

=
(
1.08, 1.2, 0.01, 0.5, 2√

4𝜋
,

3.6√
4𝜋
,

2√
4𝜋
, 0.95

)
for 𝑥′ < 0 ,

V ′
𝑅

=
(
1, 0, 0, 0, 2√

4𝜋
,

4√
4𝜋
,

2√
4𝜋
, 1

)
for 𝑥′ > 0 ,

(41)

where V ′ = (𝜌, 𝑣′
𝑥′
, 𝑣′
𝑦′
, 𝑣′
𝑧′
, 𝐵′

𝑥′
, 𝐵′

𝑦′
, 𝐵′

𝑧′
, 𝑝) is an array of primitive quantities in the non-rotated frame. In the relativistic case we have, 

likewise,{
V ′
𝐿

= (1.08, 0.4, 0.3, 0.2, 2, 0.3, 0.3, 0.95) for 𝑥′ < 0 ,
V ′
𝑅

= (1, −0.45, −0.2, 0.2, 2, −0.7, 0.5, 1) for 𝑥′ > 0 . (42)

For each case, we rotate the initial condition by an angle 𝛼 around the 𝑧-axis and then by an angle 𝛾 around the 𝑦-axis. The 
coordinate transformation used for the 3D rotation is explained in detail in [15] (see §4.2.2 in that paper) and leads to a planar 
symmetry condition whereby, for any quantity 𝑞(𝐱), one must have 𝑞(𝐱 + 𝐬) = 𝑞(𝐱), where 𝐬 = (𝑛𝑥Δ𝑥, 𝑛𝑦Δ𝑦, 𝑛𝑧Δ𝑧) corresponds to an 
integer shift of cells. We choose tan𝛼 = 1∕2 and tan 𝛾 = cos𝛼 tan𝛽 = −1∕(2

√
5) with tan𝛽 = −1∕4 corresponding to a translational 

invariance by an integer shift of cells, i.e., (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = (1, −2, 0) and (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = (1, 0, 4).
We solve the MHD / RMHD equations using our 4th-order method, adopting the WENOZ reconstruction in characteristic variables 

for the classical version and the MP5 reconstruction in primitive variables for the relativistic variant. The computational domain 
is the box [−𝐿∕2, 𝐿∕2] × [0, 𝐿∕96] × [0, 𝐿∕96] covered by a uniform grid of 768 × 8 × 8 zones. We evolve the solution until 𝑡𝑓 =
𝑡′
𝑓
cos𝛼 cos 𝛾 = 4∕

√
21 where 𝑡′

𝑓
= 0.2 (for classical MHD), 𝑡′

𝑓
= 0.55 is the final time for the non-rotated (1D) versions of the problem, 

see, e.g., [70,71,15] for the classical MHD version and [72,58,73] (and references therein) for the relativistic variant. One dimensional 
plots of relevant fluid quantities are shown in the unrotated frame in Fig. (2) and (3) against a 1D high-resolution reference profile 
computed with a 2nd-order scheme with a resolution of 𝑁𝑥 = 16384 grid points. The solution features a contact discontinuity in the 
middle (𝑥 ≈ 0) separating two outermost fast magnetosonic shocks enclosing a pair of rotational waves followed by two slow waves. 
Profiles are correctly reproduced and oscillations in the normal component of magnetic field are of the same order as those of [15]

and smaller than those in [71] who used a 2nd-order scheme. Our results demonstrate that our 4th-order method can correctly capture 
propagating discontinuous fronts although the order of the scheme degenerates to 1st -order.

5.2. 2D iso-density and iso-enthalpy vortex

We consider the MHD iso-density vortex advection problem (as introduced by Balsara [7] and later presented by Mignone [15]

and Dumbser [74]) and also propose a new exact equilibrium solution of the ideal RMHD equations with constant enthalpy. For 
the MHD case, the initial condition consists of a magnetized vortex at constant density in force balance that propagates along the 
main diagonal of a computational domain of [−5, 5] × [−5, 5] under periodic boundary conditions. The equilibrium condition is best 
expressed in cylindrical coordinates (𝑅, 𝜙, 𝑧), from radial momentum balance

𝑑

𝑑𝑅

(
𝑝+

𝐵2
𝑧

2

)
=
𝜌𝑣2
𝜙

𝑅
− 1

2𝑅2
𝑑

𝑑𝑅

(
𝑅2𝐵2

𝜙

)
. (43)

We assume constant density 𝜌 = 1 and Eq. (43) is satisfied by adopting the following profiles:
10

𝐯 = 𝐯0 + (−𝑦,𝑥)𝑘𝑒𝑞(1−𝑅2) , 𝐁 = (−𝑦,𝑥)𝜇𝑒𝑞(1−𝑅2) +𝐵𝑧�̂�𝑧 , (44)



Journal of Computational Physics 499 (2024) 112701V. Berta, A. Mignone, M. Bugli et al.

Fig. 4. Zoomed plot of the thermal pressure profile in the 2D MHD iso-density vortex (left panel) and density in the 2D RMHD iso-enthalpy vortex (right panel). In 
each panel the exact solution’s profile (continuous black line) is compared with the profiles evolved by a 4th-order scheme adopting the WENOZ (red squares), the 
MP5 (blue circles), and the 2nd-order LINEAR scheme (green triangles). Filled symbols refer to data produced at a resolution of 𝑁𝑥 = 128, while the empty ones are 
data at 𝑁𝑥 = 512.

Table 1

𝐿1 norm errors and corresponding convergence rates of the 2D MHD iso-density vortex (columns 
2-5) and the 2D RMHD iso-enthalpy vortex (columns 6-9). Computations were carried out with 
the resolution of 32, 64, 128, 256 and 512 grid points along each direction.

𝑁𝑥 MHD MP5 MHD WENOZ RMHD MP5 RMHD WENOZ

𝜀1(𝐵𝑥) 𝑂𝐿1
𝜀1(𝐵𝑥) 𝑂𝐿1

𝜀1(𝐵𝑥) 𝑂𝐿1
𝜀1(𝐵𝑥) 𝑂𝐿1

32 9.99E-04 - 9.01E-04 - 3.93E-04 - 3.11E-04 -

64 6.09E-05 4.04 6.00E-05 3.91 1.70E-05 4.53 1.83E-05 4.09

128 2.35E-06 4.70 2.37E-06 4.66 6.09E-07 4.80 6.41E-07 4.84

256 1.06E-07 4.47 1.06E-07 4.48 2.34E-08 4.71 2.36E-08 4.77

512 5.76E-09 4.20 5.76E-09 4.20 1.05E-09 4.47 1.05E-09 4.49

where 𝐯0 is the translational velocity, 𝑅 =
√
𝑥2 + 𝑦2 is the cylindrical radius, 𝑘 = 𝜇 = 1∕2𝜋 and the parameter 𝑞 is set to 1 as in 

[74,15]. The pressure term on the left hand side of Eq. (43) is then readily obtained from

𝑝t ≡ 𝑝+ 𝐵2
𝑧

2
= 1 + 1

4𝑞
[
𝜇2

(
1 − 2𝑞𝑅2)− 𝑓𝑘2] 𝑒2𝑞(1−𝑅2) , (45)

where 𝑓 = 𝜌 for the classical case. We equally distribute 𝑝𝑡 in Eq. (45) among the thermal and magnetic contributions, i.e. 𝑝 = 𝛼𝑝t
and 𝐵2

𝑧
∕2 = (1 − 𝛼)𝑝t , where 𝛼 ∈ [0, 1]. In this setup, we use 𝛼 = 1∕2 and 𝐯0 = (1, 1).

