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Abstract

Time delays pose unique challenges in control engineering, as the inherent delays can introduce instabilities and compromise
system performance. To overcome these complexities, the concept of predictors or compensators has been instrumental in
stabilising closed-loop systems. Still, it requires an accurate delayed state estimation through the design and implementation
of predictors. In this paper, we delve into the design of novel prediction architectures tailored to nonlinear systems with input
and output delays that not only ensure stability but also bolster robustness, emphasising their ability to preserve stability
despite measurement noises or external perturbations.
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1 Introduction

In applications across diverse engineering domains, the
influence of delays on closed-loop stability is critical [28].
Feedback and state predictors have been introduced to
address this challenge, allowing the application of con-
trol strategies originally designed for delay-free systems.

Two approaches stand out among strategies aiming at
determining the future state. The first is to compute the
predictor mapping by integrating the system dynamics,
i.e., by the Cauchy Formula. This approach, initiated by
Manitius [21] for linear input delay linear systems, has
been extended to systems with state and input delays
[16], stochastic input delays [18] and others. For nonlin-
ear systems, determining the integral predictor mapping
is seldom possible. Thus, an approximation is suggested
[14]. The integral nature of the control law makes the ro-
bust closed-loop stability analysis involved, an issue that
is resolved by filtering the control law [26,17]. For the
case of partial state information, a two-step approach
consisting of an observer of the state at the present time
followed by the integral prediction is possible [14].

The second approach is an observer-based prediction
method, called observer-prediction for short, and sim-
ply prediction when the context is clear. It merges the
observation and prediction tasks, an idea that was ini-
tially introduced in the framework of output delay sys-
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tems [10]. In the case of linear input delay systems, it
consists of estimating the future state a period ahead
of time by feeding a Luenberger-type observer with the
control variable at the present time [27]. It is straight-
forwardly generalised to other classes of systems such
as sampled, time-varying [23], state delay [30], and non-
linear [22,7], as the observer amounts to a copy of the
system amended by a correction term depending on the
prediction error. The prediction-observation error is now
governed by a delay system whose stability margin is
limited by the delay, an issue that is solved by introduc-
ing several sub-predictors [10,27]. Thus, within this ap-
proach, the observer-predictor construction is straight-
forward, but the choice of the control gain and number
of sub-predictors requires special attention.

Nonlinear terms cannot be swept under the rug either.
High-gain observers [2,4,5] provide an efficient tool for
the design of observers in the presence of nonlineari-
ties. Known for their ease of tuning, they ensure robust-
ness and adaptability in state estimation. Global stabil-
ity results can be obtained under Lipschitz conditions
and particular system structures. This turnkey tool also
proves its suitability for time-delay systems [13]. How-
ever, the limitations of the high-gain strategy for long
input delays are well established [15]. While using sub-
predictors is a natural solution [1], the number of re-
quired sub-predictors grows exponentially with the sys-
tem’s dimension [29], a fact that suggests considering
continuously distributed sub-predictors, rather than a
finite number of them.
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At the heart of this research, a new observer-predictor is
designed for nonlinear systemswith input and output de-
lays using synergistic integration of high-gain observers
and continuously distributed sub-predictors. The main
objective is to ensure stability and robustness against
measurement noises and external perturbations.

This new predictor is implemented as a partial differen-
tial equation specified by three distinct components:

• Similarly to the delay-free case, a high-gain observer
is tuned with a sufficiently large scalar gain [12]. The
delayed state is estimated and used to define a bound-
ary condition.

• The differential equation itself, relating the temporal
and spatial derivatives. The equation results from tak-
ing a chain of sub-predictors and letting their number
grow to infinity.

• The predictor state at one of the domain boundaries
is fed to a filter to enhance robustness with respect to
measurement noises.

