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Abstract—Recently, there has been a notable shift in manual
assembly tasks being replaced by robots. These robots are
controlled by operators using keyboards. To enhance this prac-
tice, we have introduced a remote human-robot collaboration
system. This system allows operators to remotely control robots
using hand gestures, utilizing an online hand gesture recognition
system. A model-driven display system has been implemented to
complement the remote robot control system.

For data acquisition, we have carefully selected Leap Motion
technology. The designed approach for remote hand gesture
recognition has been implemented and tested for accuracy and
response time using the well-known SHREC’21 Gesture Bench-
mark. The final analysis demonstrates the significant potential
of the developed system in improving assembly processes and
environments. It optimizes various key performance indicators,
leading to enhanced efficiency and effectiveness.

Index Terms—Robot remote control, hand gesture recognition,
human-robot collaboration, optimization, deep learning.

I. INTRODUCTION

The advent of Industry 5.0 has brought forth a new era
of manufacturing, where cutting-edge technologies seamlessly
integrate with human expertise. With a focus on harnessing the
power of ergonomics and enhancing productivity, one promis-
ing avenue lies in developing a manufacturing optimization
system through remote robot control [1]. By leveraging hand
movements as the interface, this innovative approach enables
operators to intuitively guide robots from a distance, stream-
lining processes and reducing physical strain. The synergy
between industry 5.0 principles, ergonomic design, and remote
robot control holds immense potential for revolutionizing the
manufacturing landscape, empowering workers, and unleash-
ing unprecedented levels of efficiency [2], [3].

Manufacturing systems traditionally rely on human op-
erators to perform various tasks [4]. However, robots can
potentially enhance efficiency and optimize productivity by
replacing specific tasks, such as tool retrieval or returning,
with robots [5]. This substitution not only saves time but
also streamlines the overall manufacturing process. Presently,
operators control robots using keyboards, which may not

provide the most intuitive and efficient means of interaction
[6]. To address this limitation, we propose investigating the
feasibility of controlling robots through immaterial means,
specifically by utilizing hand gesture recognition. Today, prac-
tically all industrial robots and electrical equipment use control
stations as their interface. Controllers come with many issues,
including difficulties replacing them when they are damaged,
confusion over the various button layouts, time wasted seeking
the correct remote, and more.

One of the earliest and most common forms of human
interaction has been through hand gestures. It is regarded as a
form of interaction that might offer a more agile, imaginative,
and organic way for operators and robots to communicate.
A speech recognition system can be used to collaborate and
control the robots. However, obtaining an accurate system
in our manufacturing context will be difficult since such
environments are generally crowded. Therefore, remote control
through gesture recognition is particularly relevant in this
context [7]. To this end, this paper aims to present a prac-
tical transformer-based approach to remote robot control in a
manufacturing system.

For this purpose, in this paper (as shown in Fig. 1), a hand
gesture recognition system based on the most recent deep
learning time series architectures is developed and tested on
the gesture benchmark SHREC’21 [8]. Relied on this system,
we discussed the benefit of this remote control from different
points of view. Our developed recognition system has real-
time answers and high precision accuracy, making it reliable
for the operator in such a sensitive industrial environment.

The main contributions of this paper are the following:

• Proposing a study for remote robot control, using hand
gesture recognition in a manufacturing environment, start-
ing from the selection of technologies, the choice of
recognition architecture, the choice of the database, and
gestures to learn, to the case study and configuration.

• Introducing an online system for hand gesture recognition
based on an accurate neural network architecture;



Fig. 1. The proposed System for remote hand gesture control.

• Both static and dynamic gestures are considered in the
proposed recognition system;

• Demonstrating the benefits of using the proposed system
in an assembly line configuration.

The rest of the paper is structured as follows: section
II gives a brief literature review on robot remote control
in a manufacturing environment. Section III introduces the
developed vision-based hand gesture recognition system and
details some preliminary results. Section IV presents a case
study. Finally, a conclusion and perspectives are drawn in
section V.

II. LITERATURE REVIEW

Remote robot manipulation has recently seen a massive
increase in use across several industries. Numerous remote
robot manipulation techniques have been used in remote
surgery [9]. The TouchMe system, an AR-based framework
for remote robot operation, was introduced in [10]. A touch
screen serves as the human-side control interface. The user
can control the moving robot and its manipulator from a third-
person perspective.