In the RMHD case (for which we also assume a purely radial dependence), the time-independent radial component of the mo-

mentum equation takes instead the form

𝑑𝑝

𝑑𝑅
=
𝑤𝛾𝑣2

𝜙

𝑅
+
𝐸𝑅

𝑅

𝑑
(
𝑅𝐸𝑅

)
𝑑𝑅

−𝐵𝑧
𝑑𝐵𝑧

𝑑𝑅
−
𝐵𝜙

𝑅

𝑑
(
𝑅𝐵𝜙

)
𝑑𝑅

, (46)

where 𝑤 = 5 is the constant enthalpy. We assume 𝐵𝑧 = 𝐸𝑅 = 0, so that Eq. (46) has solution given by Eq. (44) and (45) with 
𝑓 = 𝑤. Here we choose a static vortex (𝑣0 = 0). Density is recovered from the ideal equation of state (adiabatic index Γ = 5∕3) as 
𝜌 =𝑤 − 5𝑝∕2, which is ensured to be strictly positive by our choice of the initial enthalpy.

Both the classical and relativistic cases are evolved until 𝑡 = 10, which corresponds to one period for the MHD case. Table 1

reports the errors for 𝐵𝑥 measured in 𝐿1 norm and the corresponding convergence rates both for the MHD and RMHD solutions by 
either using the WENOZ or the MP5 reconstructions.

Fig. 4 overlays the exact pressure profile (continuous black line) on the data produced with the 4th-order scheme adopting 
the WENOZ (red squares), the MP5 (blue circles) and the 2nd-order LINEAR scheme (green triangles). Filled symbols refer to data 
produced at a resolution of 𝑁𝑥 = 128, while empty ones are produced at 𝑁𝑥 = 512 and have been presented only for the LINEAR 
scheme, since high-order data do not display a sensible difference between the resolution of 128 and 512. The profiles of the 4th-order 
methods overlap almost perfectly on the exact solution at 128, while the 2nd-order data do not reach such accuracy neither at 128
nor at 512 grid points. Especially in the relativistic case, it is relevant to notice the significant amount of clipping introduced by the 
LINEAR scheme. On the other hand, the 4th-order method is capable of attaining significantly improved accuracy already at modest 
resolutions.

A close comparison with the results of the finite difference (FD) scheme of Mignone [15] reveals very similar errors for 𝑁𝑥 ≲ 128
even if the FD method, being 5th-order accurate, converges faster than the proposed FV method. We also point out that, owing to the 
employment of a 3rd-order Runge Kutta method, the time step of the FD scheme has to be re-scaled as Δ𝑡 ∼Δ𝑥5∕3 in order to retain 
11

5th-order accuracy (see Eq. [48] of that paper).
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Fig. 5. 𝐿1-norm errors (left panel) and numerical diffusion (right panel) for the 3D circularly polarized Alfvén wave test in the MHD regime (solid lines) and RMHD 
(dashed-dotted lines) as functions of the grid resolution 𝑁𝑥 with 2nd - and 4th-order numerical schemes. The horizontal dotted line in the left panel is positioned at 10−4
in order to highlight the different resolution that achieves an accuracy of 10−4 with either a low or a high order scheme. The dashed lines give the ideal convergence 
slope (left panel) and a reference slope for the numerical diffusion (right panel).

5.3. Circularly polarized Alfvén waves

We now consider the oblique propagation of circularly polarized Alfvén waves, which is an exact non-linear solution of the 
(R)MHD equations and was first presented by Tóth [6] in the context of classical MHD and later by Del Zanna [20] for the relativistic 
case.

In the MHD case we draw upon the setup of [15] by first constructing a 1D wave profile in the 𝑥-direction with angular frequency 
𝜔, wavenumber 𝑘 and amplitude 𝜂 as

⎛⎜⎜⎝
𝑣𝑥
𝑣𝑦
𝑣𝑧

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0
𝜂 sin𝜙
𝜂 cos𝜙

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
𝐵𝑥
𝐵𝑦
𝐵𝑧

⎞⎟⎟⎠ =
⎛⎜⎜⎝

𝑐𝑎
√
𝜌√

𝜌𝜂 sin𝜙√
𝜌𝜂 cos𝜙

⎞⎟⎟⎠ , (47)

where 𝜙 = 𝑘𝑥 − 𝜔𝑡, 𝑐𝑎 = 𝜔∕𝑘 = 1 is the phase (Alfvén) velocity and 𝜂 = 0.1 is the wave amplitude. Density and pressure are set to 
𝜌 = 1 and 𝑝 = 2, respectively, while we employ the ideal EoS with Γ = 5∕3. Such solution is then rotated by 45◦ around the 𝑦-axis in 
the 2D setup and by an additional 45◦ around the 𝑧-axis in the 3D case to have the wave propagating along the computational box’s 
diagonal. The reader should refer to [15] for the details.

The RMHD case is set in a similar way, with a 1D wave profile defined by (see [20])⎛⎜⎜⎝
𝑣𝑥
𝑣𝑦
𝑣𝑧

⎞⎟⎟⎠ =
⎛⎜⎜⎝

0
−𝑐𝐴𝜂 cos𝜙
−𝑐𝐴𝜂 sin𝜙

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
𝐵𝑥
𝐵𝑦
𝐵𝑧

⎞⎟⎟⎠ =
⎛⎜⎜⎝

𝐵0
𝐵0𝜂 cos𝜙
𝐵0𝜂 sin𝜙

⎞⎟⎟⎠ , (48)

where we set 𝐵0 = 1, 𝜂 = 1, Γ = 4∕3 and the Alfvén velocity is defined by

𝑐𝐴 =
𝐵2
0

𝜌ℎ+𝐵2
0(1 + 𝜂

2)

⎡⎢⎢⎢⎣
1
2

⎛⎜⎜⎜⎝1 +
√√√√√1 −

(
2𝜂𝐵2

0

𝜌ℎ+𝐵2
0(1 + 𝜂

2)

)2⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
−1

. (49)

We then apply the same procedure as for the MHD case [15] to rotate the wave front.