This structure enables handling systems with long
dead times, hard nonlinearities, and potentially high-
dimensional state spaces. The most innovative part con-
cerns the distributed predictor, which can be written as
a partial differential equation, the solutions of which are
easy to analyse with infinite-dimensional tools [24,25].
Through Lyapunov theory and rigorous mathematical
analysis, we provide stability guarantees in the presence
and absence of uncertainty and provide upper bounds
on the estimation errors.

We assess the predictor’s performance using a bioreac-
tor modeled by a Contois model [3,6]. The simulations
showcase our proposed predictor’s efficacy, affirming its
potential as a robust and reliable solution for state pre-
diction.

This paper is organised as follows. In Section 2, the pre-
dictor design strategy is presented. It consists of three
cascaded systems: a high-gain observer, a distributed
predictor, and a filter. In Section 3, the stability analy-
sis of the error system is regarded. Through Lyapunov
arguments, we show exponential stability and input-to-
state stability properties with respect to perturbations
and measurement noises. In Section 4, the results are il-
lustrated by the numerical simulation of a bioreactor.

Notation. Throughout the paper, N denotes the set
of natural numbers, R denotes the set of real numbers,
Rn the n-dimensional Euclidean space, and Rn×m the
set of n × m real matrices. Moreover, for any square
matrix A ∈ Rn×n, A⊤ represents its transpose, H(A) =
A + A⊤, and A,A are the square roots of, respectively,
the minimal and maximal eigenvalues of the symmetric
matrix A⊤A. Lastly, the real-valued function |·| is the
Euclidean norm and ∥·∥ is the L2(−h1, h2) norm.

2 Structure of the observer-predictor

In this section, we present the class of systems for which
we can predict the state and then propose the general
structure of the predictor. The following section is de-
voted to choosing appropriate gains and the correspond-
ing stability analysis.

2.1 Problem statement

Consider the system

ẋ(t) = Ax(t) + ϕ (x(t), u(t− h2))

y(t) = Cx(t− h1)
, (1)

where the function ϕ : Rn × U → Rn is triangular in x,

ϕ(x, u) =
[
ϕ(x1, u) ϕ(x1, x2, u) · · · ϕ(x1, . . . , xn, u)

]
,

(2)
and where the matrix pair (C,A) ∈ R1×n × Rn×n is in
the observability Brunowski normal form, that is,

A =


0 1 0 0
...
. . .

. . . 0

0 · · · 0 1

0 · · · · · · 0

 and C =
[
1 0 · · · 0

]
. (3)

Remark 1 A necessary and sufficient condition for a
(possibly nonlinear) system to be observable, uniformly
with respect to the inputs, is the existence of a change of
coordinates putting it in the form (1) with (2) and (3).
See, e.g., [5] for details. ⌟

As we will show later, the following assumption estab-
lishes the possibility of stabilising the nonlinear dynam-
ics of the prediction error using linear output injection.

Assumption 1 The function ϕ is globally Lipschitz in
x, uniformly in U . In other words, there exists a positive
scalar γφ such that

|ϕ(x, u)−ϕ(x̂, u)| ≤ γφ|x− x̂|, ∀ (x, u) ∈ Rn×U . (4)

We seek an observer-predictor that reconstructs the
state x(t+ θ) for θ ∈ [−h1, h2]. In particular, the recon-
struction of the state x(t+ h2) eases the control of (1),
bringing the design back to the case without delays.
The two main difficulties are:

• the nonlinearity φ, which is tackled with a high-gain
observer, and

• the delays h1 and h2, tackled with a distributed pre-
dictor scheme.
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It is worth mentioning that the classical high-gain strat-
egy cannot be freely applied in the presence of delays,
as the delay effectively imposes a constraint on how
much the high-gain can be increased before losing stabil-
ity. This limitation has been overcome in, e.g., [1,29] by
cascading several sub-predictors. This paper addresses
the limitation by endowing the observer-predictor with
a continuously distributed architecture, recovering full
freedom in the choice of the high gain.

2.2 High-gain observer

The observability of the linear structure (3) implies the
stabilisability of the linear error dynamics.