Remote robot manipulation has also been incorporated into
the robotic assembly. A framework for the remote robotic
assembly was presented in [11], where the real-time robot
control and monitoring were accomplished using the remote
robot manipulation technique. In [7], the authors proposed a
remote human-robot collaborative system that can be applied
in a hazardous manufacturing environment. The proposed
system can provide control tasks from one robot to another.
Through two test cases and discussions, the authors indicate
an excellent potential for applying the system in different
industries. Recently, in [12], a focus was placed on machine
learning techniques to make a sensorless robot able to learn
and optimize an industrial assembly task. Kung and Chou
[13] addressed the cooperation problem between machines and
operators using human gesture recognition.

A growing body of literature in the computer vision field
investigated the skeleton-based hand gesture recognition re-
search topic and has undergone substantial study, particularly
with the advent of deep learning [14]. This inspired the design
of numerous advanced skeleton-based methodologies [15]. In
particular, there has been a noticeable shift towards employing
graph-based representations to capture spatiotemporal infor-
mation effectively. This approach has gained traction due to
its compatibility with the topological structure of the skeleton,

which aligns well with the nature of hand gestures. Graph-
based convolutions have been widely adopted in this context,
as they respect the underlying skeleton’s topological charac-
teristics [16], [17], [18]. Furthermore, the rise of transformer
models in time series analysis has piqued researchers’ interest
in exploring their potential combination with graph-based
convolutions for improved hand gesture recognition accuracy
[19].

This paper studies the potential use of remote hand gesture
recognition in human-robot collaboration tasks. Firstly, we
introduce a skeleton-based approach that uses Graph Convo-
lutional Networks (GCNs) and a deep learning transformer
model. Then, we investigate the impact of integrating remote
robot control tasks in a given assembly system scenario.

III. REMOTE HAND GESTURE RECOGNITION METHOD

A. Data representation

Hand gesture data can be acquired by different methods
such as marker-based and markerless techniques [4], [20].
In conventional optical-based motion capture, the subject can
wear retro-reflective markers to accurately extract the position
of the markers, including finger movement (see Fig. 2).
Nevertheless, although 3D displacements can be played and
transferred in real-time from the MOCAP system, this config-
uration is quite expensive as it requires at least 6 to 8 cameras
to cover the whole scene, coupled with professional labeling
and processing software.

Alternatively, markerless systems such as RGB cameras
can also provide the displacements of hands and fingers. The
process may rely on MediaPipe [21], [22], an open-source
framework to detect in real-time the hand key points (x,y)
(see Fig. 3).

If this solution is quite simple to implement and ensures
real-time results, the relative accuracy of the 3D location of
the hand points is not sufficient for our kind of application.
Conversely, a new system based on mocap gloves (e.g., from
StetchSense Inc) can reach this accuracy, but the system’s
price (∼ 10ke) is too heavy to support. The main goal of
the developed set-up is to obtain the accurate coordinates of
the hand in real-time, in a dedicated space, i.e., the vicinity
of the remote operator.

Hence, this study presumes that implementing a Leap Mo-
tion sensor is suitable for capturing hand gestures during robot
remote control in manufacturing. Priced at approximately $80,
this sensor delivers commendable performance, boasting a
frame rate ranging from 50 to 200 frames per second. It
also offers exceptional precision, enabling real-time tracking
of hands and fingers in a three-dimensional realm with an
accuracy of 0.01mm. Furthermore, it occupies minimal space,
measuring only 80 x 30 x 12.7mm [23].

The sensor possesses a significant advantage in eliminating
the need for wearing. Users place their hands in the designated
acquisition zone above the sensor to use it. Through the
ultrasound response detected from the fingers, the sensor cap-
tures detailed three-dimensional information about the hand
(See Fig.4).



Fig. 2. Example of retroreflective markerset for hand and arm tracking.

Fig. 3. Points of interest for the hands: real-time detection by MediaPipe
engine [20].

Fig. 4. Example of hands representation by Leap Motion sensor (source:
Ultraleap).

Data obtained from this sensor comprises a hand skeleton
composed of 23 joints for each hand. Throughout the skeletal
tracking process, the three-dimensional position of each of

these 23 joints is transmitted at a frequency of 15 frames per
second.