The computational domain is the unit square (cube) in 2D (3D), while we follow the evolution of the wave for one period, 
after which its profile is supposed to return exactly on the initial values. We then estimate the error introduced by the numerical 
algorithms using the 𝐿1 norm evaluated for the 𝑦- component of the magnetic field between the final and initial profiles.

Table 2 reports the errors and convergence rates evaluated for a series of 2D and 3D MHD and RMHD computations employing 
the MP5 and WENOZ reconstructions at increasing resolutions 𝑁𝑥 = {8, 16, 32, 64, 128, 256, 512}. We use a CFL coefficient of 0.4 and 
0.3 for the 2D and 3D case, respectively, and we impose periodic boundary conditions. The measured convergence rate 𝑂𝐿1

well 
matches the expected value for all the configurations we considered (as shown in the first panel of Fig. 5). It is interesting to notice 
that, giving the same configuration, the 𝐿1 norm errors are almost identical for the WENOZ or the MP5 schemes. This confirms that 
for such a smooth problem, the choice of the high-order spatial reconstruction algorithm does not change results significantly.

In the 3D MHD case, our results may be directly compared to those obtained with the 5th-order finite difference (FD) scheme of 
Mignone [15] (see Table 1 of that paper), indicating that our FV scheme yields smaller errors for grid sizes lower than 2563 zones. 
This difference lessens as the resolution grows (due to the additional order of accuracy of the FD scheme) so that similar errors are 
eventually found at the resolution of ∼ 2563 zones, where 𝜀1(𝐵𝑦) ∼ 3.74 ⋅ 10−9 (for the FD scheme) while 𝜀1(𝐵𝑦) ∼ 2.91 ⋅ 10−9 (with 
the present method).

For problems without sharp gradients like the one considered here, the employment of a 4th- (or higher) order scheme leads not 
12

only to an increase in accuracy, but also to a saving in computational time for fixed accuracy. It is therefore instructive to estimate 



Journal of Computational Physics 499 (2024) 112701V. Berta, A. Mignone, M. Bugli et al.

Table 2

𝐿1 norm errors and corresponding convergence rates computed for the rotated two-dimensional (columns 
2-5) and three-dimensional (columns 6-9) Alfvén wave propagation. Computations were carried out with 
the resolution of 8, 16, 32, 64, 128, 256, and 512 grid points along each direction.

Scheme 𝑁𝑥 2D MP5 2D WENOZ 3D MP5 3D WENOZ

𝜀1(𝐵𝑦) 𝑂𝐿1
𝜀1(𝐵𝑦) 𝑂𝐿1

𝜀1(𝐵𝑦) 𝑂𝐿1
𝜀1(𝐵𝑦) 𝑂𝐿1

MHD 8 2.76E-03 - 3.02E-03 - 3.61E-03 - 3.83E-03 -

16 1.47E-04 4.23 1.50E-04 4.33 2.05E-04 4.14 2.09E-04 4.19

32 8.39E-06 4.13 8.43E-06 4.16 1.24E-05 4.05 1.23E-05 4.08

64 5.07E-07 4.05 5.08E-07 4.05 7.57E-07 4.03 7.57E-07 4.03

128 3.13E-08 4.02 3.13E-08 4.02 4.69E-08 4.01 4.69E-08 4.01

256 1.94E-09 4.01 1.94E-09 4.01 2.92E-09 4.01 2.91E-09 4.00

512 1.21E-10 4.00 1.21E-10 4.00 1.82E-10 4.00 1.82E-10 4.00

RMHD 8 2.27E-02 - 2.60E-02 - 3.11E-02 - 3.48E-02 -

16 1.23E-03 4.20 1.29E-03 4.34 1.75E-03 4.15 1.79E-03 4.28

32 7.21E-05 4.10 7.25E-05 4.15 1.04E-04 4.07 1.04E-04 4.10

64 4.33E-06 4.06 4.33E-06 4.05 6.45E-06 4.01 6.45E-06 4.01

128 2.67E-07 4.02 2.67E-07 4.02 4.03E-07 4.00 4.03E-07 4.00

256 1.66E-08 4.01 1.66E-08 4.01 2.52E-08 4.00 2.52E-08 3.99

512 1.04E-09 4.00 1.04E-09 4.00 1.58E-09 4.00 1.58E-09 4.00

the net gain of using such approach. Let 𝜏 be the CPU time for updating a single cell with a chosen numerical scheme (e.g. 2nd or 
4th-order). The total CPU time 𝑇 required to update 𝑁𝑑 cells (𝑑 = 1, 2, 3 indicates the dimensionality of problem) scales as

𝑇 = 𝜏𝑁𝑑+1 , (50)

where the extra factor 𝑁 comes from the fact that the hyperbolic time step is inversely proportional to the grid resolution 𝑁 . Now, 
let 𝜀 = 𝐶𝑁−𝑝 be the numerical error at the end of the computation, where 𝑝 is the order of the scheme and 𝐶 is an unknown constant 
depending, in general, on the chosen numerical method and the problem at hand. A 2nd- and 4th-order scheme will achieve the same 
accuracy 𝜀2 ∼ 𝜀4 using, respectively, 𝑁2 and 𝑁4 grid points related by

𝑁4 ∼
(
𝐶4
𝐶2

)1∕4 √
𝑁2 . (51)

The previous expression demonstrates that a 4th-order scheme will require a reduced grid size of about 
√
𝑁2. Furthermore, by 

expressing 𝑁 as a function of 𝑇 (from Eq. (50)) the previous relation can be adjusted in terms of CPU time:

𝑇4
𝑇2

=
(
𝐶4
𝐶2

)(𝑑+1)∕4
𝜏4
𝜏2

1√
𝑁𝑑+1

2

. (52)

From our 3D tests we estimated 𝜏4∕𝜏2 ∼ {4.3, 3.7} and 𝐶4∕𝐶2 ∼ {5.0, 8.7} for the MHD and RMHD cases respectively, where we 
averaged the results produced with the MP5 and WENOZ spatial reconstructions. Plugging these parameters into Eq. (52) we obtain 
a net gain in computing time, for a given accuracy, that scales as 𝑇4∕𝑇2 ∼ 𝐾∕𝑁2

2 with 𝐾 ∼ {21, 32}. Our estimates show, for 
instance, that for a smooth MHD problem the accuracy obtained with a 2nd-order scheme on a grid with 512 ×512 ×512 points could 
be achieved by our high-order scheme with only 𝑁4 ∼ 34 per direction and a computing time reduced by a factor ∼ 1.2 × 104.