Lemma 1 Let A and C be as in (3) and let α > 0 and
Q ≻ 0. There exist matrices L ∈ Rn×1 and P ≻ 0 such
that

P (A+ LC) + (A+ LC)⊤P = −αP −Q. (5)

As in [29], we discuss high-gain observation through the
lens of homogeneity. We begin by recalling the scaling
or dilation matrix

Λ(λ) =


λ 0 0

0
. . . 0

0 0 λn


and proceed to construct a Luenberger-type observer at
the spatial boundary θ = −h1,

˙̂z(t,−h1) = Aẑ(t,−h1) + Λ(λ)L (Cẑ(t,−h1)− y(t))

+ ϕ(ẑ(t,−h1), u(t− h1 − h2)), (6)

where λ ≥ 1 is the high-gain parameter and L ∈ Rn×1

is a vector gain. Consider the time and state scalings

ξ(t, θ) = Λ(λ−1)x(λ−1t−θ), ζ(t, θ) = Λ(λ−1)ẑ(λ−1t, θ),

and define the error

e(t) = ξ(t,−h1)− ζ(t,−h1). (7)

Its dynamics are given by

ė(t) = λ−1Λ(λ−1)AΛ(λ)e(t) + λ−1LCΛ(λ)e(t)

+ λ−1Φ̃λ(e(t), ξ(t,−h1), u(λ
−1t− h1 − h2)),

where

Φ̃λ(e, ξ, u) = Λ(λ−1)
[
ϕ(Λ(λ)ξ, u)− ϕ(Λ(λ)(ξ − e), u)

]
.

By the homogeneity of the vector field Ax and of
the function Cx, we have A = λ−1Λ(λ−1)AΛ(λ) and
CΛ(λ) = λC [29, Lemma 1], so the error dynamics
simplify to

ė(t) = (A+ LC)e(t)+

λ−1Φ̃λ(e(t), ξ(t,−h1), u(λ
−1t− h1 − h2)).

Assumption 1 implies the existence of a positive scalar
γ such that

|Φ̃λ(e, ξ, u)| ≤ γ|e| (8)

for all (e, ξ, u) ∈ Rn ×Rn ×U and all λ ≥ 1 [29, Lemma
2]. The standard high-gain approach suggests the ob-
servation problem be solved by first fixing L such that
A+LC is Hurwitz, and then making λ sufficiently large
so that the term λ−1Φ̃λ does not alter the stability prop-
erties of the system.

2.3 Distributed predictor

To motivate the distributed nature of the proposed
observer-predictor, consider a cascade of r ∈ N sub-
predictors given by

˙̂z(t, θi) = Aẑ(t, θi) + ϕ (ẑ(t, θi), u(t+ θi − h2))

+ λr ·
(
ẑ(t, θi+1)− ẑ(t− h1+h2

r , θi)
)
. (9)

Here, θi = h2 − ih1+h2

r for i ∈ {0, . . . , r− 1} and λr ∈ R
is the gain for each sub-predictor. The last sub-system
has index i = r, state ẑ(t,−h1), and evolves according
to (6). Our interest in the cascade (9) is that the delay
that appears in the resulting error dynamics for each
sub-predictor is reduced from h1 + h2 to (h1 + h2)/r.

The new predictor is then obtained by letting the num-
ber of sub-predictors grow to infinity. In doing so, the
discrete index θi becomes a real independent variable θ.
Notice that the last term on the right-hand side of (9)
can be expanded as

ẑ(t, θi+1)− ẑ(t− h1+h2

r , θi) =

h1 + h2

r

(
− ∂

∂θ
ẑ(t, θ) +

∂

∂t
ẑ(t, θ)

)
+O

(
1

r

)
.