B. Skeleton-based Recognition system method

This preliminary work introduces a graph-based approach
that combines (I) a Spatial Graph Convolutional Network (S-
GCN) [24] to represent the spatial interdependence among the
joints and (ii) a Transformer architecture [25] to represent the
temporal connection.

Thus, we can exploit a fully graph-based approach within
the hand skeleton sequences acquired by the Leap Motion
device (see Fig. 4).

Fig. 5 shows the architecture of our recognition system.
We create a graph sequence using an adjacency matrix and a
3D hand skeletons sequence. Firstly, the S-GCN technique is
utilized to extract hand features from each frame by leveraging
the inherent graph structure of the hand skeleton in the spatial
domain.

The spatial graph convolution operation performs a
weighted average aggregation of node features, incorporating
the current node’s features and neighboring nodes within the
same frame. This process generates a new feature vector for
each node, encompassing information about the node itself,
its neighbors, and the strength of their connections within the
hand structure.

Subsequently, we capture relevant inter-frame information
in the temporal domain using a transformer architecture.

Finally, the transformer’s output undergoes a global pooling
operation before inputting into our classifier. The encoder
block described in [25] is the foundation for this module.

In the context of an online hand gesture dataset, which
differs from offline scenarios, the gesture samples are not pre-
segmented. The provided sequences are continuous and consist
of sub-sequences containing both gestures and instances of
”No gesture.”

To address this, we employ the widely used sliding window
approach. At each time step, denoted as t, we extract a small
window from the sequence, spanning the interval [t, t+window

https://www.ultraleap.com/tracking/


Fig. 5. The architecture of the recognition system.

size]. These windows are sampled with a stride of 5, meaning
that windows are selected every five frames. Consequently,
we obtain per-frame labeling for each window, allowing for
gesture recognition within the window. However, assigning
the label with the maximum probability as the prediction for
the entire window is not straightforward. This is because the
window can contain frames belonging to both gestures and the
”No gesture” class.

A significant class imbalance exacerbates this issue, as most
extracted windows belong to the ”No gesture” class and could
be classified as false positives. We introduce a prediction
filtering system based on probability thresholds to mitigate
this.

Windows predicted to belong to a gesture class C, but
having a probability score P (C) below a threshold α(C), are
deemed false positives and assigned to the ”No gesture” class.

During the validation phase, we learn these probability
thresholds. The threshold α(C) for gesture class C is com-
puted as the average probability the classifier estimates for
gestures correctly predicted as class C. This calculation only
considers cases where the classifier accurately predicts the
gesture class, thus excluding false positives from contributing
to the average threshold score.

By incorporating this threshold filtering system, the number
of false positives is significantly reduced exponentially.

C. Dataset, experimental settings and results for hand gesture
recognition

The Skeleton-based Hand Gesture Recognition in the Wild
track SHREC’21 [8] dataset is specifically designed as a
benchmark for evaluating methods and algorithms that aim
to detect and recognize hand gestures in a continuous stream
of captured hand joints.

This database encompasses gestures that can be translated
into actions that a robot can perform. It includes both static
and dynamic gestures with distinct characteristics.

Skeleton sequences are acquired using a Leap Motion
devise. The total dataset offers a diverse and extensive gesture
dictionary consisting of 18 gesture classes categorized into
three categories (see Fig. 6).

To assess the performance of our approach, we evaluate it
using the False Positive Rate (FPR) metric. This metric quan-
tifies the ratio of false predictions (FP) that do not correspond
to ground truth samples of a specific class, divided by the

total number of ground truth samples belonging to that class.
Mathematically, the false positive rate can be expressed as
follows:FPR = FP

(TP+FN) , where TP refers to true positives
and FN refers to false negatives.

Our experiments used PyTorch as the framework, with
Adam optimizer and Cross-entropy loss function. The chosen
hyper-parameters include a batch size of 32, 6 encoders, and
eight heads for the multi-head attention mechanism.

In terms of performance, we achieved an impressive false
positive rate (FPR) of 0.083%. Additionally, our real-time
gesture recognition system provides prompt results, with an
average processing time of 0.089 seconds for each window
size.