Another advantage of using more accurate schemes is the reduction of the numerical dissipation due to the round-off errors 
introduced by the grid discretization. We can estimate the diffusion intrinsic to the numerical scheme by looking at the damping of 
Alfvén waves (see [75]). The decay rate can be expressed as Γ𝐴 = 1

2 (𝜈 + 𝜂)𝑘
2, where 𝜈 is the fluid’s kinematic viscosity and 𝜂 its 

resistivity. We then obtain an approximated value for Γ𝐴 by computing the quantity Δ log(𝛿𝐵𝑧)∕Δ𝑡, where 𝛿𝐵𝑧 =
√

∭ 𝐵2
𝑧
𝑑𝑥𝑑𝑦𝑑𝑧

and the difference is evaluated after one period. From the right panel of Fig. 5 we can see how already at very small resolutions 
(𝑁 ∼ 8) the high-order schemes produce an overall numerical dissipation which is more than one order of magnitude lower than the 
one delivered by the 2nd-order scheme. Moreover, the gap between the two schemes increases significantly at higher resolutions, as 
the decay rate scales as ∼𝑁−5 in the high-order setup, while we measured a slope of only ∼ −3 in the low-order case.

5.4. Advection of a magnetic field loop

This problem consists of a weakly magnetized field loop advected by a uniform velocity field. Since the total pressure is dominated 
by the thermal contribution, the magnetic field is essentially transported as a passive scalar and the preservation of the initial circular 
shape tests the dissipative properties of the scheme [9,71,14,15,76].

Following Gardiner & Stone [9] and Mignone [15], the computational box is defined by [−1, 1] × [−0.5, 0.5] and discretized on 
𝑁𝑥×𝑁𝑥∕2 grid cells. Density and pressure are initially uniformly set to 1 in the MHD case, while 𝑝 = 3 for the RMHD setup (following 
13

Beckwith & Stone [76]). The velocity of the flow is given by
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Fig. 6. Normalized magnetic energy density for the 2D field loop after two periods at the resolution of 256 × 128 grid points in the classical (top) and relativistic 
(bottom) MHD. Simulations compare LINEAR (leftmost panel), WENO3 (center left panels), MP5 (center right panels) and WENOZ reconstructions (rightmost panels). 
Magnetic field lines are overlaid as black lines.

Fig. 7. Plot of the normalized magnetic energy density decay of a 2D field loop advected over time at a resolution of 256 × 128 grid points. Each simulation has been 
performed with a 2nd-order LINEAR (green), a 3rd-order WENO3+RK3 (cyan), a 4th-order MP5 (blue), and a 4th-order WENOZ scheme (red). The top panels show the 
results obtained in the classical MHD regime, with the HLL (top left panel) and HLLD (top right panel) Riemann solvers. Similarly, the bottom panels show the results 
obtained in the relativistic MHD regime, with the HLL (bottom left panel) and GFORCE (bottom right panel) Riemann solvers. Notice that for the results obtained 
with the HLLD and GFORCE Riemann solvers, the time axes have been reversed.

𝐯 = 𝑉0(cos𝛼, sin𝛼) , (53)

with 𝑉0 =
√
5 in the classical case while 𝑉0 =

√
5∕10 for the relativistic case. The inclination angle is set to sin𝛼 = 1∕

√
5, cos𝛼 =

2∕
√
5. The magnetic field is defined by means of the vector potential as

𝐴𝑧 =
{
𝐴0(𝑅− 𝑟) if 𝑅1 < 𝑟 ≤𝑅,
0 if elsewhere ,

(54)

with 𝐴0 = 10−3, 𝑅 = 0.3, 𝑅1 = 0.2𝑅, 𝑟 =
√
𝑥2 + 𝑦2. Simulations have been performed on a computational domain of 256 × 128 grid 

points with the LINEAR, WENO3, MP5 and WENOZ schemes up to 𝑡f = 2 units for the MHD setup and 𝑡f = 20 for the RMHD setup 
(both corresponding to two advection periods). The CFL was set to 0.4 and double periodic boundary conditions are imposed.

Fig. 6 shows the normalized magnetic energy density together with magnetic field lines with a resolution of 256 ×128 grid points 
for each configuration. As shown in both sequences of Fig. 6, smearing and diffusion are significantly reduced as we gradually 
increase the accuracy from 2nd to 4th-order. It is interesting to notice that the WENOZ algorithm performs the best in this problem 
while MP5 has some small amplitude overshoots (undershoots) at the loop tail (head), most likely caused by a small clipping of its 
limiting procedure.

Another extremely crucial aspect is the ability of the algorithm to conserve the energy of the system. Fig. 7 compares the 
14

normalized magnetic energy density over time for a set of 4 simulations employing a 2nd- (green), a 3rd- (cyan), and both the 4th-



Journal of Computational Physics 499 (2024) 112701V. Berta, A. Mignone, M. Bugli et al.

Fig. 8. Colored maps for the density of the current sheet test problem for the classical (top panel) and relativistic (bottom panel) MHD equations. From left to 
right snapshots at, respectively, 𝑡 = 5, 7.5, 10 are shown at a resolution of 600 × 600 grid points. Simulations are carried out with the HLLC Riemann solver in the 
non-relativistic case and with the GFORCE solver in the relativistic case.

order accurate (blue and red) schemes, respectively, in the MHD (top panels) and RMHD (bottom panels) regimes. The top panels 
compare the results of the HLL + UCT-HLL solver combination with those of the HLLD + UCT-HLLD pair, where the time axis has 
been reversed to better compare the two sets of simulations. The RMHD case follows along but with the GFORCE + UCT-GFORCE 
solver, showing improved results, although the choice of the Riemann solver seems to affect only marginally the conservation of the 
magnetic energy, with the GFORCE achieving better performance. The magnetic energy decay is considerably faster for the 2nd-order 
scheme compared to the 3rd- and 4th-order ones, with the latter yielding the best performance.

Very similar results are also recovered with the FD scheme of Mignone [15] (see left panel in Fig. A.9 of that paper) when using 
either WENOZ or MP5, which dissipate just ∼ 5% of total magnetic energy at the end of the computation.

5.5. 2D current sheet

This problem was first introduced by Hawley & Stone [77] and also tested by Núñez-de La Rosa & Munz both in a MHD [34] and 
RMHD [35] regime (see also references therein).

We use the computational box [−1, 1] × [−0.5, 0.5] discretized with 600 × 600 grid points. Density and pressure of an ideal, 
adiabatic gas with Γ = 5∕3 are initially set to the constant values 𝜌 = 1, 𝑝 = 0.5𝛽, with 𝛽 being the ratio between the thermal and 
magnetic pressure of the gas. The magnetic field initially lies in the 𝑦-direction and it is discontinuous with 𝐵𝑦 = 1 for |𝑥| > 0.25 and 
𝐵𝑦 = −1 otherwise. We set 𝑣𝑥 = Asin(2𝜋y), 𝑣𝑦 = 𝑣𝑧 = 0, where 𝐴 is the amplitude of the perturbation. The parameters 𝐴 and 𝛽 are 
both set to the challenging values of 𝐴 = 𝛽 = 0.1 to test the robustness of the underlying scheme. Simulations have been run up to 
𝑡𝑓 = 10, with a CFL restriction of 0.4 and periodic boundary conditions.