Thus, when r → +∞, the set of ordinary differential
equations (9) become a partial differential equation of
the form

∂

∂t
ẑ(t, θ) = Aẑ(t, θ) + ϕ (ẑ(t, θ), u(t+ θ − h2))

− λ⋆
r ·

(
∂

∂θ
ẑ(t, θ)− ∂

∂t
ẑ(t, θ)

)
,
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where t ≥ 0, θ ∈ (−h1, h2), and λ⋆
r = limr→∞ λr

h1+h2

r .
Solving for the partial derivative with respect to time
gives

∂

∂t
ẑ(t, θ) = −k

∂

∂θ
ẑ(t, θ) + (1 + k)Aẑ(t, θ)

+ (1 + k)ϕ (ẑ(t, θ), u(t+ θ − h2)) , (10)

where k =
λ⋆
r

1−λ⋆
r
is the distributed gain.

Remark 2 The well-posedness of system (10) with the
boundary condition (6) is guaranteed by setting k >
0 [11]. Conversely, for any k > 0 we can set λr =

r
h1+h2

k
1+k . ⌟

Define the error variable

z̃(t, θ) = x(t+ θ)− ẑ(t, θ), (11)

Using (1) and (10), the dynamics of z̃ are expressed as

∂

∂t
z̃(t, θ) = −k

∂

∂θ
z̃(t, θ) + (1 + k)Az̃(t, θ)

+ (1 + k)Φ̃1(z̃(t+ θ), x(t+ θ), u(t+ θ − h2). (12)

The rationale behind the previous equation is that, for
any k > 0, information is transported from θ = −h1 to
θ = h2. Later, we will formally show the convergence of
the error to zero in terms of the L2(−h1, h2) norm.

2.4 Filter

Lastly, to implement a control strategy, we need to pro-
pose an estimation ŵ(t) of the instantaneous state x(t+
h2). The idea is to have an estimate, which avoids im-
plementation issues and can be adjusted independently.
To do so, referring to early advances in control and ob-
servation of time-delay systems [26], we add an output
filter. Consider then the system

˙̂w(t) = −µŵ(t) + ϕ (ẑ(t, h2), u(t)) + (A+ µI)ẑ(t, h2),
(13)

where µ > 0 is the filter gain. Define the error variable

w̃(t) = x(t+ h2)− ŵ(t) (14)

and compute its dynamics

˙̃w(t) = −µw̃(t) + (A+ µI)z̃(t, h2)

+ Φ̃1(z̃(t, h2), x(t+ h2), u(t)). (15)

We will select µ according to the desired performance.

Remark 3 The stability of system (12) in the sense of
the L2(−h1, h2) norm does not guarantee the conver-
gence of z̃(t, h2) to zero. The filter state w̃(t) enables us

(6)

High-gain λ,L

(10)

Distributed gain k

(13)

Filter gain µ

y(t) ẑ(t,−h1) ẑ(t, h2) ŵ(t)

Fig. 1. Whole predictor block diagram.

to work in the space L2(−h1, h2)× Rn and certify con-
vergence at boundary. ⌟

2.5 Complete predictor

The complete predictor is illustrated in Fig. 1. It in-
cludes the delay-free observer (6), the distributed pre-
dictor (10), and the filter (13). Summarising,

˙̂w(t) = −µŵ(t) + (A+ µI)ẑ(t, h2)

+ ϕ (ẑ(t, h2), u(t)) , (16a)

∂

∂t
ẑ(t, θ) = −k

∂

∂θ
ẑ(t, θ) + (1 + k)Aẑ(t, θ)

+ (1 + k)ϕ (ẑ(t, θ), u(t+ θ − h2)) , (16b)

˙̂z(t,−h1) = Aẑ(t,−h1) + Λ(λ)L(Cẑ(t,−h1)− y(t))

+ ϕ(ẑ(t,−h1), u(t− h1 − h2)). (16c)

Remark 4 As the function ϕ is triangular, there exists
a (possibly nonlinear) map

T :

(
y(t), . . . ,

dn−1

dtn−1
y(t)

)
7→ x(t− h1).