IV. HAND GESTURE REMOTE CONTROL IN AN ASSEMBLY
LINE

In the following, we study the possibility of applying gesture
recognition in the human-robot collaborative manufacturing
environment.

We propose as an example of the assembly line shown in
Fig. 7 where operators can collaborate with cobots to accom-
plish specific tasks efficiently. For instance, let’s consider the
operator at Station 1, who needs to utilize a particular tool.
He has two options to interact with the cobot:

(1) Using a keyboard: The operator can press suitable keys
and provide instructions to the cobot regarding the desired
actions. These instructions may include commands to locate
the tool, grasp it, and bring it to the operator.

(2) Gestural commands: Alternatively, the operator can issue
commands to the cobot through a succession of gestures.
For example, the operator can use the gesture “point” to
indicate the tool’s location, followed by the “grasp” gesture
to communicate the action of grasping the tool. The cobot
will then execute these gestures accordingly, bringing the tool
to the operator.

The feasibility of remotely controlling robots in a collab-
orative environment is demonstrated in the proposed setting
and with the developed approach incorporating various gesture
classes. This collaborative interaction yields several benefits:

Ergonomics: The remote control aspect of human-robot
collaboration reduces the mental load on operators. They no
longer need to comprehend complex instructions for robot
control, as they can utilize natural gestures instead. This allows
operators to focus on the environment they are interacting



Fig. 6. The illustration of gestures from the SHREC’21 dataset [8].

Fig. 7. Illustration of a simple assembly line configuration with two scenarios
and a human-robot interaction.

with without needing constant visual attention shifts between
the robot and the control unit. This ergonomic improvement
enhances operator comfort and reduces the potential for errors.

Enhanced safety: Hand gesture control reduces the need
for physical interaction with the robot, minimizing the risk of
accidents or injuries. Operators can maintain a safe distance
while still effectively controlling the robot’s actions, reducing
the potential for workplace incidents.

Intuitive and user-friendly interface: Hand gestures pro-
vide a natural and intuitive way of interacting with robots.
Operators can quickly learn and adapt to the gesture-based
control system, eliminating the need for extensive training or
specialized technical knowledge. This user-friendly interface
facilitates the adoption of robotic technology in manufacturing

systems.
Rapid task switching: Hand gesture control enables opera-

tors to switch between tasks or robot actions seamlessly. With
a simple change in gestures, operators can instruct the robot to
perform a new action or move to a different location, allowing
for efficient task switching and increased productivity.

Improved collaboration: Hand gesture control promotes
a collaborative environment between operators and robots.
Using gestures to communicate instructions, operators can
easily convey their intentions, leading to better understanding
and coordination between human and robotic workers. This
collaboration enables efficient task allocation, where robots
can assist operators in performing complex or physically
demanding tasks.

Reduced equipment costs: Hand gesture control eliminates
the need for additional hardware or complex control panels.
Operators can control robots using their hand movements, min-
imizing the cost and maintenance associated with specialized
control devices. This cost reduction makes robotic systems
more accessible and financially viable for manufacturing busi-
nesses.

Adaptability to diverse tasks: Hand gesture control offers
flexibility in controlling a wide range of robotic applications.
Operators can employ different gestures to instruct robots in
tasks such as picking and placing objects, assembly opera-
tions, or machine maintenance. This adaptability allows for
the integration of robotic systems into diverse manufacturing
processes.

Flexibility: Remote human-robot collaboration offers in-
creased flexibility in task execution. Establishing effective
communication channels between humans and robots makes it
possible to allocate heavy or strenuous tasks to robots, thereby
relieving human workers. This delegation of tasks results in
better overall performance, higher speed production, enhanced
repeatability, and improved productivity.



V. CONCLUSION

This paper proposes and studies an online hand gesture
recognition system as part of a manufacturing system. A dual
convolution graph architecture and attention mechanism are
adopted for hand gesture classification. The sliding windows
technique proves its efficiency for online recognition. Tasks
commanded remotely by the operator provide a significant
benefit in terms of productivity and facilitate human-robot col-
laboration. The impact of using hand gestures as an alternative
in an assembly line is studied.

In future works, we propose to develop a user-friendly
graphical interface for the proposed framework. We will also
investigate the use of the digital twin concept coupled with our
system. Finally, we intend to deploy and apply our system to
real industrial scenarios such as disassembly.
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