The harmonic velocity perturbation produces non-linear linearly polarized Alfvén waves that grow into magnetosonic waves, 
triggering magnetic reconnection in the regions where the field flips sign. When 𝛽 < 1, namely, in the regime of strongly magnetized 
fluid, magnetic reconnection forms overpressurized regions that develop magnetosonic waves orthogonal to the field. This leads to 
the conversion from magnetic to thermal energy and to the formation of steep gradients in the regions nearby the field. For this 
reason, this benchmark can be extremely severe in assessing the robustness of the underlying numerical scheme.

In Fig. 8 we display density snapshots at 𝑡 = 5, 7.5, 10 for the MHD (top panels) and RMHD setups (bottom panels) obtained, 
respectively, with the HLLC + UCT-HLL, and with the GFORCE + UCT-GFORCE as solver plus EMF average combination. This highly 
non-linear problem tests our novel limiting strategy where the WENOZ scheme lowers to WENO3 whenever the order reduction 
procedure is activated, thus increasing the stability range of the scheme. A similar fallback strategy has been adopted by [34,35]

who used a simpler Rusanov-Lax Friedrichs solver.

5.6. Orszag-Tang vortex

The Orszag-Tang MHD vortex [78] has traditionally been a standard numerical benchmark for inter-scheme comparison. The test 
consists of an initial vorticity distribution that spins the fluid counter-clockwise, leading eventually to the formation of a complex 
structure that includes shocks and turbulence. The initial density and pressure are set to the constant values 𝜌0 = 25∕9 and 𝑝0 = 5∕3, 
while the initial velocity and magnetic fields are (𝑣𝑥, 𝑣𝑦) = (− sin𝑦, sin𝑥) and (𝐵𝑥, 𝐵𝑦) = (− sin𝑦, sin 2𝑥), respectively, in the MHD 
setup, and (𝑣𝑥, 𝑣𝑦) = (−0.5 sin𝑦, 0.5 sin𝑥) in the RMHD setup (as presented in [79,80,76]). We ran computations up to 𝑡𝑓 = 2𝜋 with 
15

𝑁𝑥 =𝑁𝑦 = {64, 512} grid zones for the MHD case, and 𝑁𝑥 =𝑁𝑦 = {128, 1024} for the RMHD case using periodic boundary conditions 
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Fig. 9. Thermal pressure of the non-relativistic Orszag-Tang vortex computed at 𝑡 = 2𝜋 with different algorithms and resolutions. Results are obtained with a 2nd-order 
LINEAR (left column), a 4th-order MP5 (middle column), and a 4th -order WENOZ scheme (right column). Each simulation has been computed with a Roe (1st and 3rd
rows) and HLLD (2nd and 4th rows) Riemann solver with a grid resolution of 𝑁𝑥 =𝑁𝑦 = 64 (1st and 2nd rows) and 𝑁𝑥 =𝑁𝑦 = 512 (3rd and 4th rows).

and a CFL number of 0.5. We repeated the computations by choosing two different Riemann solvers in the MHD case (Roe and HLLD, 
always with the UCT-HLLD average), and only the GFORCE Riemann solver coupled to the UCT-GFORCE EMF averaging algorithm 
in the relativistic case. Likewise, we also compared 3 different reconstruction schemes, namely, LINEAR, MP5, and WENOZ.

Multiple shock-vortex interactions regulate the dynamics of the system, leading to the formation of an inclined current sheet 
at the center of the domain. The magnetic energy is gradually dissipated and the current sheet twists, leading to the structures 
observed in the thermal pressure distribution shown in Fig. 9. For the MHD setup, even at modest resolutions (64 points) the 4th-

order scheme with MP5 reconstruction and the HLLD Riemann solver allows to distinguish at the center of the computational domain 
the formation of a magnetic island (an O-point). It is well known (see [81,82]) that the tearing instability is expected to develop on 
the ideal (Alfvénic) timescales of an ideal MHD simulation only if the numerical dissipation is sufficiently low. At higher resolutions, 
all simulations produce high-pressure regions, albeit small-scale structures are best appreciated with the high-order runs.

Similarly to Mignone & Del Zanna [18], we can assess more quantitatively the improvements introduced by our 4th-order scheme 
by computing the parameter 𝜇𝑝 = max(𝑝)∕⟨𝑝⟩, i.e. the pressure maximum normalized by the average pressure at the end of a run. 
As this quantity generally increases with better resolution, we use it as a proxy to assess the decrease of numerical dissipation. For 
instance, the values of 𝜇𝑝 obtained with the MP5 reconstruction and HLLD solver against those obtained with the LINEAR one yield 
an average increase in effective resolution of ∼ 2.23, which leads to an average speedup of ∼ 2.58 (taking into account the extra 
computational cost of the 4th-order scheme estimated in §5.3). This is, however, only a rough estimate that cannot fully characterize 
the impact of our scheme on the typical numerical dissipation length-scale in a turbulent plasma, for which more dedicated tests and 
analysis are required.

For the RMHD case, the final stage of the simulation produces a central low-pressure cavity with a thin high-pressure filament, 
which exhibits finer structures for less dissipative schemes (Fig. 10). While at a resolution of 128 points there are no apparent 
deviations between the different setups, at higher resolution (1024 points) the numerical resistivity from the 4th-order scheme is low 
enough to lead to the production of multiple O-points in the high-pressure filament, although they remain still quite unresolved. Our 
results confirm the overall robustness of the scheme as well as its ability to capture small-scale structures that would otherwise be 
lost with a lower order scheme.

5.7. 3D blast wave

We finally consider the 3D magnetized blast wave problem in order to assess the robustness of the algorithms under strong 
magnetization conditions. Despite its simplicity, the blast wave problem is a particularly effective benchmark in testing the solver’s 
16

ability at handling MHD wave degeneracies parallel and perpendicularly to the field orientation.
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Fig. 10. Thermal pressure of the relativistic Orszag-Tang vortex computed at 𝑡 = 2𝜋 with different algorithms and resolutions. From left to right, results are obtained 
with, respectively, a 2nd-order LINEAR (left column), a 4th-order MP5 (middle column), and a 4th -order WENOZ scheme (bottom column). The grid resolution adopted 
is 𝑁𝑥 =𝑁𝑦 = 128 (top row) and 𝑁𝑥 =𝑁𝑦 = 1024 (bottom row). The presence or absence of O-points emerging from the central current sheets (only for the high 
resolution cases) is highlighted by a zoom on the central region.