Thus, it is possible to remove the high-gain observer and
use the boundary condition

ẑ(t,−h1) = T

(
y(t), . . . ,

dn−1

dtn−1
y(t)

)
.

It is also possible to avoid the filter (13) by setting ŵ(t) =
ẑ(t, h2). However, even if stability can be assessed, the
high-gain observer and the filter play an important role
when put into practice. It allows the whole predictor
system to be robust with respect to measurement noise
and to face several implementation issues. ⌟

Recall the error (7) and define the scaled errors

ez(t, θ) = Λ(λ−1)z̃(λ−1t, θ)

and
ew(t) = Λ(λ−1)w̃(λ−1t).

As before, this transformation is useful for showing how,
via high-gain, the linear terms dominate Φ̃λ. From (12)
and (15) we obtain the filter error dynamics

λėw(t) = −µew(t) + (λA+ µI)ez(t, h2)

+ Φ̃λ

(
ez(t, h2), ξ(t, h2), u(λ

−1t)
)
. (17a)
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For t ≥ 0 and θ ∈ (−h1, h2), we obtain the distributed
predictor error dynamics,

λ
∂

∂t
ez(t, θ) = −k

∂

∂θ
ez(t, θ) + (1 + k)λAez(t, θ)

+ (1 + k)Φ̃λ

(
ez(t, θ), ξ(t, θ), u(λ

−1t+ θ − h2)
)
,

(17b)

with boundary condition ez(t,−h1) = e(t), and the ob-
server error dynamics

λė(t) = λ(A+ LC)e(t)

+ Φ̃λ

(
e(t), ξ(t,−h1), u(λ

−1t− h1 − h2)
)
. (17c)

Remark 5 A predictor based on partial differential
equations was proposed in [19, Chapter 3] in a backstep-
ping framework. The current approach is different since
we are not trying to target a transport equation with
a zero boundary condition (which would correspond
to ez(t, h2) = 0, k = −1). In fact, the backstepping
approach in the nonlinear case requires the computa-
tion of a kernel, a solution of a nonlinear differential
equation. Here, the parameter k will play a role in the
convergence rate, and equation (16b) is not a transport
equation for k ̸= −1. We can study the stability of the
error system in the original coordinates without using a
backstepping transformation. ⌟

In the sequel, the stability of this error system is anal-
ysed. The main objective is to find the observer param-
eters (λ, L, k, µ) that stabilise the origin of the error sys-
tem exponentially fast.

3 Stability analysis

In this section, we use a Lyapunov functional to show
that the prediction error converges to zero exponentially
fast.

3.1 Exponential stability

To alleviate the notation, allow us to define the aggregate
error

E(t, ·) =
(
e(t) ew(t) ez(t, ·)

)
and the aggregate norm

∥E(t, ·)∥A =
√
|e(t)|2 + |ew(t)|2 + ∥ez(t, ·)∥2.

Lemma 2 ([24]) If there exist α1, α2, α3 > 0 and a
functional V : Rn × Rn × L2(−h1, h2) → R such that

α1∥E(t, ·)∥2A ≤ V(E(t, ·)) ≤ α2∥E(t, ·)∥2A,
V̇(E(t, ·)) ≤ −α3V (E(t, ·)) ,

where V̇ is the Dini derivative of V along the trajectories
of (17). Then, V is a Lyapunov functional for system (17)
and, for all t ≥ 0,

∥E(t, ·)∥A ≤ α2

α1
e−α3t∥E(0, ·)∥A.

Our first main result, stated below, guarantees the exis-
tence of a predictor for any desired decay rate.

Theorem 1 Under Assumption 1, for any α > 0 and
k > 0, there exist parameters (λ, L, µ) such that the so-
lution of system (17) satisfies

∥E(t, ·)∥2A ≤ βe−αt∥E(0, ·)∥2A, (18)

where

β =
P̄ + p exp(ϱ(h1 + h2)) + q

min{P , p, q}
, (19)

and P , p, and q are given in (21).