Table 3

Parameters used in the 3D blast wave problem.

Case 𝜌in 𝜌out 𝑝in 𝑝out 𝐵0 Γ 𝑟0 𝐿 𝑡stop Solver En. Corr.

C1 (MHD) 1 1 10 0.1 3 5∕3 0.1 1 0.2 HLL NO

C2 (MHD) 1 1 103 0.1 100∕
√
4𝜋 1.4 0.1 1 0.01 HLL YES

R1 (RMHD) 10−2 10−4 1 5 × 10−3 1 4∕3 0.08 6 4 GFORCE YES

The initial condition consists of a uniform medium with density and pressure values set, respectively, to 𝜌out and 𝑝out and threaded 
by an oblique constant magnetic field,

𝐁 = 𝐵0

(
sin𝜃 cos𝜙, sin𝜃 sin𝜙, cos𝜃

)
(55)

where 𝜃 = 𝜋∕2 and 𝜙 = 𝜋∕4 are used in what follows. Note also that oblique configurations make the computation considerably more 
challenging than in the grid-aligned cases (see, for instance the discussion in §4.4 of Mattia & Mignone [83]). The computational 
domain is a cube of length 𝐿 centered at the origin with zero-gradient boundary conditions. An over-pressurized spherical region 
where pressure and density can have different values, namely 𝜌in and 𝑝in, is initially set for 𝑟 < 𝑟0.

We examine three different cases with parameters listed in Table 3. Cases C1 is taken from Felker & Stone [36], with the exception 
that we consider a magnetization three times as large here. Case C2 proposes a more severe configuration as initially presented by 
Balsara & Spicer [5] (see also [18]). Lastly, in case R1 (from [83]) we apply our 4th-order method to the solution of the relativistic 
MHD equations. Note that the energy correction step (see [5] and, e.g., see Sec. 6.4 of [18]) is applied to both cases C2 and R1, while 
case C1 has the largest magnetization our scheme can afford without it. This correction step is still performed at 2nd-order level and 
it was found to substantially improve the robustness of the code for larger magnetic field strengths. Computations are performed 
using 192 × 192 × 192 grid zones.

Results are shown in Fig. 11 (C1), 12 (C2) and 13 (R1) for the three selected cases. The explosion spawns an oval-shaped structure 
delimited by an outer fast forward shock and the presence of a magnetic field makes the propagation highly anisotropic by com-

pressing the gas in the direction parallel to the field. Gas motion takes place along the field lines generating two oppositely moving 
plasma blobs. In the perpendicular direction, the outer fast shock becomes magnetically dominated with very weak compression. 
Discontinuous waves and smooth structures are well resolved by our scheme and the point-symmetry is preserved throughout the 
evolution. We point out that the fallback approach played an essential role for this test thus strengthening the benefits of a low/high 
order hybrid scheme while resolving complex flows featuring both smooth as well as discontinuous solutions.

5.8. 3D cloud-shock interaction

We propose a 3D version of the cloud-shock interaction test previously introduced by [72,84,85,29] in its MHD version, and by 
Mignone [69] for the RMHD case. For both configurations, the initial condition consists of a plane discontinuity propagating a fast 
shock and a rotational wave. Specifically, in the MHD case, the initial state V = (𝜌, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝐵𝑥, 𝐵𝑦, 𝐵𝑧, 𝑝) is initialized as{

V𝐿 = (3.86859, 0, 0, 0, 0, 2.1826182, −2.1826182, 167.345) for 𝑥 < 0.6 ,
17

V𝑅 = (1, −11.2536, 0, 0, 0, 0.56418958, 0.56418958, 1) for 𝑥 > 0.6 , (56)
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Fig. 11. MHD 3D blast wave problem (case C1) at 𝑡 = 0.2. The left and central panels show density (top left), pressure (top middle, in logarithmic scale), specific 
kinetic energy (bottom left) and magnetic energy (bottom right) at 𝑧 = 0 for a simulation employing 192 × 192 × 192 grid points. In the rightmost panels we show the 
density (top) and magnetic energy density (bottom) on the major (red line) and minor (black line) diagonals.

Fig. 12. Same as Fig. 11 but for the case C2 at 𝑡 = 0.01.

while in the RMHD test as{
V𝐿 = (39.5052, 0, 0, 0, 0, 0, 1.9753, 129.72386) for 𝑥 < 0.6 ,
V𝑅 = (1, −

√
0.99, 0, 0, 0, 0, 0.5, 10−3) for 𝑥 > 0.6 .

(57)

At 𝐱 = (0.8, 0.5, 0.5) an overdense (𝜌 = 10) spherical cloud of radius 0.15 is initially in hydrostatic equilibrium with the ambient 
plasma under the adiabatic equation of state with Γ = 5∕3 (Γ = 4∕3 in the special relativistic case). For both setups the computational 
domain consists of the unit cube, with outflow (zero-gradient) boundary conditions employed everywhere, except at the lower 𝑥-

boundary, where the initial condition is imposed.

During the evolution, the magnetic shock propagates to the right, and the high density cloud moves supersonically into the shock 
front. At the final evolution time (𝑡𝑓 = 0.06 MHD, 𝑡𝑓 = 0.6 RMHD) the cloud has been completely shocked and it has developed 
its characteristic mushroom-like structure. Fig. 14 shows the initial and final density condition for a 256 × 256 × 256 grid points 
simulation. The 4th-order scheme properly recovers the expected structures. It is important to mention that, for this particular test 
problem, the employment of the order reduction procedure extended to the selective fluxes integration has been fundamental for the 
18

correct evolution of the simulations.
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Fig. 13. Same as Fig. 11 but for the case R1 at 𝑡 = 4. In the bottom left panel, the specific kinetic energy has been replaced by the relativistic counterpart.

Fig. 14. Non-relativistic (top panels) and relativistic (bottom panels) cloud-shock interaction at initial (𝑡 = 0, left panels) and final time (𝑡 = 0.06 for the non-relativistic 
case, and 𝑡 = 0.6 for the relativistic case, right panels). Shown is the density at 𝑧 = 0.5 in logarithmic scale. Both simulations ran with 256 × 256 ×256 grid points. The 
colorscales span over a range of [1, 24] for the non-relativistic case and [1, 110] for the relativistic case.