Proof : Consider the functional [8]

V(E(t, ·)) = e(t)⊤Pe(t) + q|ew(t)|2 + p∥ρ(·)ez(t, ·)∥2,
(20)

where P ≻ 0, p, q > 0 and ρ(θ) = exp(−ϱ(θ−h2)
2 ) with

r > 0 to be fixed later. This functional satisfies

V(E(t, ·)) ≥ min{P , p, q}∥E(t, ·)∥2A,
V(E(t, ·)) ≤ (P + p exp(ϱ(h1 + h2)) + q)∥E(t, ·)∥2A.

Its time derivative along the trajectories of system (17),

W(E(t, ·)) := λV̇(E(t, ·)), is provided in (†). It follows
from (8) that

|Φ̃λ(ez(t, θ), ξ(t, θ), u(λ
−1t+ θ − h2))| ≤ γ|ez(t, θ)|

for all θ ∈ [−h1, h2]. Hence,

W(E(t, ·)) ≤ 2e⊤(t)
(
λP (A+ LC) + γP̄ I

)
e(t)

− 2qµ|ew(t)|2 + 2q(γ + λĀ+ µ)|ew(t)||ez(t, h2)|

−
[
pkρ2(θ)|ez(t, θ)|2

]h2

−h1

− pkr

∫ h2

−h1

|ez(t, θ)|2dθ

+ 2p(1 + k)(λĀ+ γ)

∫ h2

−h1

ρ2(θ)|ez(t, θ)|2dθ.

Noting that Ā = 1, ez(t,−h1) = e(t) and applying
Young inequality on the crossed term, we obtain

W(E(t, ·)) ≤ 2λe⊤(t)P (A+ LC)e(t)− qµ|ew(t)|2

+ 2(γP̄ + pk exp(ϱ(h1 + h2)))|e(t)|2

+

(
q
(γ + λ+ µ)2

µ
− pk

)
|ez(t, h2)|2

+ p (2(1 + k)(λ+ γ)− kϱ) ∥ρ(·)ez(t, ·)∥2.
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W(E(t, ·)) = 2e⊤(t)P
(
λ(A+ LC)e(t) + Φ̃λ

(
e(t), ξ(t,−h1), u(λ

−1t− h1 − h2)
))

− 2qµ|ew(t)|2

+ 2qe⊤w(t)
(
Φ̃λ

(
ez(t, h2), ξ(t, h2), u(λ

−1t)
)
+ (λA+ µI)ez(t, h2)

)
− pk

∫ h2

−h1

ρ2(θ)
∂

∂θ
|ez(t, θ)|2dθ

+ 2p(1 + k)

∫ h2

−h1

ρ2(θ)e⊤z (t, θ)
(
λAez(t, θ) + Φ̃λ

(
ez(t, θ), ξ(t, θ), u(λ

−1t+ θ − h2)
))

dθ. (†)

We can now select

µ = λα, q =
α

λ
, pk = (γ + 1 + α)2,

ϱ = λ

(
α+ 2(1 + k)(1 + γ)

k

)
, (21)

and λ is to be determined later. Moreover, we choose
matrices L and P ≻ 0 such that (5) holds with Q = Qα,

Qα =
(
1 + 2(γ + 1 + α)2 exp(ϱ(h1 + h2))

)
I.

Thus, we have

V̇(E(t, ·)) ≤ −αV(E(t, ·))−
(
λ− 2γP̄

)
|e(t)|2.

The proof is concluded by choosing a sufficiently large
high-gain parameter λ ≥ 2γP̄ and invoking Lemma 2. □

Theorem 1 shows that, for system (1), it is possible to
construct a predictor whose error goes to zero at any
prescribed decay rate.

In the following subsection, our stability statement is
enriched and quantified in the presence of disturbances
and noises.

3.2 Input-to-state stability

Allow us to augment the model (1) as

ẋ(t) = Ax(t) + ϕ (x(t), u(t− h2)) + ηx(t),

y(t) = Cx(t− h1) + ηy(t),
(22)

where ηx and ηy are the perturbation and measurement
noise, assumed to be bounded for any t ≥ 0.

With the same observer (16), the error model for the
filter is

λėw(t) = −µew(t) + (λA+ µI)ez(t, h2) + δx(t, h2)

+ Φ̃λ

(
ez(t, h2), ξ(t, h2), u(λ

−1t)
)
, (23a)

where δx(t, θ) = Λ(λ−1)ηx(λ
−1t + θ). The distributed

predictor error is now

λ
∂

∂t
ez(t, θ) = −k

∂

∂θ
ez(t, θ)+(1+k)λAez(t, θ)+δx(t, θ)

+ (1 + k)Φ̃λ

(
ez(t, θ), ξ(t, θ), u(λ

−1t+ θ − h2)
)
,

(23b)

and the observer error is

λė(t) = λ(A+ LC)e(t) + δx(t,−h1) + Lδy(t)

+ Φ̃λ

(
e(t), ξ(t,−h1), u(λ

−1t− h1 − h2)
)
, (23c)

where δy(t) = ηy(λ
−1t).

The robustness with respect to perturbations and mea-
surement noises is addressed via Lyapunov analysis and
the following dissipation lemma.

Lemma 3 ([24]) If there exist α1, α2, α3, α4 > 0 and
V : Rn × Rn × L2(−h1, h2) → R such that

α1∥E(t, ·)∥2A ≤ V(E(t, ·)) ≤ α2∥E(t, ·)∥2A,
V̇(E(t, ·)) ≤ −α3V(E(t, ·)) + α4η∞,

where V̇(E(t, ·)) is the Dini derivative of V along the tra-
jectories of (23). Then, V is an input-to-state Lyapunov
functional for system (23) and, for all t ≥ 0,

∥E(t, ·)∥2A ≤ max

{
α2

α1
e−

α3
2 t∥E(t, ·)∥2A,

2α4

α1α3
η∞

}
.

Our second main result guarantees the input-to-state
stability with respect to uncertainties and provides esti-
mates of the corresponding input-to-state gain.

Theorem 2 Let α > 0. Under Assumption 1, for any
k ≥ 0, there exists observer gains (λ, L, µ) such that the
solution of system (23) satisfies

∥E(t, ·)∥A ≤ βe−αt∥E(t, ·)∥A +
β(1 + L̄)

(αλ)2
η∞, (24)

η∞ = sup
t≥0

max
{
|δx(t, 0)|2, |δy(t)|2

}
,

where β in (19) and P , p, and q set as in (25).
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Proof : The time derivative of the functional (20) along
the trajectories of system (23) is

λV̇(E(t, ·)) = W(E(t, ·)) + 2qe⊤w(t)δx(t, h2)

+ 2p

∫ h2

−h1

ρ2(θ)e⊤z (t, θ)δx(t, θ)dθ

+ 2e⊤(t)P (δx(t,−h1) + Lδy(t)) ,

whereW is again given in (†). Applying Young’s inequal-
ity yields

λV̇(E(t, ·)) ≤ W(E(t, ·)) + αλV(E(t, ·))

+
P̄ + p exp(ϱ(h1 + h2)) + q + P̄ L̄

αλ
η∞.

Similarly to the proof of Theorem 1, replacing α by 3α,
we select first

µ = 3λα, q = 3α
λ , pk = (γ + 1 + 3α)2,

ϱ = λ

(
3α+ 2(1 + k)(1 + γ)

k

)
. (25)

Then, select matrices L and P ≻ 0 such that (5) holds
with Q = Q3α and, finally, λ = 2γP̄ . We end up with
the following inequality:

V̇(E(t, ·)) ≤ −2αV(E(t, ·)) + βmin{P , p, q}(1 + L̄)

αλ2
η∞.