6. Conclusions

In this paper we have presented a genuinely 4th-order accurate finite volume method for the solution of the classical and special 
relativistic MHD equations employing the constrained transport algorithm. Our scheme has been implemented in the PLUTO code 
for astrophysical plasma dynamics [68] and is rooted over the method originally proposed by McCorquodale & Colella [28], adding 
a number of innovative aspects that yield an accurate, robust and efficient computational tool. In fact, our scheme maximizes the 
benefits of the FV formalism (e.g., robustness when dealing with shocks, discontinuities, and steep gradients) along with techniques 
inspired by the FD formalism, such as the introduction of pointwise to pointwise reconstruction operations that ease up the structure 
19

of the scheme. To this aim, we revisited standard spatial reconstruction schemes (such as WENOZ and MP5), traditionally based 
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on the knowledge of 1D volume averages, so as to provide 4th-order accurate left and right states at zone interfaces by directly 
interpolating point values rather than volume averages. Pointwise reconstructions can be accomplished in primitive or characteristic 
variables and they lead to a compact stencil and a more cost-effective scheme. Moreover, our implementation is endowed with 
the generalized upwind constrained transport (UCT) of Mignone & Del Zanna [18], plus a new generalization of the UCT-GFORCE 
averaging scheme for special relativistic MHD that has been widely validated in the presented benchmarks.

The performance of the method has been assessed against selected 2D and 3D numerical test problems, demonstrating: i) genuine 
4th-order accuracy in smooth problems, ii) reduced numerical dissipation iii) the code’s ability to correctly capture propagating 
discontinuities and to resolve small-scale structures and turbulence. The robustness of the method is reinforced by a fallback approach 
that reverts the spatial order of the scheme to 2 in proximity of steep gradients. To identify such critical regions, we have proposed 
a new discontinuity detector - based on a derivatives ratio - which employs up to the fourth derivative to pinpoint high-frequency 
oscillations typically arising in proximity of a discontinuity. The order reduction procedure turned out to be, in our experience, 
a crucial element when undertaking severe configurations, allowing our high-order scheme to successfully carry out computations 
otherwise feasible only with 2nd-order schemes (see, e.g., configuration C2 §5.7).

We point out that, despite the augmented complexity of high-order algorithms, genuine 4th-order accuracy in smooth problems 
leads to a net saving of computational time. In §5.3 we demonstrated that, for a given accuracy, the high-order scheme will require, 
approximately 

√
𝑁2 grid cells when compared to a 2nd-order scheme with a corresponding reduction of CPU time that scales as 

∼𝑁−(𝑑+1)∕2
2 , where 𝑑 is the number of spatial dimensions. When applied to simple 3D computations, for instance, we found that the 

accuracy reached by a 2nd-order scheme with 5123 grid points is equally obtained when employing our 4th-order scheme with only 
∼ 343 points, with a corresponding reduction of the total computational time by a few orders of magnitude.

Better accuracy leads also to reduced numerical dissipation and thus an enhanced potential at describing spatial scales that would 
otherwise be challenging to probe within a traditional 2nd-order framework. Our results indicate that the decay rate of numerical 
diffusion is ∼𝑁−5 for our novel scheme, and only ∼ 𝑁−3 for the traditional scheme. For all these reasons our 4th-order scheme 
proved to be a computational tool suited for the next generation of numerical simulations in computational fluid dynamics. In a 
companion paper we will extend this formalism to non-Cartesian geometries.

Compared to other high-order competitive methods, such as discontinuous Galerkin (DG), our FV scheme requires fewer equations 
to be evolved in time (e.g. 8 instead of 32 for a 4th-order method), does not reduce stability with increasing order and it is better 
suited for flows containing smooth and discontinuous features. Its parallel implementation requires, however, several more inter-

processor communications (one per Runge-Kutta stage). A more thorough comparison, though, has to be considered in a separate 
paper.
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Appendix A. Laplacian operators in Cartesian coordinates

We start by demonstrating the validity of Eq. (16) and deriving the expression of the 2nd-order accurate Laplacian operator for a 
given function 𝑈 (𝑥) in a Cartesian mesh in one dimension. The possibility to straightforwardly generalize the treatment to multiple 
dimensions is guaranteed when considering Cartesian meshes due to the orthogonality of the standard basis. The (1D) cell-average 
is given by

⟨𝑈⟩
𝒄
= 1
ℎ

ℎ

2

∫
− ℎ

2

𝑈 (𝑥)𝑑𝑥 , (A.1)

where ℎ is the cell width. By expanding in Taylor series 𝑈 (𝑥) near the cell-center 𝑥𝑐 up to 4th-order we obtain

⟨𝑈⟩
𝒄
= 1
ℎ

ℎ

2

∫
− ℎ

2

[
𝑈 (𝑥𝑐) +𝑈 ′(𝑥𝑐)(𝑥− 𝑥𝑐) +

𝑈 ′′(𝑥𝑐)
2

(𝑥− 𝑥𝑐)2 +
𝑈 ′′′(𝑥𝑐)

6
(𝑥− 𝑥𝑐)3 +𝑂(𝑥4)

]
𝑑𝑥 , (A.2)

and, since odd integrands vanish when integrated over symmetrical domains, from straightforward calculation we get

⟨𝑈⟩
𝒄
=𝑈 (𝑥𝑐) +

ℎ2

24
𝑈 ′′(𝑥𝑐) +𝑂(ℎ4) . (A.3)

We now obtain a 2nd-order accurate expression of the 2nd-order derivative 𝑈 ′′. By expanding in Taylor series up to 4th-order the 
nearby average values: ⟨𝑈⟩

𝒄−�̂�𝑥 , ⟨𝑈⟩
𝒄+�̂�𝑥 we get

⟨𝑈⟩
𝒄−�̂�𝑥 =

1
ℎ

− ℎ

2

∫
− 3ℎ

2

[
𝑈 (𝑥𝑐) +𝑈 ′(𝑥𝑐)(𝑥− 𝑥𝑐) +

𝑈 ′′(𝑥𝑐)
2

(𝑥− 𝑥𝑐)2 +
𝑈 ′′′(𝑥𝑐)

6
(𝑥− 𝑥𝑐)3 +𝑂(𝑥4)

]
𝑑𝑥 ,

⟨𝑈⟩
𝒄+�̂�𝑥 =

1
ℎ

3ℎ
2

∫
ℎ

2

[
𝑈 (𝑥𝑐) +𝑈 ′(𝑥𝑐)(𝑥− 𝑥𝑐) +

𝑈 ′′(𝑥𝑐)
2

(𝑥− 𝑥𝑐)2 +
𝑈 ′′′(𝑥𝑐)

6
(𝑥− 𝑥𝑐)3 +𝑂(𝑥4)

]
𝑑𝑥 .

(A.4)

Since the interval is no longer symmetric, the odd powers no longer integrate to zero. The final result is

⟨𝑈⟩
𝒄−�̂�𝑥 =𝑈 (𝑥𝑐) −𝑈 ′(𝑥𝑐)ℎ+

13
24
𝑈 ′′(𝑥𝑐)ℎ2 −

5
24
𝑈 ′′′(𝑥𝑐)ℎ3 +𝑂(ℎ4) , (A.5)

⟨𝑈⟩
𝒄+�̂�𝑥 =𝑈 (𝑥𝑐) +𝑈 ′(𝑥𝑐)ℎ+

13
24
𝑈 ′′(𝑥𝑐)ℎ2 +

5
24
𝑈 ′′′(𝑥𝑐)ℎ3 +𝑂(ℎ4) . (A.6)

Adding Eq. (A.5) to Eq. (A.6) and subtracting twice Eq. (A.3)

⟨𝑈⟩
𝒄+�̂�𝑥 + ⟨𝑈⟩

𝒄−�̂�𝑥 − 2 ⟨𝑈⟩
𝒄
=𝑈 ′′ℎ2 +𝑂(ℎ4) , (A.7)

we can express the 2nd-order accurate second derivative in terms of volume-averaged quantities as

𝑈 ′′ =
⟨𝑈⟩

𝒄+�̂�𝑥 − 2 ⟨𝑈⟩
𝒄
+ ⟨𝑈⟩

𝒄−�̂�𝑥
ℎ2

+𝑂(ℎ2) , (A.8)

which defines the Laplacian operator in Eq. (16).

Conversely, Eq. (17) can be formally obtained applying a Simpson’s quadrature rule by integrating over the cell width ℎ

ℎ

2

∫
− ℎ

2

𝑈 (𝑥)𝑑𝑥 ≃

ℎ

2

∫
− ℎ

2

(
𝛼𝑥2 + 𝛽𝑥+ 𝛾

)
𝑑𝑥 . (A.9)

The function 𝑈 (𝑥) is approximated by a 2nd-order polynomial in the coefficients 𝛼, 𝛽, 𝛾 . The polynomial in the right hand side of 
Eq. (A.9) is the best approximation of 𝑈 (𝑥) when the coefficients 𝛼, 𝛽, 𝛾 are set by evaluating the function in the 3 nearby cell centers:

𝛼 =
𝑈
𝒄+�̂�𝑥 − 2𝑈

𝒄
+𝑈

𝒄−�̂�𝑥
2

, 𝛽 =
𝑈
𝒄+�̂�𝑥 −𝑈𝒄−�̂�𝑥

2
, 𝛾 =𝑈

𝒄
. (A.10)
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By replacing these expressions in Eq. (A.9) and by direct calculation of the integral we obtain Eq. (17).
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Appendix B. Explicit expressions for the UCT scheme

Here, for the sake of completeness and to also amend some equations containing typos, we briefly recap the most relevant 
expressions needed in our UCT scheme, as originally presented by Mignone & Del Zanna [18]. The edge-centered EMF (Eq. (39)) 
requires the reconstructed values of the transverse velocities as well as the linear combination coefficients 𝑎 and 𝑑 (for the centered

and diffusive flux contribution, respectively).

• Transverse Velocities: when using the HLL, HLLC or HLLD classical MHD Riemann solvers at a zone interface, the transverse 
velocities are obtained, e.g., at an 𝑥-face, as

𝑣𝑡,𝐱𝑓 =
𝛼𝑅
𝑥
𝑣𝐿
𝑡,𝐱𝑓

+ 𝛼𝐿
𝑥
𝑣𝑅
𝑡,𝐱𝑓

𝛼𝑅
𝑥
+ 𝛼𝐿

𝑥

, (𝑡 = 𝑦, 𝑧) , (B.1)

where 𝑣𝐿∕𝑅
𝑡,𝐱𝑓

are the left / right transverse velocities reconstructed at an 𝑥-face,

𝛼𝑅
𝑥
=max(0, 𝜆𝑅𝐱𝑓 ), 𝛼𝐿

𝑥
= −min(0, 𝜆𝐿𝐱𝑓 ) (B.2)

with 𝜆𝐿∕𝑅𝐱𝑓 being the smallest and largest characteristic speeds (see Eq. 14 of [18]). In the case of the GFORCE Riemann solver 
instead, we use

𝑣𝑡 = 𝜔
[
𝑣LW
𝑡

−
𝜏𝑥

2
(
𝑣𝑅
𝑡
− 𝑣𝐿

𝑡

)
𝑣LW
𝑥

]
+ (1 −𝜔)

(
𝑣𝐿
𝑡
+ 𝑣𝑅

𝑡

2

)
(B.3)

(note that Eq. 51 of [18] contains “𝑦” instead of “𝑡”), with 𝜔 = 1∕(1 + 𝑐) (𝑐 is the Courant factor, 𝑐 = 1 yields the FORCE scheme), 
𝐯LW is the velocity in the Lax-Wendroff state (see. Eq. 48 of [18]), and 𝜏𝑥 = 1∕ max(|𝜆𝐿𝐱𝑓 |, |𝜆𝑅𝐱𝑓 |).

• Combination Coefficients 𝑎 and 𝑑. For the HLL or HLLC Riemann solvers (away from degeneracies), the combination coefficients 
are evaluated as arithmetic averages across two adjacent faces (Eq. 34 and 35 of [18]) using the values available with the 1D 
Riemann solver:

𝑎𝐿
𝑥
=

𝛼𝑅
𝑥

𝛼𝑅
𝑥
+ 𝛼𝐿

𝑥

, 𝑎𝑅
𝑥
=

𝛼𝐿
𝑥

𝛼𝑅
𝑥
+ 𝛼𝐿

𝑥

, 𝑑𝐿
𝑥
= 𝑑𝑅

𝑥
=

𝛼𝑅
𝑥
𝛼𝐿
𝑥

𝛼𝑅
𝑥
+ 𝛼𝐿

𝑥

, (B.4)

where 𝛼𝐿∕𝑅𝑥 have been given in Eq. (B.2). In the limit 𝐵𝑥 → 0, the corresponding expressions for the HLLC solver are given by 
Eq. 38 of [18]. For the HLLD solver, instead, we employ

𝑎𝐿 = 1 + 𝜈∗
2

, 𝑎𝑅 = 1 − 𝜈∗
2

, 𝑑𝑠 = 1
2
(𝜈𝑠 − 𝜈∗)𝜒𝑠 + 1

2
(|𝜆∗𝑠|− 𝜈∗𝜆∗𝑠) , (s =𝐿,𝑅) (B.5)

where 𝜒𝑠 = (𝜆∗𝑠 − 𝜆𝑠)𝜒𝑠, while

𝜈𝑠 = 𝜆∗𝑠 + 𝜆𝑠|𝜆∗𝑠|+ |𝜆𝑠| , 𝜈∗ = 𝜆∗𝑅 + 𝜆∗𝐿|𝜆∗𝑅|+ |𝜆∗𝐿| , (B.6)

and 𝜆∗𝐿∕𝑅 are the Alfvén velocities of the HLLD fan (see Eq. 40 of [18]).
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