According to Lemma 3, V is an input-to-state Lyapunov
functional, and the inequality (24) is satisfied. □

Theorem 2 shows that the proposed observer is robust
with respect to perturbations and measurement noises.
For any decay rate α > 0, the input-to-state gain is
proportional to 1

α2 , i.e., high convergence rates lead to
high input-to-state gains. Such a trade-off between per-
formance and robustness is discussed in the numerical
section.

4 Numerical example

Consider a two-dimensional bioreactor system [9] in the
canonical form with input and output delays

ẋ1(t) = x2(t)− x1(t)u(t− h2),

ẋ2(t) = −x2(t)u(t− h2) + x1(t)x2(t),

y(t) = x1(t− h1) + ηy(t),

(26)

where u ∈ U = [um, uM ], um > 0. Assumption 1 is met
with γφ = um. In the sequel, let u(t) = 0.2 + 0.1 sin(πt)
and h1 = 0.5, h2 = 0.1.

0 2 4
0

5

10

15

(a) State 1

0 2 4
0

5

10

15

(b) State 2

Fig. 2. Estimation of the state x(t+ h2) for k ∈ {0.5, 1, 2}.

0 2 4
0

5

10

(a) State 1

0 2 4
0

5

10

(b) State 2

Fig. 3. Estimation of the state x(t+ h2) with output noise.

4.1 Without noise (η = 0)

Consider the observer (16) with the gains (λ, L, µ) set
in (21) and with α = 1. Consider three possible gains
k ∈ {0.5, 1, 2}. For initial conditions x(0) = (1, 2), the
state x(t) is depicted in black in Fig. 2. The estimated
states (ẑ(t,−h1), ẑ(t, θ), ŵ(t)) of the observer are com-
puted for t ∈ [0, 4] using an Euler explicit scheme and
null initial conditions. We can see that the solution ŵ(t),
plotted in blue in Fig. 2, converges towards the expected
solution. Indeed, Theorem 1 guarantees the exponential
convergence of the error for any k ≥ 0. However, note
that the damping ratio increases when k increases. The
initial error seems to decay more quickly but it suffers
a large overshoot. Lastly, the error norm represented in
Fig 4a and the inequality (18) is confirmed. Note that
the error norm reaches an ultimate bound due to numer-
ical implementation.

4.2 With measurement noise (ηy ∈ [−0.1, 0.1])

Consider the observer (16) with the gains (λ, L, µ) set
in (25), with k = 1 and α = 1. The simulation is run
ten times with several random noises ηy ∈ [−0.1, 0.1].
As illustrated in Fig. 3, the estimated state ŵ(t) is still
close to the expected solution x̂(t + h2). As proven in
Theorem 2, the input-to-state stability is obtained and
our observer is robust to measurement noise. In steady
state, an upper bound of the error norm is given by

0.1β(1+L̄)
λ2 ∼ 1010. In Fig 4b, the bound expressed in (18)

is satisfied. It is very conservative and would benefit from
improvement.
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(a) No noise, k ∈ {0.5, 1, 2} (b) Noise, k = 1

Fig. 4. Upper bound for the error norm ∥E(t, ·)∥A.

5 Conclusions

In this paper, we have designed an observer for nonlinear
time-delay systems. The nonlinear part is handled by a
large gain observer and the input and output delays are
managed by an infinite number of sub-predictors. There-
fore, we have proposed a new high-gain distributed ob-
server. Using a Lyapunov analysis, we have succeeded
in expressing explicitly the different observation gains
required for the error system to be exponentially stable
and input-to-state stable with respect to state or mea-
surement noises. An example taken from bioprocesses
corroborates our statements.

Future research works will be dedicated to more gen-
eral robustness results, involving the robustness to
state parameters, delay uncertainties, or time-varying
delays [20]. The influence of time sampling or spacial
discretisation should also be studied in detail to obtain
an accurate numerical method to solve the hyperbolic
partial differential equation involved in the observer.
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